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Abstract

Deep Neural Networks (DNNs) have been used to solve
different day-to-day problems. Recently, DNNs have been
deployed in real-time systems, and lowering the energy con-
sumption and response time has become the need of the
hour. To address this scenario, researchers have proposed
incorporating dynamic mechanism to static DNNs (SDNN)
to create Dynamic Neural Networks (DyNNs) performing
dynamic amounts of computation based on the input com-
plexity. Although incorporating dynamic mechanism into
SDNNs would be preferable in real-time systems, it also be-
comes important to evaluate how the introduction of dynamic
mechanism impacts the robustness of the models. However,
there has not been a significant number of works focusing on
the robustness trade-off between SDNNs and DyNNs. To ad-
dress this issue, we propose to investigate the robustness of
dynamic mechanism in DyNNs and how dynamic mechanism
design impacts the robustness of DyNNs. For that purpose,
we evaluate three research questions. These evaluations are
performed on three models and two datasets. Through the
studies, we find that attack transferability from DyNNs to
SDNNs is higher than attack transferability from SDNNs
to DyNNs. Also, we find that DyNNs can be used to gener-
ate adversarial samples more efficiently than SDNNs. Then,
through research studies, we provide insight into the design
choices that can increase robustness of DyNNs against the
attack generated using static model. Finally, we propose
a novel attack to understand the additional attack surface
introduced by the dynamic mechanism and provide design
choices to improve robustness against the attack.

1. Introduction

Deep Neural Networks (DNNs) are used in multiple ap-

plications such as computer vision and natural language

processing. After the rapid growth of IoT and embedded

devices, many real-time systems use DNNs in their applica-

tions. As the real-time systems require faster response time
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Figure 1: The overview of the objective of this work.

and low energy consumption, researchers have proposed to

incorporate energy-saving dynamic mechanism [34, 24, 36]

to popular static DNN (SDNN) models like ResNet [20],

VGG [31], MobileNet [22] etc. Early-exit is one of the

dynamic mechanism techniques where multiple exits are

included in SDNNs (creating multiple sub-networks), and

SDNNs can terminate the operation early if a certain sub-

network is confident about the prediction. These types of

DNNs are named as early-exit Dynamic Neural Networks

(DyNNs). Although the transition from SDNNs to DyNNs

is preferred in real time systems because of increased effi-

ciency, whether the use of dynamic mechanism will impact

the robustness of the systems is still unknown. Studying

the impact of the dynamic mechanisms on the robustness is

important for developers or users to understand the trade-offs

between DyNN and SDNN.

In this work, we propose to investigate how robustness is

impacted through the addition of dynamic mechanism to the

static model and how different dynamic mechanism designs

would impact the robustness in dynamic mechanism (Figure

1). We propose to investigate two aforementioned topics

through three research questions. These three RQs are based

on: Robustness of Dynamic Mechanism, Robust Design for
the Static Model Attack, and Robust Design for the Dynamic
Mechanism Attack.
Robustness of Dynamic Mechanism. We focus on the

investigation of robustness of the dynamic mechanism based

on two aspects: transferability and the efficiency robustness.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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First, we investigate the adversarial attack transferabil-

ity between SDNNs and DyNNs to evaluate the robustness

of the dynamic mechanism in black-box scenarios. In the

black-box scenarios, adversaries normally assume the tar-

get models are always static. However, the target models

can be dynamic also. Hence, it is important to find out if

a surrogate SDNN model is used to attack a target DyNN

model or vice-versa, then, to which extent the adversary can

be successful.

To address this issue, in this paper, we first conduct a

comparative study on the adversarial attack transferability

between SDNNs and DyNNs (Section 3). Our study re-

sults suggest that adversarial transferability from DyNNs to

SDNNs is better and surprisingly, using DyNNs as surrogate

models for attack seems to be a more efficient and more ef-

fective way to generate adversarial samples. The adversaries

are able to generate more adversarial samples in the same

amount of time compared to using SDNNs as the surrogate

model, and the generated adversarial samples often can also

attack SDNNs.

The next robustness study is to understand how robust

the efficiency of the dynamic mechanism is against the ad-

versarial samples generated on SDNNs. This study tries to

evaluate whether the original purpose of DyNNs (i.e., saving

inference time) will be impacted by the adversarial samples

(Section 3.2) generated through SDNNs. Our study results

suggest that the adversarial samples generated by existing

white-box attacks and black-box attacks do not increase the

inference time significantly, making the dynamic mecha-

nisms efficiently robust against attacks on SDNNs.

Robust Design for the Static Model Attack Here, we per-

form a detailed analysis of which design choices in the dy-

namic mechanisms or DyNN architectures (specifically the

position of early exits) may impact the robustness of DyNNs

(Section 4). We consider two attack scenarios in this study:

first, the output layer label of an SDNN is modified by a

white-box adversarial example, and we study the impact

of the example on corresponding DyNN’s early-exit layers;

second, in a black-box scenario, the output of SDNN is mod-

ified by a sample, and the sample is fed to separate model’s

DyNN. We have made multiple findings based on the em-

pirical results, for example, putting the first exit earlier in

the model architecture can help to improve the robustness of

DyNNs.

Robust Design for the Dynamic Mechanism Attack. Last

but not least, we evaluate the design choices of dynamic

mechanism against a novel attack on dynamic mechanism.

First, we design an adversarial attack approach to under-

stand the extra attack surface introduced by the dynamic

mechanisms in neural network (Section 5). In this attack,

the synthesized adversarial examples will not change the

prediction of the final output layer’s label, but will change

the prediction of all the early exits. Based on the evaluation
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Figure 2: Working mechanism of Early-exit DyNN

results, we find that the dynamic mechanism is more vulner-

able in scenarios where dependency among DyNN layers is

lesser and when the exits are sparse w.r.t the layers.

Contribution. Our work provides insights about the robust-

ness of the dynamic mechanism in DyNNs and also evaluates

different design choices w.r.t robustness. The findings of this

work would motivate developers/researchers to increase the

usage of DyNNs and find more robust dynamic mechanisms.

2. Related Works and Background

Dynamic Neural Networks. The main objective of

DyNNs is to decrease the energy consumption of the model

inference for inputs that can be classified with fewer compu-

tational resources. DyNNs can be classified into Conditional-
skipping DyNNs and Early-exit DyNNs. Early-exit DyNNs

use multiple exits (sub-networks) within a single model

and because of the model’s working mechanism, the model

is more suited for resource constrained devices. If, at

any exit, the confidence score of the predicted label ex-

ceeds user defined threshold, inference is stopped. The

resource-constrained devices usually deploy a lightweight

sub-network of early exit network locally and resort to a

server for further computations if needed [33] . [14], [12],

[32], [24] have proposed Early-termination DyNNs. Specif-

ically [24] and [38] propose early exit networks based on

popular SDNNs. [38] also show that white-box robustness

of the DyNNs is better than SDNNs. In addition to that mul-

tiple works [33, 29] provide practical usability of DyNNs.

Figure 2 shows the working mechanism of Early-exit

DyNNs. For example, an Early-exit DyNN has N parts and

each part has an exit. x is the input, f i
out represents pre-

diction after the ith part (generated by specific computation

unit), fout represents prediction of the Neural Network, Ci

represents confidence score after ith part, HidIni represents

input of ith part, HidOut
i represents output of ith part, and

τi is the predefined threshold to exit the network after ith

part. The working mechanism of the Early-exit DyNN can

be represented as, fout(x) = f i
out(x), if Ci(x) ≥ τi.

Adversarial Attacks. Adversarial Examples are the input

that can change the prediction of the DNN model when

those are fed to the model. [13] propose Fast Gradient Sign

Method (FGSM) that uses single-step first order entropy loss
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to generate adversarial inputs. This attack is modified by

[27] to add initial noise to the benign sample. This attack is

referred as projected gradient descent (PGD). Other than that,

[10, 2, 9, ?] have proposed white-box attack methods, while

[26, 1, 23, 37] have proposed black-box attack methods.

Recently, attacks [16, 19, 17, 18, 15, 4, 7, 6, 3] have been

proposed to decrease the efficiency of the dynamic neural

networks.

3. How robust are DyNNs against adversarial
examples?

In this research question, we investigate the robustness of

dynamic mechanism in DyNNs w.r.t adversarial examples

generated on SDNNs. We further divide this question into

two sub-parts: (i) attack transferability between SDNNs

and DyNNs and (ii) efficiency robustness of DyNNs against

adversarial examples generated on SDNNs. Through these

RQs, we get an insight about how the existing adversarial

attacks on SDNNs would impact the accuracy and efficiency

of DyNNs. Also, we find out how adversarial examples

generated on DyNNs impact the SDNNs w.r.t accuracy. As

the SDNN models are static, adversarial examples would not

have any impact on the efficiency of SDNNs.

3.1. Is adversarial example transferability from
DyNN to SDNN lower than adversarial exam-
ple transferability from SDNN to DyNN?

In this research question, we investigate the “transfer-

ability” of adversarial inputs generated based on SDNN

and DyNN, respectively, i.e., whether adversarial examples

generated based on SDNNs are adversarial to DyNNs and

vice versa. Transferability is an important metric for eval-

uating the feasibility of black-box attack. To evaluate the

transferability, one of the popular way [28, 26] is creating

a similar model (i.e., surrogate model) as the target model.

In a black-box attack, normally, adversaries assume the un-

derlying model to be SDNN, so for a deployed DyNN, the

adversaries may likely use an SDNN as surrogate model.

Hence, this research question (RQ) is important to evaluate

the robustness of DyNNs.

3.1.1 Experimental Setup.

Dataset and Models. We use CIFAR-10 and CIFAR-100

[25] datasets for evaluation. For SDNNs, we use VGG-16

[31], ResNet56 [20], and MobileNet [22] model. As DyNNs,

we use the early exit version of these models [24]. In all

other RQs, we keep the models and dataset setup same.

Black-box Attack. For the attack scenario, we use surro-

gate model [28, 26] based black-box attack scenario. Here,

we feed a set of inputs to the target model and collect the

output labels. These inputs are generated using 50% of the

held-out validation data, and naturally corrupted versions

of those validation data. As the number of partial held-out

validation data is not significant, adding corrupted inputs

would help to increase training data size for the surrogate

model. For natural corruption [21], we use gaussian noise

and brightness. For each type of corruption, we have five

intensity levels. For example, if the number of held out data

is 5000, for each corruption, we generate 25000 additional

data. Once the input-output pairs are collected, a surrogate

model is trained based on those pairs. For a target model, we

use both SDNNs and DyNNs. If the target model is SDNN,

then an DyNN is trained as surrogate model and vice-versa.

To make the surrogate-target pairs, we use different types

of DNN architectures. For example, if the the target model

is DyNN VGG, we choose ResNet56 SDNN as the surro-

gate model. This assumption is valid because the attacker

doesn’t have information about the target model architecture,

hence the possibility of choosing the same architecture as

the surrogate model is less. We define two terms to repre-

sent two different types of transferability based on different

types of surrogate model and target model: D2S transfer-

ability and S2D transferability. D2S transferability evaluates

DyNN to SDNN attack transferability, where S2D transfer-

ability evaluates SDNN to DyNN attack transferability. We

have chosen following pairs to evaluate S2D transferabil-

ity: (SDNN ResNet56 (surrogate), DyNN VGG (target)),

(SDNN MobileNet (surrogate), DyNN MobileNet (target)),

(SDNN MobileNet (surrogate),DyNN ResNet56 (target)).

Similarly, for D2S transferability, earlier mentioned surro-

gate models become the target model and earlier mentioned

target models become the surrogate model.

Algorithms. We use FGSM [13] and PGD [27] algo-

rithms to attack the surrogate models.

Metric. We measure percentage of adversarial examples

that can mis-classify the output w.r.t number of generated

adversarial examples as the attack success rate.

3.1.2 Evaluation Results

Figure 3 shows the effectiveness of black-box attacks on

DyNNs and SDNNs. On average, it can be noticed that

for target SDNN and surrogate DyNN, the attack success

rate is higher than the success rate of target AdNN and

surrogate SDNN. One of the reasons for this behavior is the

lower variance of the DyNNs. DyNNs use lower number of

parameters, hence the feature space for adversarial samples

of DyNNs is smaller than the feature space for adversarial

samples of SDNNs [30]. Also, we find that for the target

DyNN, FGSM attack performs better than PGD attack. If

only dataset-specific results are considered, then for CIFAR-

100 the attack success rate is higher than for CIFAR-10.

Also, as the DyNN-generated adversarial inputs can at-

tack SDNNs, then it can be time efficient to create adversarial

inputs using DyNN. Through Figure 8 (Appendix), we can
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(a) Target DyNN (CIFAR-10) (b) Target SDNN (CIFAR-10) (c) Target DyNN (CIFAR-100) (d) Target SDNN (CIFAR-100)

Figure 3: Transferable Attack Success Rate for CIFAR-10 and CIFAR-100 data

find the probability density plots of different exit numbers of

DyNN that have been used to generate adversarial examples.

Lower exit number suggests that lesser number of compu-

tations has been used to generate adversarial examples. It

can be noticed that for PGD attack, more than 70% of ad-

versarial examples are generated from exit 0, 1 and 2 (first

- third exit). Although for FGSM attack, in a few scenarios

(CIFAR-10 VGG, CIFAR-100 MobileNet, and CIFAR-100

ResNet), more than 50% of adversarial examples are gener-

ated through later exits (higher computation required).

We also perform some additional experiments to

strengthen our claim. In appendix, Figure 13 shows the

experimental results on MI-FGSM attack, which is also a

highly transferable attack. Also Figure 17 shows the results

on Tiny-ImageNet dataset, which has a higher input size

than CIFAR datasets. These two results show that our claim

also holds for addditional attacks and datasets. Also Figure

14,15 and 16 in appendix shows adversarial examples gener-

ated through SDNNs and DyNNs. We find that both type of

adversarial examples are similar w.r.t quality.

Finding 1: The D2S transferability is higher than
the S2D transferability.
Finding 2: Using DyNNs as surrogate models is
more efficient and more effective way to generate
adversarial examples than using SDNNs.

3.2. Does adversarial examples impact efficiency ro-
bustness in DyNNs?

In this section, we investigate if the dynamic mechanism

in DyNNs is robust w.r.t efficiency against the adversarial

examples generated on static mdoel. Through the evaluation,

we ensure whether the original purpose of including dynamic

mechanism in DyNNs (i.e., saving inference time) will be

impacted by the adversarial samples. Specifically, we study

whether the adversarial inputs exit earlier or later in a DyNN

compared to the original inputs. The main objective of this

investigation is to find out whether the adversarial samples

generated on SDNN can have an impact on the amount of

computation of the DyNN. For this purpose, we conduct

both white-box and black-box attacks to find out the impact

of adversarial samples on the amount of computation.

Here, the white-box attack scenario can also be consid-

ered a practical scenario. There have been studies [5, 35]

that focus on reverse engineering of SDNN models from

binary code of on-device models, but no techniques have

been proposed to reverse engineer the dynamic mechanisms

in the models. Hence, adversaries are more likely to get

SDNN models instead of their dynamic counterparts. So it

is important to find out how adversarial samples affect the

efficiency of the DyNN for both white-box and black-box

scenarios.

3.2.1 Experimental Setup.

Attack. We use PGD and FGSM for both white-box and

black-box attacks. For black-box setup, we use the same

setup as previous RQ. For black-box scenario, we use

DyNNs as target model and SDNNs as surrogate model.

In a white-box setting, we attack the SDNN and evaluate on

the performance of corresponding DyNN.

Metric. We use the difference between the exit number

selected by adversarial input and the exit number selected by

benign input. If the difference is positive, then the latency of

the adversarial sample is increased w.r.t benign input.

3.2.2 Evaluation Results.

Figure 4 and Figure 11 (in Appendix) show the impact of

adversarial examples generated on SDNN on changing in

exit number in DyNN in a white-box setting. It can be

observed that for the majority of the scenarios, accuracy-

based adversarial samples do not increase the computation

significantly in the DyNN. On average, FGSM-generated

examples increase more computation in DyNNs than PGD-

generated examples. For CIFAR-10 data, for MobileNet and

VGG-16 DyNN models, 25%-37% of the FGSM generated

examples could increase the number of exits by more than

one. Also, it can be noted that adversarial samples generated

on CIFAR-100 data is more likely to increase computation

than adversarial samples generated on CIFAR-10. Especially,

more than 45% of the FGSM samples generated on CIFAR-

100 data can increase the number of exits by more than one.
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Figure 5 and Figure 12 (in Appendix) show the impact

of adversarial examples generated on SDNN on change in

exits in DyNN in a black-box setting. It can be noted that,

for CIFAR-10 dataset, black-box attack can generate more

computation-increasing examples than in white-box attack.

For ResNet and VGG model, more than 40% PGD attack

generated examples can increase the number of exits by

more than one. For all three models, 35% of the FGSM

attack generated examples can increase the number of exits

by more than one. FGSM attack generates more inputs that

induces low confidence in early-exit layers than PGD attack.

For CIFAR-100 dataset, the increase of computation caused

by adversarial attacks is higher than that of CIFAR-10. As

CIFAR-100 data uses larger model, the robustness of the

model is reduced. For CIFAR-100 dataset, more than 40%

examples generated through both the attack can increase the

number of exits by more than one. However, increasing the

number of exits by two or three exits does not decrease the

efficiency in DyNNs significantly.

Finding 3: Accuracy-based adversarial samples
do not decrease the efficiency significantly in the
DyNN.
Finding 4: The adversarial examples, whose out-
put confidences are significantly lower, can per-
form better in terms of decreasing the efficiency in
DyNNs.
Finding 5: Adversarial examples generated on
a larger model (w.r.t model parameters) is more
likely to decrease efficiency in DyNNs.

4. What design of DyNNs may impact the
robustness against attack generated on
SDNNs?

In this section, we evaluate which architecture design

choices (position of early exits) in DyNNs may impact the

robustness of early layers against the adversarial inputs gen-

erated on SDNNs. In this RQ, we consider DyNNs as multi-

exit networks, where each exit will provide an output. For

evaluation, we assess if we attack the final exit (output of the

static model), from which early-exit layer the label modifica-

tion begins. If the output label is not modified in any earlier

layer, then for that type of model, the robustness is higher

because the model can produce correct results at any layer.

This RQ will provide us an insight into which type of design

choice may improve the robustness of early layers.

4.1. Experimental Setup.

Attack Setup. We use same attack setup as previous

research questions. However, while we attack the DyNN, we

do not consider one specific exit layer. Instead of that, we

consider each exit layer.

Metric. We use the early exit from which the label mod-

ification starts. For example, there are N exits. First, N th

exit’s label is modified through adversarial sample. If till

Kth exit the original prediction was same, then we report

K + 1th exit in the experimentation.

4.2. Evaluation Results.

Figure 6 and Figure 9 (in Appendix) show probability

density plot on which exit the output label is changed using

the white-box adversarial examples. It can be observed that

for all the model-dataset pairs, for more than 77% of the

examples, the label is modified in the first exit. For CIFAR-

10 data, only for MobileNet and ResNet models, the label is

changed after the first exit for more than 20% of the examples

(using FGSM attack).

Figure 7 and Figure 10 (in Appendix) show probability

density plot on which exit the output label is changed using

the black-box adversarial examples. From results, we can

see that the robustness of earlier exits is better against black-

box attack than white-box attack. For CIFAR-10 data, more

than 45% of the both attack generated samples could not

misclassify the first exit for VGG-16 model. For CIFAR-100

data (larger model), robustness of early exit layers is worse

than that of CIFAR-10 data (smaller model). For CIFAR-100

data, for both attacks and three models, less than 30% of the

adversarial examples can not mis-classify the first exit.

For black-box attack scenario, VGG-16 model’s first layer

on-average shows better robustness against black-box attack.

In the DyNN, the first exit of the VGG model is placed only

after second layer, while for others, more computations are

performed before using the first exit. Hence, having the first

exit in the early layers can increase the robustness of DyNN.

Although lower number of parameters would be used to

predict output, but with VGG we can notice that a significant

number of inputs can be classified correctly through first

exit.

Finding 6: We find that having the first exit in the
earlier layers can increase the robustness of early
exits of the DyNNs.
Finding 7: Black-box attack success rate is lesser
than white-box attack success rate against early-
exit layers.
Finding 8: For black-box scenario, early-exit lay-
ers are more robust against adversarial examples
generated on a smaller surrogate model than ad-
versarial examples generated on a larger surro-
gate model.
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(a) CIFAR-10 VGG (b) CIFAR-10 MobileNet (c) CIFAR-10 ResNet

Figure 4: Density plots of change in exit numbers because of PGD and FGSM attack (For CIFAR-10 data). The x axis

represents the change in exit number while y axis represents the density.

(a) CIFAR-10 VGG (b) CIFAR-10 MobileNet (c) CIFAR-10 ResNet

Figure 5: Density plots of change in exit numbers because of PGD and FGSM black-box attack (For CIFAR-10). The x axis

represents the change in exit number while y axis represents the density.

5. What design of DyNNs may impact the ro-
bustness against attack on dynamic mecha-
nism?

In this section, we evaluate if specific examples can be

generated only to understand the additional attack surface

introduced by the dynamic mechanism in DyNNs and which

design choices would be helpful in DyNNs to improve the

robustness against this specific attack. First, we aim to de-

sign an attack such that the synthesized adversarial examples

will not change the prediction of the final SDNN label, but

change the prediction of all the early exits. This threat model

is practical because the attack evades the existing detection

that relies on the final output of SDNN while the attacker

creates a situation where all the early exit networks do not

provide correct prediction, therefore decreasing the usability

of DyNNs. However, this attack is also challenging to be per-

formed successfully because final layer output is dependent

on the earlier exit layers and it is challenging to impact all

the early exits’ prediction without modifying the final exit’s

prediction.

5.1. Problem Formulation

We propose a novel attack technique called Early Attack
to evaluate the effectiveness of the early layers of DyNNs.

Algorithm 1: Input generation using Early Attack
Inputs :x : Input Image
Outputs :x′ : Perturbed Image

begin
Initialize(w)
T = number of iterations
iter no = 0
while iter no < T do

x′ = tanh(w)+1
2

output = model(x′)
if success(output) then

return(x′)
end
L = loss(x,w, c, α)
Lnew, w = Optim(L,w)
iter no + +

end
x′ = tanh(w)+1

2

end

Let’s assume f is an DyNN with N exits. Given an input x,

the output softmax layer in an exit i can be defined as yi =
fi(x), where i = 1, 2, 3...N . For synthesizing adversarial

examples, we have two main objectives. First, the initial

prediction in the N th exit (final layer) does not change. Let’s

assume, the initial prediction at final layer is p. Second, the

prediction of all the other exits should be different than p.

Based on the aforementioned objectives, we can propose
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(a) CIFAR-10 VGG (b) CIFAR-10 MobileNet (c) CIFAR-10 ResNet

Figure 6: Density plots representing during which exit number output label is changed because of PGD and FGSM attack (For

CIFAR-10 data). The x axis represents the exit number while y axis represents the density.

(a) CIFAR-10 VGG (b) CIFAR-10 MobileNet (c) CIFAR-10 ResNet

Figure 7: Density plots representing during which exit number output label is changed because of PGD and FGSM black-box
attack (For CIFAR-10 data). The x axis represents the exit number while y axis represents the density.

an iterative optimization procedure to optimise a loss func-

tion L. For each of the objectives, one loss function com-

ponent is formulized. For the first objective, we propose

loss function L1 = (−1 ∗ ∑
j �=p max(yNp − yNj , 0)). In

L1, we maximize the difference between softmax value of

label p and other label’s softmax value, therefore the pre-

diction won’t get changed at the final exit. For the second

objective, we propose loss function L2 = (
∑N

i=1 y
i
p). The

L2 ensures that for any other exit than the final exit, p’s

softmax value would be minimized. The final loss function

L = α ∗ L1 + L2. Here the α is a user-defined variable that

provides balance between two loss terms.

Finally, we need to ensure the added perturbation to gen-

erate adversarial examples are limited, hence, the final opti-

mization function would be, minimize(||δ||+ c ·L), where,

(x+ δ) ∈ [0, 1]n. Here, δ represents the added perturbation

and c is a user-defined variable to provide weightage on a

specific component. c controls the magnitude of generated

perturbation (||δi||), where a large c makes the loss function

more dependant on the L.

This constrained optimization problem in δ can be con-

verted into a non-constrained optimization problem in w,

where the relationship between δ and w is: δ = tanh(w)+1
2 −

x The tanh function would ensure that the generated ad-

versarial input values stay between 0 and 1. The equivalent

optimization problem in w is:

minimize
w

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

tanh(w) + 1

2
− x

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
+ c · L (1)

Algorithm 1 shows the optimization algorithm. The algo-

rithm outputs the adversarial input x′ given a benign image

x as input. w is initialized to a random tensor that has equal

shape as the input image. For each iteration, the loss func-

tion of the attack is computed (at line 11). Based on the

back-propagated loss, the optimizer updates w with its next

value. Once the iteration threshold (T ) is reached or the

attack is successful, the algorithm computes and returns the

adversarial input x′ (at Line 9 and 15).

5.2. Evaluation

5.2.1 Evaluation SetUp.

Baseline. We use PGD and FGSM attacks as baseline to

modify the early exit label.

Metric. We use attack success rate as metric in the eval-

uation. If the adversarial input generated final layer output

is same as the output generated by benign input and all the

other exit layers output is different than the final output la-

bel, then we consider attack is successful for that particular

adversarial input.
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Hyperparameters. We use α =
{0.001, 0.01, 0.1, 1, 20, 40} and c = 50 as hyperpa-

rameters.

5.2.2 Effectiveness

Table 1 shows the evaluation results of the attack success rate

of Early Attack and baseline techniques. Except two model-

dataset pair, Early Attack’s success rate is higher than 80% in

all other scenarios. PGD and FGSM attacks are unsuccessful

because the loss function only considers early layer output

and does not consider final layer output. Although FGSM’s

attack success rate is higher than PGD’s success rate. Also,

w.r.t best performing α values, α = 1 performs well for 70%

of the model-dataset pairs.

We also analyze why early attack fails for VGG16 and

MobileNet models for CIFAR-10 data. First, for CIFAR-

10 data, final fully connected layer has lower number of

parameters than the final layer for CIFAR-100 data. Hence,

the dependency between the final layer and earlier layers is

higher for CIFAR-10. However, for CIFAR-10 data, attack

success rate is higher for ResNet model. First we discuss the

failed cases for VGG16 and MobileNet model, and then we

discuss why the attack succeeded for ResNet model.

For VGG16 model, the failed examples can be divided

into two types. For the first type, the final output label is

changed with all the other early exit layers. In the second

type, first few layers get the output label mis-classified, but

along with the final layer, few previous layers also get the

output correctly classified. For MobileNet, all the layers

except the final and last to final layer get the output label

mis-classified. For MobileNet, we also find that the final two

exits are separated by only two layers, which is significantly

lower than other model’s separation layers between final two

exits. Hence, the dependency between final two layers is

higher.

For ResNet model, there are 56 layers divided into 27

blocks. The exits are sparsely divided between these blocks.

For Mobilenet and VGG models, the exit distributions are

less sparse. Hence, the dependency between exits is lower

for ResNet and because of that reason, we could successfully

attack ResNet model.

Table 1: Attack accuracy percentage of Early Attack
and the baseline techniques against different model and
dataset, along with α value.

Dataset Model Early Attack best α val PGD FGSM

CIFAR-10
VGG 35 1 0 0

MobileNet 11 0.1 0 0
ResNet 81 1 0 0

CIFAR-100
VGG 86 20 0 1

MobileNet 97 1 0 0
ResNet 96 1 0 2

5.2.3 Transferability

In this section, we discuss about the transferability of the

Early Attack examples. As Early Attack has two differ-

ent components, instead of measuring attack success rate

directly, we measure two parameters T1 and T2. T1 rep-

resents the percentage of inputs for which the final output

remains same as the output generated by benign input. T2
represents from the examples selected from T1, how many

early exit layers on average are mis-classified. Having both

high T1 and T2 values ensures transferability.

Table 2: T1 and T2 values for measuring transferability
between three models. TM represents Target Model and
SM represents Surrogate Model. T1 presents the percent-
age of inputs for which the final output remains same
as the output generated by benign input. T2 represents
from the examples selected from T1, how many early exit
layers on average is mis-classified.

CIFAR-10 CIFAR-100

Type
SM

TM
VGG MNet RNet VGG MNet RNet

T1
VGG – 85% 73% – 65% 39%
MNet 86% – 74% 51% – 38%
RNet 89% 82% – 79% 75% –

T2
VGG – 0.73 1.65 – 1.58 2.69
MNet 1.06 – 2.3 1.52 – 3.26
RNet 0.95 0.85 – 1.32 1.28 –

We show the transferability results in Table 2. For CIFAR-

10 data, the T1 values are high, but T2 values are signifi-

cantly low except for MobileNet to ResNet transferability.

For CIFAR-100 data, T2 values are higher than of CIFAR-

10 data, however, T1 values are low. From the results, we

can notice that the generated examples either can keep the

final layer label the same or can change the early exit layer

outputs. Our finding suggests that early attack transferability

is limited.

Finding 9: With increasing number of exits in
DyNNs, the dependency between multiple exits
will increase. Hence, more exits in DyNNs can
increase the robustness against the Early Attack.
Finding 10: Early Attack transferability between
DyNNs is not significant.

6. Conclusion
In this work 1, we discuss the robustness of including dy-

namic mechanism in DNN through three research questions.

We find out that DyNNs are more robust than SDNNs and

also efficient to generate adversarial examples. We also pro-

pose DyNN design choices through final two RQs. Finally,

we propose a novel attack to understand additional attack

space in DyNNs.

1https://github.com/anonymous2015258/Early Attack/tree/main
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