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Figure 1: Learning deterministic illumination color mappings from images with different WB settings for both canonical

illumination form and AWB corrected version. Pixel intensities in the canonical form are amplified for better visualization.

Abstract

Auto-white balance (AWB) correction is a critical oper-
ation in image signal processors for accurate and consis-
tent color correction across various illumination scenarios.
This paper presents a novel and efficient AWB correction
method that achieves at least 35 times faster processing with
equivalent or superior performance on high-resolution im-
ages for the current state-of-the-art methods. Inspired by
deterministic color style transfer, our approach introduces
deterministic illumination color mapping, leveraging learn-
able projection matrices for both canonical illumination
form and AWB-corrected output. It involves feeding high-
resolution images and corresponding latent representations
into a mapping module to derive a canonical form, followed
by another mapping module that maps the pixel values to
those for the corrected version. This strategy is designed as
resolution-agnostic and also enables seamless integration
of any pre-trained AWB network as the backbone. Experi-
mental results confirm the effectiveness of our approach, re-
vealing significant performance improvements and reduced
time complexity compared to state-of-the-art methods. Our
method provides an efficient deep learning-based AWB cor-
rection solution, promising real-time, high-quality color
correction for digital imaging applications. Source code is

available at https://github.com/birdortyedi/
DeNIM/

1. Introduction

In the realm of digital imaging, auto-white balance

(AWB) correction is one of the most critical operations in

image signal processors (ISPs). The colors presented in the

final sRGB image should be somehow aligned with the col-

ors perceived by the human eye. This operation mainly aims

to ensure accurate and consistent color correction across a

variety of illumination scenarios. Due to the effect of dif-

fering light sources in real-world scenarios, which possess

continuous range of color temperatures, AWB correction

task still remains challenging. Recent studies on AWB cor-

rection generally introduce a method to model leading illu-

mination settings and undesired color casts in the scene, and

then subsequently adjust the color balance.

A number of AWB correction methods have been intro-

duced, which employ various strategies (e.g., low-level sta-

tistical methods, gamut-based methods, and learning-based

methods). Earlier studies [12, 11, 18, 42, 24, 14, 29, 39, 38]

benefit from low-level statistics of images or patches to in-

fer the illumination, and employ a simple diagonal-based
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Figure 2: Overall design of our proposed illumination mapping strategy. We first reduce the resolution of the input images to a

compatible size with the AWB correction backbone (i.e., Mixed WB [4], Style WB [32]). Then, high-resolution input images

and the latent representations of low-resolution versions, extracted by AWB correction backbone, are fed into a deterministic

color mapping module (DNCM) [30] to obtain a canonical form. Another DNCM module (without fusion capability) takes

the canonical form as input and learns to map the pixel values to the ones for AWB corrected version. This strategy ensures

that the AWB correction model is resolution-agnostic.

correction matrix [23] of predicted illumination to rectify

the color casts in the scene. In addition to low-level statisti-

cal methods, gamut-based methods [19, 16, 17, 22] mainly

introduce models that aims to learn mappings from the im-

ages captured under unknown lighting conditions to the ref-

erence colors captured under known lighting conditions.

Learning-based methods [9, 20, 10, 21, 26] have become

more popular when compared to their ancestors, due to their

better capability of representing the illumination in real-

world scenarios.

With the advancements in computational photography,

deep learning-based methods [36, 40, 8, 27, 43, 34, 1, 4,

37, 32, 33] have demonstrated an outstanding performance

edge over all previous AWB correction strategies. However,

the high computational requirements and significant power

demands of these approaches restrict their direct integration

within a camera pipeline. Especially, the recent approaches

suffer from the computational complexity mostly leading to

better performance without considering the time efficiency

and their practical usage. Addressing this issue, we pro-

pose a novel, deep learning-based AWB correction method,

which makes the current state-of-the-art methods at least

35 times faster, while delivering equivalent or better perfor-

mance on high-resolution images.

The main contributions of this study can be summarized

as follows:

• We propose a novel and efficient strategy for AWB cor-

rection, which learns deterministic color mappings for

both canonical illumination and AWB-corrected forms

with the help of learnable projection matrices.

• Our design allows the input to be resolution-agnostic

and any pre-trained AWB network can be integrated

into this design as the backbone network.

• We demonstrate that employing deterministic illumi-

nation color mapping for AWB correction yields a sub-

stantial improvement in the performance of existing

state-of-the-art methods, while significantly reducing

the time complexity, achieving a speedup of at least 35

times faster.

2. Methodology
Given a set of high-resolution images with different

white balance (WB) settings I , our proposed strategy learns

to achieve a deterministic illumination color mapping for ef-

ficient AWB correction. Prior works [4, 32] focus on learn-

ing the weighting maps for all different WB settings in low-

resolution space. Then, they render the AWB-corrected ver-

sion in high-resolution space by linearly combining images

with different WB settings and their corresponding weight-

ing maps. Although this approach can produce quite well

outputs, it essentially requires multi-scale inference and

smoothing after resizing the weighting maps to the origi-

nal resolution to significantly improve the results. However,

these post-processing steps make this approach challenging

to use in practical scenarios.

Inspired by deterministic color style transfer [30], we de-

veloped an idea of deterministic illumination color mapping

for AWB correction. The overall design of our proposed il-

lumination mapping strategy is shown in Figure 2. First,

we reduce the resolution of the input images I to make

them compatible with the architectures of prior works (i.e.,
256px). By using only the encoder part of one of these ar-
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chitectures, we feed low-resolution images Î into the en-

coder to extract rich information from different WB set-

tings. To obtain the latent representations, we use 1×1 con-

volutional layer followed by GeLU activation [25] to vec-

torize the feature maps. This provides an image-adaptive

color mapping matrix d for DNCM module [30] to generate

a canonical form.

d (k×k) = V (E(̂I)) (1)

where E refers to the AWB encoder (i.e., [4] or [32]), V
stands for the vectorization operation by 1×1 convolutional

layer and activation. Note that we use pre-trained weights

for E and freeze its weights during our training.

For DNCM to canonical module, the first step involves

unfolding high-resolution image I into a 2D matrix of di-

mensions (HW × 3N ), where N refers to the number of

WB settings, H and W represent height and width, re-

spectively. Each pixel in I is then transformed into a k-

dimensional vector using a projection matrix P (3N × k).

k can be any number depending on the computational

power, but we set it to 32 in our design. The extracted

image-adaptive color mapping matrix d is multiplied with

k-dimensional vector to inject the rich information into the

projected space. Q (k × k) and R (k × 3) are the fol-

lowing learnable projection matrices to form the canonical

form in this module. We can formulate this module, namely

DNCMc, as follows

DNCMc(I, d) = I(HW×3)·P(3×k)·d (k×k)·Q(k×k)·R(k×3)

(2)

where · denotes the matrix multiplication.

Next, we feed the canonical form into DNCM to AWB
correction module (DNCMa). It does not have any fusion

capability but learns to directly map the pixel values in the

canonical form to the correct ones for the AWB version.

Each pixel in the canonical form Ic is transformed into a

k-dimensional vector by a projection matrix P (3× k). By

using a similar design to DNCMc, Q (k × k) and R (k × 3)

are responsible for converting the embedded k-dimensional

vector back to the RGB color space, which finally forms the

output IAWB . The formal definition of DNCMa can be seen

in Equation 3.

DNCMa(Ic) = Ic
(HW×3) ·P(3×k) ·Q(k×k) ·R(k×3) (3)

Apart from the self-supervised learning mechanism for

DNCM, followed in [30], the learning objective is to mini-

mize the reconstruction error between the ground truth and

the AWB corrected output, as shown in Equation 4.

L = ||IGT − IAWB||2F (4)

where IGT and IAWB denote the ground truth image

and the output. To keep the training process simple and

tractable, we did not include the smoothing loss [4] or per-

ceptual loss [28] in our final objective function.

Our design removes the decoder part that generates the

weighting maps in the prior works, and instead, it directly

computes the illumination color mapping with two distinct

DNCM modules for the canonical form and AWB-corrected

version. This design mitigates the need for further post-

processing of the weighting maps, which leads to reduc-

ing the time complexity without compromising the perfor-

mance. Moreover, due to the one-by-one pixel value map-

ping characteristic delivered by matrix multiplications, it

gives AWB correction model the ability to be resolution-

agnostic. Lastly, any AWB correction method can be eas-

ily plugged into this design for extracting rich information

in low-resolution space from different WB settings, which

makes our design also model-agnostic.

3. Experiments
3.1. Experimental Details

For our training, we have employed the RenderedWB

dataset [4], which contains 65,000 sRGB images with pre-

defined WB settings and corresponding white-balanced ver-

sions, captured by different cameras. Following the ex-

perimental setup in the prior works, we have two sets of

pre-defined WB settings, which are {t,f,d,c,s} and

{t,d,s}. The color temperatures used for pre-defined WB

settings are as follows: Tungsten (t, 2850K), Fluorescent

(f, 3800K), Daylight (d, 5500K), Cloudy (c, 6500K), and

Shade (s, 7500K). We did not apply any data augmentation

technique to the images during our training.

For all experiments, we freeze the weights of the AWB

backbone and only trained DNCM modules in our proposed

strategy from scratch. We set the size of the low-resolution

space to 256. We used AdamW optimizer [35] (β1 = 0.9,

β2 = 0.999) with batch size of 16. The learning rate is set to

1e− 4 and we did not employ any scheduling strategy. We

did not apply any post-processing operations after obtaining

the output.

3.2. Evaluation

Following the prior works [2, 4, 32], we evaluate the

AWB correction quality in terms of the mean-squared er-

ror (MSE), mean angular error (MAE) and color difference

(ΔE 2000). We report the mean, first (Q1), second (Q2),

and third (Q3) quantile averages for all metrics.

For qualitative and quantitative evaluation scenarios, we

have used three different evaluation sets: Cube+ [7] and

MIT-Adobe FiveK [13], along with the night photography

rendering set [41]. The Cube+ dataset consists of 1,707

single illumination color-calibrated images, captured with

1141



(a) Mixed WB (b) Style WB (c) DeNIM + Mixed WB (d) DeNIM + Style WB

Figure 3: Comparison of the qualitative results of our efficient AWB correction method, namely DeNIM, with the prior works

on the selected samples from MIT-Adobe FiveK dataset [13]. We compare our results with Mixed WB [4] and Style WB

[32]. Image indices from top to bottom: 323, 606, 2431, 2808, 2838.

a Canon EOS 550D camera during various seasons. The

MIT-Adobe FiveK dataset comprises 5,000 images captured

by different DSLR cameras, with each image manually re-

touched by multiple experts to correct the white balance.

4. Results and Discussion

This section presents a detailed review of notable find-

ings in our experiments. We primarily focus on three as-

pects while analyzing the results obtained in our experi-

ments: visual quality, numeric evaluation, and efficiency.

Qualitative analysis is conducted by comparing the results

obtained by Mixed WB [4], Style WB [32] and our strategy

built on top of both methods on MIT-Adobe FiveK dataset

and night photography rendering set. Following the litera-

ture, the evaluation of performance using quantitative met-

rics, analysis of model complexity, and comparison of effi-

ciencies are all conducted using the Cube+ dataset.

Qualitative analysis: To use the images in MIT-Adobe

FiveK dataset for our experiments, we first render the lin-

ear raw DNG images with different WB settings (e.g., Day-

light, Tungsten, Shade) by using the method presented in

[6]. Figure 3 demonstrates the qualitative comparison of

our AWB correction results and the prior works’ on selected

samples from the dataset. The indices of selected samples

in the dataset are as follows: 323, 606, 2431, 2808, and
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Table 1: Benchmark on single-illuminant Cube+ dataset [7]. Following the prior works [4, 32], we reported the mean, first

(Q1), second (Q2) and third (Q3) quantile of mean-squared error (MSE), mean angular error (MAE) and color difference

(ΔE 2000) metrics. Different WB settings are denoted as {t,f,d,c,s}, which refers to tungsten, fluorescent, daylight,

cloudy, and shade, respectively. p refers to the patch size. The top results are indicated with colored cells as, the best: green,

the second: yellow, the third: red.

Method MSE MAE ΔE 2000 SizeMean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
FC4 [27] 371.90 79.15 213.41 467.33 6.49◦ 3.34◦ 5.59◦ 8.59◦ 10.38 6.60 9.76 13.26 5.89 MB

Quasi-U CC [8] 292.18 15.57 55.41 261.58 6.12◦ 1.95◦ 3.88◦ 8.83◦ 7.25 2.89 5.21 10.37 622 MB

KNN WB [5] 194.98 27.43 57.08 118.21 4.12◦ 1.96◦ 3.17◦ 5.04◦ 5.68 3.22 4.61 6.70 21.8 MB

Interactive WB [3] 159.88 21.94 54.76 125.02 4.64◦ 2.12◦ 3.64◦ 5.98◦ 6.20 3.28 5.17 7.45 38 KB
Deep WB [2] 80.46 15.43 33.88 74.42 3.45◦ 1.87◦ 2.82◦ 4.26◦ 4.59 2.68 3.81 5.53 16.7 MB

MIMT [33] - - - - 2.52◦ 0.98◦ 1.38◦ 2.96◦ 2.88 1.94 2.42 2.87 -

Mixed WB [4]
p = 64, WB={t,d,s} 168.38 8.97 19.87 105.22 4.20◦ 1.39◦ 2.18◦ 5.54◦ 5.03 2.07 3.12 7.19 5.09 MB

p = 64, WB={t,f,d,c,s} 161.80 9.01 19.33 90.81 4.05◦ 1.40◦ 2.12◦ 4.88◦ 4.89 2.16 3.10 6.78 5.10 MB

p = 128, WB={t,f,d,c,s} 176.38 16.96 35.91 115.50 4.71◦ 2.10◦ 3.09◦ 5.92◦ 5.77 3.01 4.27 7.71 5.10 MB

Style WB [32]
p = 64, WB={t,d,s} 92.65 6.52 14.23 35.01 2.47◦ 0.82◦ 1.44◦ 2.49◦ 2.99 1.36 2.04 3.32 61.0 MB

p = 64, WB={t,f,d,c,s} 151.38 29.49 56.35 125.33 4.18◦ 2.13◦ 3.03◦ 4.81◦ 5.42 3.11 4.42 6.76 61.1 MB

p = 128, WB={t,d,s} 88.03 7.92 17.73 45.01 2.61◦ 0.93◦ 1.58◦ 2.85◦ 3.24 1.50 2.30 3.95 61.2 MB

p = 128, WB={t,f,d,c,s} 100.24 10.77 37.74 70.18 3.09◦ 1.15◦ 2.61◦ 3.87◦ 3.96 1.59 3.55 5.51 61.3 MB

DeNIM + Mixed WB [4] (ours)
p = 64, WB={t,d,s} 120.14 36.39 77.40 152.96 2.57◦ 1.53◦ 2.17◦ 3.19◦ 5.26 3.38 4.71 6.64 28.7 MB

p = 64, WB={t,f,d,c,s} 129.01 14.39 27.69 57.90 2.67◦ 0.99◦ 1.45◦ 2.29◦ 3.96 2.10 2.85 4.24 28.7 MB

p = 128, WB={t,d,s} 158.58 60.14 115.66 198.59 4.20◦ 2.38◦ 3.77◦ 5.63◦ 5.69 3.91 5.41 7.10 28.8 MB

p = 128, WB={t,f,d,c,s} 99.70 13.89 24.71 43.88 2.49◦ 1.07◦ 1.62◦ 2.41◦ 3.44 1.95 2.74 3.78 28.8 MB

DeNIM + Style WB [32] (ours)
p = 64, WB={t,d,s} 65.80 10.06 16.98 28.82 2.03◦ 0.88◦ 1.23◦ 1.93◦ 2.95 1.79 2.33 3.18 196.3 MB

p = 64, WB={t,f,d,c,s} 83.41 13.23 21.46 37.44 1.93◦ 0.77◦ 1.09◦ 1.70◦ 2.73 1.62 2.03 2.71 196.3 MB

p = 128, WB={t,d,s} 80.53 17.59 27.80 44.35 2.16◦ 0.88◦ 1.34◦ 2.16◦ 3.08 1.86 2.37 3.30 196.4 MB

p = 128, WB={t,f,d,c,s} 89.10 11.27 19.34 43.01 2.49◦ 1.24◦ 1.64◦ 2.92◦ 3.16 1.87 2.53 3.35 196.4 MB

Table 2: Comparison of the complexity of our method and

the prior methods with their post-processing tricks. ms:

multi-scale weighting maps, eas: edge-aware smoothing.

Model Architecture Time (s) Param (M) FLOPS (G)
Mixed WB [4] + ms + eas 10.390

1.32 82.68
Mixed WB [4] + ms 0.228

Mixed WB [4] + eas 10.279

Mixed WB [4] 0.212

Style WB [32] + ms + eas 10.342

15.31 76.80
Style WB [32] + ms 0.232

Style WB [32] + eas 10.307

Style WB [32] 0.217

Ours w/ Mixed WB [4] 0.006 1.67 2.14
Ours w/ Style WB [32] 0.010 16.19 26.89

2838. These results indicate that our proposed strategy per-

forms comparably well to the prior works on a per-pixel

basis for AWB correction in the sRGB space. Utilizing per-

pixel color mapping seems to result in color casts that are

closer to human perception by more accurately representing

the lighting conditions within the scene.

Night photography rendering [15, 41] is an emerging

topic in digital imaging. Night image capturing poses sig-

nificant challenges due to its inherent nature, characterized

by low light conditions, diverse illuminant sources, and

hardware limitations. In night image capturing, AWB cor-

rection plays a pivotal role in preserving the realistic per-

spective of the output, ensuring that it aligns with human

perception and avoids distortions. As practiced in [32], we

integrate our AWB correction strategy into the camera ISP

for processing night images given in the evaluation part of

Night Photography Challenge 23’ [41]. In our pipeline, we

incorporate the same operations, including gamma correc-

tion, tone mapping, auto-contrast, and denoising [44], in the

same order for all methods, but the only modification made

is to the white-balancing strategies. Figure 4 illustrates the

rendering results of various camera pipeline variants that

encompass the prior works and our proposed strategy as the

AWB correction method. The rendering results demonstrate

that our strategy effectively produces more natural night im-

ages by mitigating undesired color casts commonly encoun-

tered in real-world scenarios.

Quantitative evaluation: The benchmark on single-

illuminant Cube+ dataset [13] is presented in Table 1. Fol-

lowing the same experimental setup in the prior works

[4, 32], we have used two different patch sizes for the back-
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(a) Mixed WB (b) Style WB (c) DeNIM + Mixed WB (d) DeNIM + Style WB

Figure 4: Comparison of the night photography rendering results of our AWB correction strategy with Mixed WB [4] and

Style WB [32] on the selected samples from Night Photography Rendering Challenge 23’ evaluation set [41]. Image indices

from top to bottom: 8678, 8210, 8817, 8894, 8941.

bone network (i.e., 64 and 128), and we designed the in-

put image with two sets of WB settings where the default

choices include Tungsten, Daylight, and Shade, while we

further incorporate Fluorescent and Cloudy color tempera-

tures to enhance the versatility of the method. The quanti-

tative results indicate that our strategy achieves not only in-

creasing efficiency but also improving performance across

all different patch sizes and WB settings, as evidenced by all

evaluation metrics. The main observations extracted from

these results are as follows: (1) In contrast to the results ob-

tained with Style WB, the best-performing variant appears

to be when using a patch size of 64 and incorporating all

possible WB settings. This configuration leads to superior

performance when compared to other settings. (2) The no-

table increase in performance, specifically observed on the

third quantiles of all evaluation metrics, deserves highlight-

ing. This observation suggests that our strategy can produce

more robust results, particularly when dealing with chal-

lenging samples. (3) Confirming the findings in [4, 32], we

observe that smaller patch sizes tend to lead to better mod-

eling of the illuminant, and in our case, also learning color

mappings. (4) We encountered difficulties in identifying a

consistent pattern for the mean-squared error (MSE) met-

ric when compared to the other two metrics, and this may

suggest that MSE may not adequately capture the quality

of color correction achieved by the different methods. We

1144



(a) Mixed WB (b) Style WB (c) DeNIM + Mixed WB (d) DeNIM + Style WB

Figure 5: Failing to address unrealistic color casts, and not effectively handled by any AWB correction methods on MIT-

Adobe FiveK dataset [13].

believe that this particular metric might not be suitable for

accurately measuring the performance of AWB correction.

Efficiency: The results presented in Table 2 demonstrate

the efficiency of our proposed strategy when compared to

its prior works across different criteria. Specifically, we

evaluated the efficiency based on the following criteria: the

processing time (Time (s)), the model complexity in terms

of parameter count (Param (M)), and computational load

measured in Floating Point Operations Per Second (FLOPS

(G)). In terms of processing time, our strategy significantly

reduces the time required to process the images for AWB

correction. The reduction in processing time is accom-

plished by designing a model that allows discarding the

post-processing operations (i.e., multi-scale inference, and

edge-aware smoothing) and adopting simple learnable pro-

jection matrices in place of the decoder. DeNIM shows a

remarkable speed advantage, being at least 35 times faster

than previous models (up to 1700 times faster when post-

processing is included).

Next, the model complexity is an essential factor to con-

sider. DeNIM leads to a slight increase in the number

of parameters compared to the prior works, even though

it discards the decoder of the baseline models. The rea-

son behind the increasing number of parameters lies in the

decision to use fully-connected layers as projection ma-

trices, as opposed to convolutional layers in the decoder.

Fully-connected layers require more parameters, due to

their dense connections between all input and output neu-

rons. This design choice may have led to a slightly higher

model complexity, however, it is important to note that this

decision does not significantly impact the processing time.

Lastly, we measure the computational load of all methods

in terms of FLOPS. Lower FLOPS values imply less com-

putational resources required, hence better efficiency. When

DeNIM is trained with the Mixed WB backbone, it achieves

a remarkable reduction in FLOPS by approximately 97%.

Similarly, when trained with the Style WB backbone, the

FLOPS are reduced by approximately 65%. This substan-

tial decrease in computational load highlights the remark-

able efficiency of our strategy compared to the prior works.

Limitations: Although deep-learning-driven AWB meth-

ods generally demonstrate significant resilience across var-

ious different scenarios, there are occasional examples

where they yield unsatisfactory results. As shown in Figure

5, AWB correction operations may fail to address unrealis-

tic color casts and produce poor results which do not align

with human visual perception. At this point, our strategy

also may not be able to handle the challenges effectively,

primarily since it relies on the feature extraction part of the

prior models. We can state that it may struggle to address

certain complex and uncommon scenarios, which leads to

sub-optimal results. Moreover, to further investigate the

performance in handling more challenging cases, our strat-

egy can be tested on multi-illuminant datasets [4, 31]. By

subjecting this strategy to such datasets, we can gain valu-

able insights into its capabilities and limitations in handling

diverse and complex lighting scenarios, and we left it as fu-

ture work.

5. Conclusion

In this paper, we have introduced a novel and efficient

deep learning-based AWB correction strategy built on top of

the current state-of-the-art methods. This strategy incorpo-

rates the idea of deterministic color mapping by leveraging

the encoder of existing AWB models and learnable projec-

tion matrices. Through extensive experiments, we showed

the effectiveness of our strategy by achieving at least 35

times faster processing while surpassing the performance

of state-of-the-art methods on high-resolution images. Our

research provides a promising solution for real-time, high-

quality color correction in practical scenarios, even in digi-

tal camera chipsets, addressing the challenges posed by in-

creasing model complexities for better performance.
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Marko Subašic, Sven Lončarić, Arseniy Terekhin, Shuai Liu,

Chaoyu Feng, Hao Wang, Ran Zhu, Yongqiang Li, Lei Lei,

Zhihao Li, Si Yi, Ling-Hao Han, Ruiqi Wu, Xin Jin, Chunle

Guo, Furkan Kinli, Sami Menteş, Bariş Özcan, Furkan
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