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Abstract

Recently, Neural ODE (Ordinary Differential Equation)
models have been proposed, which use ordinary differen-
tial equation solving to predict the output of neural net-
works. Due to Neural ODE models’ noticeably lower pa-
rameter usage compared to traditional Deep Neural Net-
works (DNN) and higher robustness against gradient-based
attacks, they are being adopted in many type of real-time
applications. For real-time applications, response-time (la-
tency) has paramount importance due to the convenience
of the user. Through our observation, we find that the la-
tency during Neural ODE inference can be highly dynamic
and sometimes detrimental to the system due to the adap-
tive nature of the ODE solvers. Because of that reason, un-
derstanding and evaluating efficiency robustness of Neural
ODE models is needed, which has not received much at-
tention yet. However, evaluating efficiency robustness of
any model is dependent on the relationship between in-
put and latency, which has not been defined yet for Neu-
ral ODE models. In this work, we first formulate the re-
lationship between input and dynamic latency consumption
of Neural ODEs. Based on the formulation, we propose
AntiNODE, which generates latency-surging adversarial
inputs for Neural ODEs by increasing the computations
in Neural ODEs. We evaluate AntiNODE on two popu-
lar datasets and three ODE solvers on both hardware de-
pendent and independent metrics. Results show that the
adversarial inputs generated by AntiNODE can decrease
up to 335% efficiency during inference. Our evaluation
also shows that the generated adversarial inputs are trans-
ferable across multiple solvers and multiple architectures,
which indicates the feasibility of black-box attack.

1. Introduction

Deep Neural Networks (DNNs) have shown great poten-

tial in many challenging tasks. Handling tasks with higher

complexity requires a rapidly increasing number of DNN

parameters. To address this issue, recently, researchers sim-

ulated the solver of ordinary differential equation (ODE)

and proposed Neural ODE networks [10]. Because of Neu-

ral ODE’s parameter efficiency and invertibility, Neural

ODE has increased attention of the research community re-

cently. Neural ODE does not store any intermediate quan-

tities of the forward pass and enables training DNNs with

small and constant memory cost. Recent studies [10] have

shown that neural ODEs often perform better than tradi-

tional DNNs for irregularly sampled time-series data. Other

than that, recent studies have shown that Neural ODEs can

be used for various types of applications like online predic-

tion [41], video generation [43], robotic manipulator con-

trol [40], disease progression modeling [38], node classifi-

cation [44] etc.

Because of the wide deploy-ability, the robustness of the

Neural ODE is needed to be evaluated. Through recent

study [8], it has been noticed that Neural ODE is more ro-

bust against specific gradient-based accuracy attacks. How-

ever, the evaluation of latency-based efficiency robustness

of Neural ODE’s is also important. For example, a visually

impaired person relies on a mobile application for naviga-

tion that uses Neural ODE, while the response time is sig-

nificantly higher for specific inputs. This can lead to fatal

consequences.

To evaluate efficiency robustness of Neural ODE’s, we

conduct a preliminary study (Section 3). We observe that

Neural ODEs perform adaptive computations leading to

highly volatile latency. For example, through Figure 1, we

can observe that to classify MNIST data, different latency

occurs for different inputs in a Neural ODE model. Also, in

this work, we have found out that it is feasible to synthesize

inputs whose latency is 335% higher than benign inputs.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Such inputs can lead to disastrous consequences, especially

for real-time scenarios.

To avoid such fatal consequences, it is critical to un-

derstand the efficiency robustness [25] in Neural ODE net-

works. To understand the efficiency robustness of Neural

ODEs, the relationship between input and latency of Neu-

ral ODEs needs to be defined. Recent works [25, 30] have

proposed efficiency attack of Adaptive Neural Networks

(AdNNs) [31, 20, 36, 51, 23, 50, 55] by proposing inter-

mediate output-based loss function. Based on intermedi-

ate outputs, the AdNNs deactivate certain computations of

DNNs to improve latency. However, the relationship be-

tween input and latency of Neural ODEs is different from

the relationship in AdNNs. For Neural ODE, no component

is deactivated or activated during inference. Therefore, the

same techniques used for evaluating efficiency robustness

in AdNNs can not be used for Neural ODEs.

To make progress in understanding the efficiency robust-

ness of Neural ODEs, we draw a key finding: the latency

in Neural ODE is correlated with the adaptive number of

iterations needed by ODE solvers to predict the output.

ODE solvers use an iterative way to approximate a func-

tion, where the number of iterations is adaptive. More num-

ber of iterations means higher latency of the model. How-

ever, there is no direct relation between the number of iter-

ations of the ODE solver and the input because the gradient

is non-existent between them. To address this issue, we use

the adaptive step-size as the intermediate proxy to relate the

iterations of the ODE solver to the input (Section 4). The

high latency inputs are then synthesized based on step sizes.

Based on our findings, we propose AntiNODE, a white-

box adversarial attack that uses step-size of the ODE solvers

to generate adversarial inputs. Based on the restriction of

the adversarial perturbations (Section 4), we develop two

techniques, namely restricted efficiency attack and unre-

stricted efficiency attack. On the one hand, restricted ef-

ficiency attack evaluates efficiency robustness where gener-

ated adversarial inputs are semantically meaningful to the

Neural ODE model. On the other hand, unrestricted ef-

ficiency attack evaluates worst-case efficiency robustness

where each adversarial input maximizes the latency for each

target ODE solver. To the best of our knowledge, this is

the first work to generate efficiency-based adversarial inputs

against Neural ODEs.

We evaluate AntiNODE on mainly two criteria: ef-

fectiveness and transferability using the CIFAR-10 and

MNIST datasets [34, 16]. We evaluated AntiNODE on two

popular ODE solvers: Dopri5 [18] and Adaptive Heun [48].

We evaluate the effectiveness of AntiNODE against natu-

ral corruptions [29] and PGD attack [39]. We observed that

AntiNODE generated adversarial inputs can increase up to

335 % latency than the average latency of original benign

inputs. Also, we noticed that transferability is feasible be-

tween two Neural ODEs differentiated by ODE solver or

model architecture. Our paper makes the following contri-

butions:

• Problem Characterization. Our work is the first work

to characterize the latency surge vulnerability in the

neural ODE networks. Such vulnerability can be gen-

eralized to any other neural networks that apply dy-

namic computations for different inputs.

• Approach. Our work is the first attempt to formulate

the relationship between input and latency of Neural

ODE models. Based on the formulation, our work pro-

poses a novel loss function to generate adversarial in-

puts. Also, through evaluating the transferabilty, we

discuss the feasibility of black-box attack.

• Evaluation. We assess our method using two criteria

across two ODE solvers and two datasets. The find-

ings reveal that existing accuracy-based attacks cannot

increase latency in Neural ODE models. On the con-

trary, adversarial inputs generated by AntiNODE can

raise latency by up to 335%.

2. Background and Related Works
. Ordinary Differential Equations Solver

The Runge-Kutta method ([46, 35]) is an ODE solver

which solves ordinary differential equations through ap-

proximation. First-order differential equation given by,

dy(t)

dt
= y

′

(t) = f(y(t), t)

with y(t0) = y0 Here y is an function of time t and y∗ is the

value of y at t = 0. The objective of the ODE solver is to

approximate the function y at certain point t = t0 using mul-

tiple iterations. Four slope approximations k1, k2, k3, k4 are

used to estimate approximate value of y (y∗) at t = t0. Final

estimate of y∗(t0 + h) can be represented as,

y∗(t0 + h) = y
∗(t0) + (

1

6
.k1 +

1

3
.k2 +

1

3
.k3 +

1

6
.k4).h

Here, h is the step size and k values are the intermediate

values. This is called fourth order Runge Kutta Method,

because the local error (approximation error at a particular

time ) for step-size h is O(h4). For better approximation of

function, multiple works [18, 48] have been proposed to use

adaptive step size.

. Neural Ordinary Differential Equations Networks

Neural Ordinary Differential Equations Networks (Neu-

ral ODE) [10] have been successful in attaining accuracy

close to the state of the art DNN techniques but with lesser

memory consumption. Neural ODEs incorporate Ordinary
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Differential Equations solvers into Neural Network archi-

tectures. Models such as residual networks and recurrent

neural network decoders create complicated transforma-

tions by devising a sequence of transformations to a hidden

state:

ht+1 = ht + f(ht, θt)

Operation of a residual block can be interpreted as the

discrete approximation of an ODE where the discretization

step value is one. In a neural ODE, the discretization step

is set to zero and the relation between input, and output is

characterized by the following set of equations:

dh(t)

dt
= f(h(t), t, θ), h(0) = hin, hout = h(T )

Solving h(T ) provides the output and ODE solvers can

be used for that purpose.

The objective of ODE solver is to approximate a function

given the differential equation of the function. To approxi-

mate a function, on specific points (t), function slope value

is calculated using the differential equation and the function

is approximated. The difference between t values on which

the slope is calculated is called step-size. If two t values

are nearer (low step-size), more number of iterations (slope

calculation) is needed for function approximation.

Significant amount of research has been done on Neural

ODEs based on training optimization, approximation capa-

bilities, and generalization. First, Chen et al. [10] propose

to compute gradients using the adjoint sensitivity method, to

create a memory efficient training method. In this training

method, there is no need to store any intermediate quanti-

ties of the forward pass. Proposed work by Quanglino et al.
[45] expresses the Neural ODE dynamics as truncated series

of Legendre polynomials and accelerate the model. Dupont

et al. [19] explores the limitations in approximation capa-

bilities of neural ODEs because of the preserving of input

topology. Recent work by Yan et al. [53] explore the ro-

bustness of Neural ODEs against Neural ODEs and propose

TisODE to increase the robustness of Neural ODEs. How-

ever, no other work has focused on the efficiency robustness

perspective or Neural ODEs, and to our knowledge, this is

the first work in that direction.

. Adversarial Examples.

Adversarial Examples are the inputs that are used to

test the robustness of machine learning models. In earlier

works by [15, 37, 17], ‘good word attacks’ or spelling mod-

ifications have long been used to bypass the spam filters.

More recently, Szegedy et al. [49] and Goodfellow et al.
[22] propose adversarial attacks on deep computer vision

models. With a similar approach, adversarial attacks have

Figure 1: Difference in latency with different number of

iterations

been extended to various fields like text and speech pro-

cessing [6, 33], and graph models [56, 3]. Recent works

[25, 30, 26, 24, 27, 12, 14, 13, 11, 54] have proposed white-

box testing methods for Adaptive Neural Networks. How-

ever, as mentioned in the introduction, existing attacks can

not be used to increase latency of Neural ODEs. Also,

Haque et al. [28] propose a black-box testing technique for

AdNNs by creating an energy estimator model. However,

for training the estimator model, target models need to show

significant adaptive computation for different ordinary data

points, which is not feasible for Neural ODE. For Neural

ODE, for ordinary inputs, significant adaptive computation

can not be shown.

3. Adaptive Nature of Neural ODE

In this section, we discuss the adaptive latency of Neural

ODEs. As discussed in Section 2, ODE solvers use iterative

approximation to calculate the function value at a certain

point. If the number of iterations is increased, the function

f is needed to be calculated for a higher number of times,

increasing the latency of the process. The number of iter-

ations can be increased by decreasing the step-size, which

we discuss in Section 4.

We also have investigated the adaptive nature of Neural

ODEs through a preliminary study. We use a Neural ODE

model from existing work [10], which is trained for MNIST

[16] data. For ODE solver, we follow the author [10] and

use dopri5 [18] as ODE solver. We then feed the test data

from MNIST into the Neural ODE model for classification.

Figure 1 describes our findings. From the results, we

have noticed that ODE solver takes a different number of it-

erations (3 and 4 in this experiment) to approximate a func-

tion. It can be noticed from the figure that when 3 iterations

are performed, the probability is higher that the inference

latency is 0.03s. Similarly, if the number of iterations is 4,

it is more probable that latency during inference is 0.04s.
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Therefore, when the number of iterations is 3, average la-

tency drops more than 0.01s. However, the range of infer-

ence latency is limited is low for in-distribution data.

4. AntiNODE
. Problem Formulation

The objective of AntiNODE is to generate inputs to de-

crease ODE network efficiency and increase latency. Based

on the restriction of the attackers [4, 47], we consider

two attack scenarios. First is the restricted efficiency at-

tack, which seeks to perturb a benign image with human-

unnoticeable perturbations to increase the latency of Neu-

ral ODEs. The imperceptible efficiency attack should sat-

isfy the following three properties: (i) the generated in-

puts should increase the latency of the victim Neural ODE.

(ii) the perturbed inputs should be imperceptible to human

beings. (iii) the generated inputs should be realistic. In

other words, generated inputs should maintain the domain-

specific constraints. As indicated in Eq 1, we express the

above properties as an optimization problem.

Δ(x) = argmaxδ Latency
F
(x + δ)

s.t. ∣∣δ∣∣ ≤ ε ∧ ∣∣x + δ∣∣ ∈ [0,1]n
(1)

Here, x is an given benign input, Latency
F
(⋅) measures the

latency of ODE solver F , δ is the perturbation under op-

timization, ε is the imperceptible constraint, Δ is the gen-

erated adversarial perturbation. Another attack scenario is

the unrestricted efficiency attack [47], which does not con-

sider the imperceptible constraints and aims to understand

the worst case latency of Neural ODEs. We formulate the

objective of unrestricted efficiency attack as Eq 2.

δ = argmaxδ Latency
F
(x + δ)

s.t. ∣∣x + δ∣∣ ∈ [0,1]n
(2)

We follow existing work [7] and consider the white-box

configuration in this study to fully highlight the latency

surge vulnerabilities in neural ODE networks. Furthermore,

we assess the transferability of adversarial examples in §5 to

demonstrate the feasibility of launching black-box attacks.

. Design Overview

For detailed explanation, we mainly focus on re-

stricted efficiency attack scenario. The attack overview

of AntiNODE is explained through Fig. 2. AntiNODE
first transforms the initialized adversarial example into op-

timization space (denoted as x̂ = T(x + δ)). After that,

AntiNODE iteratively performs the following three steps:
1© First, we get a differentiable proxy to the latency of the

neural ODE networks; 2© Next, we compute the importance

score for ODE solver steps based on the which step’s op-

timization is more important than other steps; and 3© We

construct the objective function based on the added pertur-

bation and differentiable proxy of the latency and update the

optimization variable x̂. Finally, AntiNODE transforms x̂
from the continuous optimization space back into the input

domain to generate the adversarial examples. The adver-

sarial examples generated will significantly raise the victim

Neural ODE networks’ latency.

. Detailed Design

Continuous Space Transformation. To ensure the gen-

erated adversarial example be a valid input, we need to en-

sure the adversarial example satisfies the validity constrains

in Eq. (1) and (2). Such constraints are known as box

constraints in the optimization theory. To satisfy the con-

straints, we introduce a continuous latent variable x̂, which

can be transformed from x and δ, and optimize over x̂ in-

stead of optimizing δ. In detail, we introduce the transfor-

mation as Eq. 3.

x̂ = T(x + δ) = atanh(2 × (δ + x) − 1)

x + δ = T−1(x̂) =
1

2
(tanh(x̂) + 1)

(3)

Here tanh(x) = ex−x−x

ex+x−x
, and atanh(x) = 1

2
ln(1+x

1−x
).

The function tanh(⋅) ranges form -1 to 1, thus, x + δ will

always locate in the range of [0,1] and satisfy our validity

constraints. Moreover, our continuous space transformation

will enable our optimization process on x̂ to be performed

in a continuous space and avoid the disadvantage of discon-

tinuous in gradient clip methods.

Differential Latency. As mentioned earlier, the goal of

the adversary is to increase the latency of the Neural ODE

networks. However, the latency of Neural ODE during in-

ference is non-differentiable, which implies it is challenging

to apply the gradient-based approach to generate the opti-

mal adversarial perturbations. To address this challenge, we

propose a differentiable function to approximate the latency

of Neural ODE in hanging an input. As mentioned in the

background, Neural ODE will iteratively compute the func-

tion gradient value on different point t until the function is

not approximated. Based on such natural property of Neural

ODE networks, our intuition is that we can use the number

of iterations to approximate the neural ODE networks la-

tency. Furthermore, the number of iterations is determined

by the step size H of each iteration. Thus, we will collect

the step size (H(x+δ)) of the neural ODE networks in han-

dling current inputs x + δ and use it to approximate neural

ODE networks latency. Because the step size H(x + δ) is

computed form the current inputs x + δ, H(x + δ) is differ-

entiable in terms of x + δ.
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Figure 2: Overview of AntiNODE

Algorithm 1 AntiNODE
Input: Benign input x, victim neural ODE networks F(⋅),
maximum iteration number T .

Output: Latency-based adversarial example x∗

1:2: Initialize δ, x∗,maxN

3: x̂← T (δ + x)
4: while iter < T do
5: H =CollectStepSize (F , x + δ)
6: Havg ← Importance(H)
7: Ld ←Distance(T−1(x̂), x)
8: Compute Ladv based on Eq. 5

9: x̂← x̂ + ∂Ladv
∂x̂

10: xcurrent ← T−1(x̂)
11: N ← GetSteps(xcurrent)
12: maxN , x∗ = Update(maxN , N , xcurrent)

13: end while
14: Return T−1(x∗)

Importance Score Computation. After we collect the

step size that the neural ODE networks require to handle

an input, we need to find the approximate relation between

step size H and latency. We know that the neural ODE’s

latency is positively correlated to its ODE solvers’ itera-

tions. To increase the number of iterations, we need to

make sure that the step size values are decreased. As the

step size values are decreased, the ODE solver would need

more steps to approximate the function, thus increasing the

number of iterations. However,all the H values do not have

the same importance. Intuitively, if a step-size is signifi-

cantly larger than the other step-size, more weight should

be put on the larger step-size during optimization process.

Hence, we propose to use the exponential value of the step-

sizes, such that, larger step-size has higher importance score

during the optimization process. We then normalize the av-

erage step size based on the importance scores. In detail,

we compute the importance score and normalized average

step size using Eq. 4.

wi =
eHi

∑
N
j=1 e

Hj

Havg(x) =
∑

N
j=1wi

N
(4)

Attack Objective Function. Recall that our efficiency

attack requires adversarial examples to raise latency while

remaining unnoticeable to humans.

Llatency = minimizex̂Havg(x)

Lper = minimizex̂∣∣T
−1(x̂) − x∣∣

Ladv = minimizex̂Llatency + βLper

(5)

Our objective function can be found in Eq 5, where we have

two objectives, the first is to increase latency (Llatency) and

the other one is to keep the adversarial examples impercep-

tible (Lper). And our final adversarial objective is Ladv ,

which combines both two aforementioned objectives. For

the unrestricted efficiency attack, we set β = 0 because we

do not have the imperceptible constraints for this attack.

Our general attack algorithm is shown in Alg. 1.

5. Evaluation
. Experimental Setup

Datasets and Models. For evaluation, CIFAR-10

dataset [34] and MNIST dataset [16] have been used for

the training of the Neural ODE model. CIFAR-10 is an

RGB image dataset where MNIST is a grey image dataset.

Therefore, we can analyze the impact of testing inputs on

both types of data. We use ODENet Convolutional Neu-

ral Network (CNN) models proposed by [10] as the trained
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Neural ODE models. The main difference between model

architectures used for CIFAR-10 and MNIST is in the input

number of channels. We evaluate the performance of our

techniques on three popular different adaptive ode solvers,

Dopri5 [18], AdaptiveHeun [48] and, Bosh3 [2].

Baselines. As far as we know, we are the first to attack the

Neural ODEs in terms of latency. Thus, there is no exist-

ing comparison baselines. To show that existing accuracy-

based adversarial examples can not increase the latency in

neural ODEs, we compare our technique with natural cor-

ruption techniques [29] and PGD [39]. These techniques

are commonly used [52, 21, 42] to evaluate the accuracy ro-

bustness of neural networks. As the MNIST dataset consists

of grey images, all types of corruptions can not be applied to

the images. Therefore, for MNIST dataset, we use random

Gaussian noise [9] and Salt and Pepper noise [32] as base-

line. These noises have been used previously [5] on MNIST

dataset to generate noisy inputs.

Metric. We examine two metrics to reflect the neural

ODEs’ computational costs in order to measure the effec-

tiveness of tool in increasing the victim neural ODEs’ com-

putational costs. The first is the number of iterations used

by the ODE solver (hardware independent metric), and the

second is the latency of Neural ODE networks (hardware

dependent metric) in handling an input. We first measure

the absolute computational costs (Abs.) of the benign inputs

and then generate adversarial examples. After we compute

the computational cost increments (Inc.). For transferability

evaluation, we consider two metrics, Input Transferability

Percentage (ITP) and Effectiveness Transferability Percent-

age (ETP), used by Haque et al. [28] to evaluate energy

testing transferability.

ITP =
∑x∈X I(Latency(x + δ) > Latency(x))

N
∗ 100%

ETP =
∑x∈X Latency(x + δ) − Latency(x)

Latency(x)
∗ 100%

Here. x represents benign input and x + δ represents adver-

sarial input generated on base model [28]. ITP evaluates the

percentage of examples that can increase the latency in the

target model. The other metric ETP evaluates the average

percentage elatency increase in the target model.

Implementation Details. For restricted attack we use mul-

tiple β values to generate test inputs. For MNIST dataset,

we have experimented with three β values: 10, 100, and

1000. Where for CIFAR-10, we have used 10, 100, 1000,

and 10000 as β values. For reporting the effectiveness,

transferability and quality, we report the result for β val-

ues for which the effectiveness of AntiNODE is highest.

We have used 2000 iterations for restricted attack.

. Effectiveness

We have measured the effectiveness of AntiNODE gen-

erated inputs by measuring the average latency (in Seconds)

induced by the inputs during the inference and comparing

it with mean latency of the original seed inputs and inputs

generated by other baseline techniques. We also measure

the mean number of solver iterations caused by each tech-

nique. We measure the effectiveness of our approach for

CIFAR-10 and MNIST datasets. For CIFAR-10 dataset, we

use images generated by common corruptions as one of the

baselines. For comparison, we use the two best perform-

ing corruptions in terms of average latency. For MNIST

dataset, we use Gaussian noise and Salt and Pepper noise as

the corruption baseline. Other than the corruptions, for both

datasets, we also use PGD attack as baseline.

Table 1 show the effectiveness of AntiNODE on Do-

pri5, Adaptive Heun and Bosh3 solvers for both datasets. It

can be observed that, for all scenarios, AntiNODE is able

to generate higher latency examples than baseline meth-

ods. For unrestricted attack inputs, AntiNODE is able to

generate higher latency inputs than the restricted attack in-

puts. Specifically for Adaptive Heun solver, latency in-

crease caused by unrestricted and restricted attack inputs

are significantly higher than latency increase in other two

solvers. Both corruption based baseline and adversarial at-

tack based baseline (PGD attack) do not perform well in

terms of increasing latency. For PGD attack, the loss func-

tion is focused only on accuracy, and this does not impact

the latency. Hence, we can conclude that latency-specific

loss function is more successful in increasing the latency of

models.

. Transferability

In this section, we evaluate the transferability of the re-

stricted attack-generated inputs on different ODE solvers

and on different network architectures. Transferability is

evaluated to know if the adversarial inputs can be effec-

tive in a black-box scenario. To evaluate the transferability,

two models are considered: Base Model and Target Model.

First, the adversarial inputs are generated on Base Model

and the generated inputs are fed to Target Model. If the

adversarial inputs are effective on target model too, the ad-

versarial input is transferable. Here, we consider transfer-

ability with respect to both architecture and solver. To eval-

uate the latency-based transferability of the adversarial in-

puts, we will measure two parameters used by Haque et al.
[28]: 1. What percentage of adversarial inputs can increase

the latency for the other solver/architecture? This is called

Input Transferability Percentage (ITP) 2. What is the aver-

age percentage increase in latency enforced by adversarial

inputs in other solver/architecture? This is called Effective-

ness Transferability Percentage (ETP).

To measure the transferability, we have selected 1000
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Table 1: Mean latency and number of iterations of the models against AntiNODE and baseline techniques. Corr
represents the corruptions, PGD is the accuracy-based attack baseline, Unres and Res represents unrestricted and
restricted attack respectively. The results provide both absolute values and the percentage increase because of the
technique. All the experiments are performed on CIFAR-10 and MNIST datasets and three aforementioned solvers.

Metric Dataset ODE Solver

seed Corr1 Corr2 PGD Unres (Ours) Res (Ours)

Abs. Abs. Inc Abs. Inc Abs. Inc Abs. Inc Abs. Inc

# of Iterations

CIFAR10

Dopri5 4 4.25 6.25% 4.25 6.25% 4.05 1.25% 5.7 42.5% 5.5 37.5%

AdapHeun 45 45.5 1.% 45.5 1.1% 47.1 4.6% 101 124% 73.28 62.8%

Bosh3 8.3 9.8 18% 9.14 10% 8.5 2.4% 13 58.5% 10.9 32.9%

MNIST

Dopri5 4 4.14 3% 4.08 2% 4.05 1.25% 6 50% 5.5 37.5%

AdapHeun 32 32.12 0.3% 31.9 -0.3% 32.3 0.9% 89 178% 43.28 35.2%

Bosh3 7.1 7.1 0% 7.1 0% 7 -1% 13 84.5% 9.9 35.2%

Latency

CIFAR10
Dopri5 0.035s 0.037s 4.4% 0.037s 4.4% 0.036s 2% 0.055s 57.1% 0.05s 42.8%

AdapHeun 0.145s 0.1475s 1.7% 0.1475s 1.7% 0.155s 7.2% 0.425s 193% 0.28s 93.1%

Bosh3 0.048s 0.06s 25% 0.048s 14.5% 0.05s 4.1% 0.085s 88% 0.07s 55.5%

MNIST
Dopri5 0.04s 0.042s 5% 0.0401s 1% 0.041s 2.5% 0.07s 75% 0.0625s 56.25%

AdapHeun 0.1s 0.11s 10% 0.11s 10% 0.11s 10% 0.435s 335% 0.15s 56.4%

Bosh3 0.036s 0.036s 0% 0.036s 0% 0.035 -2.7% 0.09s 150% 0.62s 72.2%

Table 2: ITP and ETP values for measuring transferability

between Dopri5,Bosh3 and Adaptive Heun solvers. TS rep-

resents Target Solver and BS represents Base Solver.

CIFAR-10 MNIST

Type
BS

TS
Dopri5 AH Bosh3 Dopri5 AH Bosh3

ITP
Dopri5 – 70.0 80 – 100 90

AH 92.5 – 70.0 22 – 100
Bosh3 20 80 – 40 100 –

ETP
Dopri5 – 9.1 1.1 – 22.7 2.2

AH 26.3 – 22.2 3.9 – 5.5
Bosh3 0.1 1.5 – 7.5 2.5 –

images randomly. To evaluate solver-based transferability,

we consider two aforementioned solver with same network

architecture. Table 2 shows our findings. We can observe

that transferability can exist between two solvers because

of consistently high ITP and ETP values. It can be no-

ticed that for CIFAR-10 dataset, created adversarial inputs

for Adaptive Heun are more effective against Dopri5 solver

and Bosh3 solver in terms of transferability. However, for

MNIST data, created adversarial inputs for Dopri5 are more

transferable. For Bosh3 solver, transferability to the Adap-

tive Heun solver is significantly higher than transferability

to the Dopri5. To evaluate network-based transferability,

we consider Adaptive Heun ODE solver with two different

Neural ODE architectures.

To evaluate network-based transferability, we consider

Adaptive Heun ODE solver with two different Neural ODE

architecture (M1 and M2). M1 is the larger model that has

an extra convolutional layer than M2. Table 3 shows the

results. It can be noticed that for MNIST dataset, ETP val-

ues are significantly higher than ETP values for CIFAR-10

dataset. However, ITP values are high for all the scenarios.

Therefore, we can observe that cross-architectural transfer-

ability is feasible.

Table 3: ITP and ETP values for measuring transferability

between Larger model (M1) and Smaller Model (M2). TM
represents Target Model and BM represents Base Model.

CIFAR-10 MNIST

Type
BM

TM
M1 M2 M1 M2

ITP
M1 – 99 – 99
M2 99 – 99 –

ETP
M1 – 7 – 33.4
M2 7.9 – 20.6 –
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. Ablation Study

We perform an ablation study to show the impact of us-

ing importance scores. For that purpose, instead of opti-

mizing the step-sizes based on the importance, we put same

weightage for all step-sizes. We find that effectiveness of

restricted attack can decrease if we do not include the im-

portance of step-sizes. For MNIST data, the average latency

caused by the restricted attack inputs is decreased by 6.3%

for Dopri5 solver, whereas, for Adaptive-Heun solver, the

average latency caused by the restricted attack inputs is de-

creased by 2.2%. Although for Bosh3 solver, the impact

of importance score is higher because the average latency

caused by the restricted attack inputs is decreased by 25.8%.

For CIFAR-10 data, the effect of importance score is higher

for Dopri5 and Adaptive Heun solvers as the average la-

tency caused by the restricted attack can be decreased by

13.1% and 9.2% for Dopri5 and Adaptive-Heun solver re-

spectively. For Bosh3 solver, the average latency caused

by the restricted attack can be decreased by 21.4% without

using the importance score. the Though, for unrestricted at-

tack, the induced latency does not decrease significantly if

we don’t include importance Scores during optimization.

6. Discussion
In this section, we discuss the following topics: Accu-

racy Robustness vs Efficiency Robustness, Effect of Cor-

ruption on the Seed Input latency correlation between ODE

solvers.

. Accuracy Robustness vs Efficiency Robustness

In this section, we discuss the relation between accuracy

robustness and efficiency robustness. First, we randomly

select 1000 CIFAR-10 and MNIST seed images and gen-

erate adversarial images with restricted attack for Dopri-5

solver. We found that the output labels for 90.2% of the

CIFAR-10 test inputs are the same as benign ones. How-

ever, for MNIST data, only 11% output labels of the test

inputs are the same as benign inputs. Thus, while we can

not conclude that the accuracy robustness and efficiency ro-

bustness of Neural ODEs are related, we can notice that the

Neural ODE model trained with the CIFAR-10 dataset is

more robust than the ODE model trained with the MNIST

dataset.

. Effect of Corruption on the Seed Input

In this section, we discuss the effect of corruption on the

seed input on the restricted attack method. Our objective

is to understand if an input is already corrupted, how much

latency can be increased through AntiNODE. For this pur-

pose, we select three types of common corruptions: Fog,

Frost, and Snow. These corruptions are applied on CIFAR-

10 inputs, and these inputs are used as seed inputs to re-

stricted attack method. We calculate the mean percentage

latency increase for each scenario. We use Dopri-5 solver

and Adaptive Heun solvers for this experiment.

Table 4: Percentage latency increase for different corrup-

tions in seed inputs

Solver
Classifier Fog Frost Snow

Dopri5 25.6% 25.3% 25.6%

Adaptive Heun 61.8% 52.8% 52.6%

Table 4 shows the results. We observe that the mean per-

centage latency increase for Dopri5 solver similar for all the

corruptions, and also the mean percentage latency increases

for corrupted seeds is are lesser than mean percentage la-

tency increases for ordinary seeds. However, for Adaptive

Heun solver, the mean percentage latency increases for cor-

rupted seeds become significantly higher than mean per-

centage latency increases for ordinary seeds. Therefore, the

effect of corruption on seed input can vary based on solvers.

. Latency correlation between ODE solvers

In this section, we try to explore the correlation between

percentage of latency increased between two solvers for in-

puts modified by restricted attack. The objective of the sec-

tion is to find out if inputs with a high latency increase for

one solver would have a high latency increase for the other

solver also. We use Pearson Correlation [1] for this purpose,

which is one of the metrics that can find the strength of the

relationship between two variables. For MNIST data, we

find that the Pearson Correlation Coeff (r) and p-value be-

tween the percentage of latency increased for both solvers

are -0.08 and 0.58, respectively. Similarly, for CIFAR-10

data, the Pearson Correlation Coeff (r) and p-value for both

solvers are 0.13 and 0.02. We can conclude from the results

that for CIFAR-10 data, the correlation between the percent-

age of latency increased for both solvers exists because of

low p-value.

7. Conclusion
In this paper, we have proposed AntiNODE 1 to show

the vulnerability of Neural ODEs against latency-surging

test inputs. Here, we have proposed two types of attack

methods. To the best of our knowledge, we are the first

to explore latency-based vulnerabilities in Neural ODEs.

We also observe that adversarial examples generated by

AntiNODE can be transferable. Finally, we show that test

inputs can improve the efficiency robustness of Neural ODE

models.

1https://github.com/anonymous2015258/NODEAttack
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Şişman, Cong Liu, and Wei Yang. Slothspeech:

Denial-of-service attack against speech recognition

models. arXiv preprint arXiv:2306.00794, 2023.

[28] Mirazul Haque, Yaswanth Yadlapalli, Wei Yang,

and Cong Liu. Ereba: Black-box energy test-

ing of adaptive neural networks. arXiv preprint
arXiv:2202.06084, 2022.

[29] Dan Hendrycks and Thomas Dietterich. Benchmark-

ing neural network robustness to common corruptions

and perturbations. arXiv preprint arXiv:1903.12261,

2019.
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