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Abstract

Transformer models with large-scale pre-training have
performed excellently in various computer vision tasks.
However, such models are huge and difficult to apply to mo-
bile devices with limited computational resources. More-
over, the computational cost of fine-tuning is high when the
model is optimized for a downstream task. Therefore, our
goal is to compress the large pre-trained models with min-
imal performance degradation before fine-tuning. In this
paper, we first present the preliminary experimental results
on the parameter change by using pre-trained or scratch
models when training in a downstream task. We found that
the parameter magnitudes of pre-trained models remained
largely unchanged before and after training compared with
scratch models. With this in mind, we propose an unstruc-
tured pruning method for pre-trained models. Our method
evaluates the parameters without training and prunes in a
single shot to obtain sparse models. Our experiment re-
sults show that the sparse model pruned by our method
has higher accuracy is more than previous methods on the
CIFAR-10, CIFAR-100, and ImageNet classification tasks.

1. Introduction

The performance of a deep neural network improves in

proportion to the number of parameters [7]. However, while

a deep neural network with many parameters can be highly

effective for generalization, it uses more memory, so the

computational cost is high [25]. Therefore, pruning a dense

network with many parameters is a significant technique for

deploying deep neural networks in real-time processes and

devices with limited computational resources.

MetaFormer [24] is a deep neural network structure that

has recently attracted attention in various fields. This struc-

ture consists of a token mixer, which mixes information

between tokens, and a channel mixer, which mixes infor-

mation within tokens. The structure of MetaFormer is

represented by Transformer [19] in natural language pro-

cessing, and a Vision Transformer (ViT) [2], MLP-Mixer

(Mixer) [18], and PoolFormer (Pool) [24] for image recog-

nition have been proposed. However, pre-training with

large datasets is required because these models have many

parameters.

The purpose of this study is to compress the pre-trained

large models, such as Vision Transformers, with minimal

performance degradation before fine-tuning. To develop

suitable pruning methods for pre-trained models, we inves-

tigate the difference in how parameters are trained by us-

ing pre-trained or scratch models when training in a down-

stream task (Section 3). This investigation reveals that pre-

trained models tend to have almost no change in parameter

magnitude before and after training in downstream tasks.

This means that parameters obtained by pre-trained mod-

els are sufficient for downstream tasks. Considering this

tendency, we demonstrate the importance of parameters ob-

tained by pre-trained models. Then we show that our ap-

proach can outperform previous methods by highly eval-

uating parameters obtained from pre-training and pruning

(Section 5). The contributions of our approach are summa-

rized below:

• By pruning parameters before fine-tuning, the compu-

tational cost of fine-tuning is reduced for a pre-trained

model.

• Our approach evaluates the parameters without train-

ing and can be applied as a single shot.

• Since the selection of redundant parameters does not

depend on the network structure, our method can be

applied to various models.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Related work

In this section, we review the literature on neural net-

work pruning including the lottery tickets hypothesis [3].

2.1. Network Pruning

Network pruning has been widely studied since it was

proposed by LeCun et al. [10]. The simplest method of net-

work pruning is Magnitude Pruning [4]. Magnitude Pruning

removes the parameters in the network from lower absolute

values. Earlier methods compressed the model size by iter-

ating pruning and fine-tuning. However, subsequent prun-

ing methods have aimed to find a subnetwork that is as accu-

rate as the original network and is more accurate faster after

it has been fine-tuned once. The lottery tickets hypothesis

was proposed by Frankle et al. [15] because subnetworks

found by rewinding weights are more accurate than those

found by repeating pruning and fine-tuning, the pruning al-

gorithm for the lottery hypothesis includes iterative pruning,

in which a small number of parameters is repeatedly pruned,

and a single shot pruning, in which many parameters are

pruned in a single shot. However, these algorithms incur a

high computational cost because the parameter evaluation

requires training. To solve this problem, pruning methods

that can be applied before training have been proposed by

Lee et al. [11] and Wang et al. [21]. Details of these meth-

ods are presented in Section 4.

2.2. Acceleration of Transformers

Although models with a MetaFormer structure is more

accurate, they are computationally costly and slow. Thus,

there have been several attempts to accelerate Transformers.

For example, the Adaptive Vison Transformer (A-ViT) [23]

and Dynamic Vision Transformer (DViT) [22] have been

proposed to accelerate ViT. Whereas A-ViT is accelerated

by reducing the number of tokens that are forward propa-

gated during inference, DViT is accelerated by configuring

an appropriate number of tokens for each individual image

automatically. However, these approaches cannot funda-

mentally solve the memory usage issues because they do

not reduce the model size. As an approach to pruning, we

introduce several methods for reducing head in multi-head

attention [19]. Shim et al. [16] proposed a head pruning

method in which the gating parameters are attached to each

head and regularized with L0 loss. Voita et al. [20] removed

the heads by evaluating their attention confidence. How-

ever, these pruning methods only remove part of the token

mixer. If the dimensionality of the multi-layer perceptron

(MLP) is four times greater than the embedding dimension-

ality d, then the number of parameters for MLP and multi-

head attention are 8d2 and 4d2, respectively (excluding their

biases). Therefore, to compress the model size sufficiently,

the channel mixer must also be removed.

3. Limitations of previous methods
In this section, we introduce gradient-based pruning

methods and then discuss the evaluation of these methods

on pre-trained models.

3.1. Revisiting previous methods applied prior to
training

Single-Shot Network Pruning

Single-Shot Network Pruning (SNIP) [11] is the first algo-

rithm to not require training for a pruning process. This

algorithm quantitatively evaluates how a change in a single

parameter θq affects the loss of the network:

ΔL = |L(θq)− L(δθq)|
= |L(θq)− L(θq)− ∂L

∂θq
(δθq − θq)−O(||δθq||2)|

= | ∂L
∂θq

θq| (1)

where θq is the qth element of all parameters, δ is a pertur-

bation to θq , ΔL is the variation of loss L, and O(||δθq||2)
notation is terms of higher order than the 2th degree. The

parameters where ΔL become small can be considered to

have a small impact on the loss even if they are removed.

Thus, we can efficiently prune the parameters by removing

those that have small ΔL.

Gradient Signal Preservation

Gradient Signal Preservation (GraSP) [21] is a pruning al-

gorithm (like SNIP) that does not require training for a

pruning process. SNIP evaluates each parameter indepen-

dently, whereas GraSP evaluates the relationships between

the parameters. Specifically, the objective of GraSP is to

maintain or increase gradient flow after pruning. When the

initial parameters θ0 are perturbed δ, the gradient flow after

pruning changes as follows:

S(δ) = ΔL(θ0 + δ)−ΔL(θ0)
= 2δTHg +O(||δ||22) (2)

where Hg is a Hessian-vector product. Therefore, the score

of each parameter is defined as follows:

S(−θ) = −θ �Hg. (3)

If the value of S(θ) is negative, it means that the gradient

flow decreases. Thus, the parameters with large S(θ) are

removed in priority.

3.2. Differences in parameters with and without
pre-training

We investigate how the parameters change before and

after training with and without pre-training to identify these
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Figure 1. Distributions of ViT-B/16. The gray line indicates that the parameters are the same value before and after the training. The

parameters are in good agreement with those before training in proportion to the dataset size used for pre-training.
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Figure 2. Distributions of Mixer-B/16. The gray line indicates that the parameters are the same value before and after training. The tendency

is the same as in Figure 1. Mixer-B/16 additionally shows less variation in values than ViT-B/16 when pre-trained on ImageNet-1k.
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Figure 3. Correspondence relationship between parameters and

gradients. To compute the gradient, we randomly select 128 im-

ages from CIFAR-10 as a mini-batch.

differences. To compare the differences, we use ViT-B/16

and Mixer-B/16, which are pre-trained on ImageNet-1k or

ImageNet-21k [1] and fine-tuned on CIFAR-10 [9]. Pre-

training on ImageNet-21k or ImageNet-1k is done using

AdamW [13] for 300 epochs.

Figure 1 shows the parameters of ViT-B/16, which is

pre-trained, and the scratch models. Likewise, Figure 2

shows that of Mixer-B/16. The vertical axis is the trained

parameters, and the horizontal axis is the parameters be-

fore training. Both results show that the parameters are

in good agreement with that before training (initial values)

in proportion to the dataset size used for pre-training. In
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Figure 4. Scores of pre-trained parameters by SNIP. We compute

the SNIP scores using the same gradient as in Figure 3. The eval-

uation is concentrated on parameters near 0.

particular, we observe that well-trained parameters with a

large magnitude changed little before and after fine-tuning,

while pre-trained parameters with small magnitude changed

chaotically before and after fine-tuning. These results mean

that the knowledge obtained by pre-training is very useful

for downstream tasks such as CIFAR-10.

Previous methods such as SNIP and GraSP limit the

score evaluation by Magnitude Pruning to a smaller range.

This is because Magnitude Pruning considers the magni-

tude of the parameters, whereas SNIP and GraSP consider

the magnitude and gradient or Hessian of the parameters

simultaneously. Although limiting the evaluation range en-
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Step 1:
Create network 

with initial parameters

Step 2:
Pre-train network
on large datasets

Step 4:
Train compact network

on downstream task

Regular training

Step 3:
Evaluate pre-trained 

parameters using Eqn.(4)

Apply masks
created from scores

Figure 5. Procedure of pruning for pre-trained models. First, we prepare an initial network (Step 1) and pre-train it (Step 2). Second, our

pruning algorithm is applied once between Steps 2 and 4. Finally, the pruned network is trained on downstream task (Step 4).

ables more rigorous definition for redundant parameters, it

can lead to errors in scoring parameters that change little.

Specifically, when experiments are conducted under the as-

sumption of pre-training, such as the results in Figures 1 and

2, the parameters of the pre-trained model vary less because

the converges in the downstream task after less training than

in the case of the scratch models. Visualization of the gradi-

ents of the pre-trained models (ViT-B/16 and Mixer-B/16)

shows large gradients for the parameters near 0 and nearly

0 for the other parameters (in Figure 3). In such extreme

gradient distributions, SNIP evaluations are concentrated on

parameters near 0 (in Figure 4). Are these methods, which

evaluate based on the magnitude of the gradient, adequately

evaluating the parameters obtained by pre-training? We in-

sist on that the parameters with nearly 0 gradients and large

scales must also be evaluated simultaneously. This is be-

cause parameters obtained in the pre-training that are useful

for the downstream task may remain largely unchanged and

maintain their magnitude when trained in the downstream

task. In addition, it is known that the variation in the pa-

rameters due to training is very small when the number of

network dimensions is extremely large [6]. For these rea-

sons, the magnitude of the gradient may be extremely small,

which is a problem when pruning methods that use gradi-

ents, such as SNIP or GraSP, cannot adequately evaluate

parameters with small variability and a large scale.

4. Pruning considering pre-training

The results in Section 3 show that the parameters ob-

tained by pre-training are in good agreement with the ini-

tial values. However, it is not preferable to evaluate pa-

rameters before training by considering only their gradient-

based methods because their scores are concentrated on pa-

rameters near 0. Therefore, we propose a method that can

simultaneously evaluate the magnitudes of the parameters

obtained by pre-training and connection sensitivity.

4.1. Proposed method

A prospective pruning method for the pre-trained model

must consider both (a) the useful parameters obtained by

pre-training and (b) those optimized in downstream tasks

during fine-tuning. Here, we define (a) as parameters with

a large value that changes little before and after fine-tuning

and (b) as parameters with a small value that changes chaot-

ically before and after fine-tuning. SNIP can be evaluated

for (b) by capturing changes due to optimization of down-

stream tasks, but not for parameters with small change, such

as (a). Therefore, we directly evaluate parameters with

small variations by magnitude, and the others by SNIP:

S(θq) = | ∂L
∂θq

θq|+ αθ2q (4)

where α is the scaling parameter, and S(θq) is the score of

θq .

Other aspects of proposed method

Eqn.(4) contains the term of αθ2q . Therefore, our pro-

posed method is similar to Eqn.(1) approximated by a

second-order Taylor expansion:

L(δθq) =L(θq) + ∂L
∂θq

(δθq − θq) +
1

2

∂2L
∂θ2q

(δθq − θq)
2

+O(||δθq||3). (5)

In other words, our proposed method seems to be an ap-

proximation of second and third terms of Eqn. (1) to the

second order, with the Hessian replaced by constant α.

Pruning Algorithm

Figure 3 shows the procedure of our proposed method

for pre-training models. First, we prepare an initial net-

work in Step 1 and pre-train it in Step 2. Next, we evaluate

pre-trained parameters by using Eqn. (4). Then we create

masks from the scores and apply them to the network. Here,

we show the specific evaluation algorithm in Algorithm 1.
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Algorithm 1 Pruning considering pre-training

Require: Sparsity k, training data D, pre-trained parameters θ, hyper parameter α
1: Db = {(xi,yi)}bi=1 ∼ D � Sample a mini-batch of training examples

2: for θq in θ do
3: S ← |∂L(Db)

∂θq
θq|+ αθ2q � Compute the score of each parameter

4: end for
5: Compute kth percentile of S as κ
6: m← S < κ � Prune to the parameters with the smallest scores

7: Train the network with masked parameters m� θ on D until convergence.

Table 1. Test accuracy of Vision Transformers pruned to 98% (pre-trained on ImageNet-1k).

Method Dataset Ours Random

α CIFAR-10 CIFAR-100 0.001 0.0005 0.0001 0.00005 0.00001 -

ViT-B/16 [2]
� - 90.48 89.86 89.14 88.88 88.69 81.96

- � 67.16 66.59 64.36 64.18 64.23 55.66

ViT-L/16 [2]
� - 93.94 92.81 92.44 92.26 92.13 83.67

- � 74.85 73.47 71.74 70.57 70.99 56.49

Mixer-B/16 [18]
� - 86.36 88.10 90.02 89.89 89.69 79.03

- � 64.39 65.96 69.15 68.00 67.13 54.35

Mixer-L/16 [18]
� - 88.59 88.28 87.79 87.78 88.29 78.27

- � 66.09 65.58 64.59 64.75 65.31 52.81

Pool-M36 [24]
� - 92.85 92.85 92.55 92.92 92.75 68.47

- � 74.27 73.89 73.90 74.69 74.31 41.10

Pool-M48 [24]
� - 93.61 93.56 93.71 93.45 93.75 65.89

- � 77.27 76.71 76.11 76.10 76.25 39.30

Given pruning sparsity k, the pruning mask is computed by

the score of the target parameter and the parameters are re-

moved from the bottom at the ratio of k. Finally, we apply

regular training in downstream tasks to the pruned network.

This sequence of our pruning procedure is performed in a

single shot.

Why do we not evaluate the parameters iteratively?

Intuitively, iterative pruning is thought to be more likely

to yield higher performance than single-shot pruning be-

cause it does less damage to the model. However, Ma et al.

[14] showed that single-shot pruning is more accuracy for

models with smooth landscapes containing residual connec-

tions [5] than iterative pruning. Thus, model compression

by single-shot pruning is applied in this paper because the

models with the MetaFormer structure have residual con-

nections.

5. Experiments
In this section, we present the experiments we conducted

to validate the effectiveness of our proposed method. First,

we compare the test accuracies of the models pruned by our

proposed method using various scaling parameters α. Sec-

ond, we compare our proposed method with three previ-

ous singe-shot pruning methods: magnitude pruning, SNIP,

and GraSP. Finally, we compare our proposed method with

SNIP in detail.

5.1. Experiment setup

To evaluate the effectiveness of our proposed method, we

test it on two image classification datasets, CIFAR-10 and

CIFAR-100, with six types of Vision Transformers. For the

experiments on CIFAR-10 and CIFAR-100, we pre-train the

networks on ImageNet-1k or ImageNet-21k. Pre-training

on ImageNet-21k or ImageNet-1k is done using AdamW

for 300 epochs. The targets to be pruned are the token

mixer and channel mixer in all layers, and the pruning is

applied non-structurally (Note that pool networks are only

applied to the channel mixer because they do not have a

parametric token mixer). The pruned network is trained us-

ing Adam [8] for 200 epochs for CIFAR-10, and 250 epochs

for CIFAR-100, with an initial learning rate of 0.0001 and

batch size of 128. The training datasets are also augmented

by Mixup [26].

5.2. Proposed method and random pruning

We compare our proposed method with random prun-

ing, which randomly generates the mask for a given spar-

sity. The test accuracy is reported in Table 1. Here, the

networks pre-trained on ImageNet-1k are pruned to 98%.
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Table 2. Test accuracy of Vision Transformers pruned to 98%. The

models are trained on CIFAR-100 (pre-trained on ImageNet-1k).

Method Ours Magnitude SNIP GraSP

ViT-B/16 67.16 57.56 63.84 60.62

ViT-L/16 74.85 65.47 70.62 65.11

Mixer-B/16 64.39 62.09 67.21 61.22

Mixer-L/16 66.09 62.44 64.53 59.20

Pool-M36 74.27 63.10 73.47 62.19

Pool-M48 77.27 65.85 76.02 63.16

Table 3. Test accuracy of Vision Transformers pruned to 98%. The

models are trained on CIFAR-10 (pre-trained on ImageNet-1k).

Method Ours Magnitude SNIP GraSP

ViT-B/16 90.48 83.81 89.41 85.74

ViT-L/16 93.94 90.32 92.07 87.92

Mixer-B/16 86.36 83.97 89.15 84.57

Mixer-L/16 88.59 86.77 88.46 85.63

Pool-M36 92.85 75.23 92.66 85.82

Pool-M48 93.61 87.99 93.68 86.53

Swin-B [12] 96.10 95.17 95.13 89.03

We found that our proposed method is more accurate than

random pruning in all comparisons. We also found that for

most networks, the highest accuracy is obtained when α is

equal to 0.001. However, Mixer-B/16, scratch Pool-M36,

and pre-trained Pool-M48 are most accurate for smaller α.

5.3. Proposed method and previous methods

The proposed and previous methods are compared in Ta-

bles 2, 3, and 4. The networks in Tables 2 and 3 are pre-

trained on ImageNet-1k and fine-tuned on CIFAR-100 and

CIFAR-10, respectively. The networks in Table 4 are pre-

trained on ImageNet-21k and fine-tuned on ImageNet-1k.

The test accuracy in Tables 2, 3, and 4 are obtained from

the networks pruned to 98%. Here, our proposed method

with scaling parameter 0.001 is applied to the networks. As

shown in Table 2, high accuracy was obtained for all net-

works except Mixer-B/16. However, Mixer-B/16 is made

more accurate than SNIP by tuning the scaling parameter

(see Table 1). The network pruned by magnitude prun-

ing is also effective, and we can observe the accuracy ex-

ceeds those of GraSP with ViT-L/16, Mixer-B/16, Mixer-

L/16, and Pool-M48. This result shows that the magnitude

Table 4. Test accuracy of Vision Transformers pruned to 98%.

The models are trained on ImageNet-1k (pre-trained on ImageNet-

21k).

Method Ours Magnitude SNIP GraSP

ViT-B/16 79.07 78.62 79.07 77.23

ViT-L/16 80.79 80.60 80.61 78.53

of parameters obtained by pre-training is important. In Ta-

ble 3, we can similarly observe high accuracy for all net-

works except Mixer-B/16 and Pool-M48. Mixer-B/16 and

Pool-M48 can also be made more accurate than SNIP by

tuning the scaling parameter (see Table 1). In Table 4, the

networks pruned by the proposed method obtain the high-

est accuracy, and the difference is especially noticeable for

ViT-L/16. Meanwhile, SNIP and Magnitude have almost

the same accuracy.

Table 5 compares the effectiveness of the proposed

method and SNIP in further detail. The networks in Tables

5 is retrained on CIFAR-10. Most test accuracy in Tables 5,

including the scratch networks, are higher when pruned by

our proposed method. We also observe a monotonic degra-

dation of accuracy in proportion to sparsity. This result sup-

ports the hypothesis that no subnetwork can outperform the

original network of Ma et al. [14].

5.4. Detailed comparison with Magnitude

Tables 6 and 7 shows the overlap ratio for the param-

eters pruned by Magnitude and those pruned by the other

methods. The overlap ratio is computed using the remain-

ing 2% parameters of the model compressed to 98%. The

models used to calculate the overlap ratio are pre-trained

on ImageNet-21k. The scaling parameter of the proposed

method is 0.001.

We consistently observe that the proposed method has

the highest overlap ratio in comparison with all methods.

This shows that the proposed method is able to reflect the

magnitude of the initial values more strongly in the evalua-

tion of the parameters. In addition, we found that the mod-

els such as Mixer and Pool, which consist of pure fully-

connected layers, have high overlap ratio. We intuitively

understand that this trend is due to the computational com-

plexity of the attention mechanism included in ViTs, but

more experiments are needed to prove it.

5.5. Layer Collapse

In single-shot pruning, layer collapse is caused by re-

moving many parameters [17]. Here, in layer collapse, all

of the parameters of an entire layer are removed, resulting

in a severe loss of accuracy. In this section, we experimen-

tally show that layer collapse is less likely to occur in our

proposed method than in SNIP.

We qualitatively investigate where the layers have been

pruned. In Figures 6, 7 and 8, we compare the sparsities

at each layer of the Vision Transformers globally pruned

to 95%. The scaling parameter of the proposed method is

0.001. These models are pre-trained on ImageNet-1k and

retrained on CIFAR-10. The light red bars and the deep red

bars represent the token mixer. Note that the token mixer in

ViT-B/16 is divided into scaled dot-product attention, which

includes query, key, and value weights, and one linear layer.
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Table 5. Test accuracy of Vision Transformers pruned by our proposed method and SNIP on CIFAR-10.

Method Pretrain Ours (α = 0.001) SNIP

Sparsity[%] ImageNet-1k ImageNet-21k 90.0 95.0 98.0 90.0 95.0 98.0

ViT-B/16

� - 95.98 94.71 90.48 95.46 93.37 89.41

- � 95.92 94.37 90.92 95.49 93.46 88.50

- - 78.27 78.48 76.42 79.03 77.96 76.21

ViT-L/16

� - 96.40 95.83 93.94 96.33 95.04 92.07

- � 96.54 95.82 93.70 96.13 94.91 92.49

- - 77.70 78.13 77.78 77.76 78.32 77.04

Mixer-B/16

� - 95.20 92.52 86.36 94.55 92.81 89.15
- � 95.17 92.34 87.05 95.58 92.99 89.57
- - 79.97 75.85 65.77 81.97 80.68 77.92

Mixer-L/16

� - 94.02 91.13 88.59 91.64 90.53 88.46

- � 93.93 90.86 88.82 91.70 90.72 88.22

- - 81.33 79.89 75.21 74.58 68.71 66.03

Pool-M36

� - 96.08 94.99 92.85 95.70 94.50 92.66

- � 96.29 94.30 91.51 96.17 94.94 92.49
- - 75.01 69.21 62.36 72.91 39.81 39.55

Pool-M48

� - 96.43 95.46 93.61 96.02 95.38 93.68
- � 96.72 95.10 93.41 96.54 95.65 93.46
- - 76.23 76.23 70.26 72.80 66.72 39.59

Table 6. Overlap ratio for the parameters pruned by Magnitude and those pruned by the other methods which used CIFAR-10 to calculate

the scores [%].

ViT-B/16 ViT-L/16 Mixer-B/16 Mixer-L/16 Pool-M36 Pool-M48

Ours 11.91 13.41 99.97 98.06 77.48 81.60
SNIP 11.78 12.24 1.69 1.99 11.48 11.62

GraSP 7.53 6.73 1.69 1.99 8.54 9.06

Table 7. Overlap ratio for the parameters pruned by Magnitude and those pruned by the other methods which used CIFAR-100 to calculate

the scores [%].

ViT-B/16 ViT-L/16 Mixer-B/16 Mixer-L/16 Pool-M36 Pool-M48

Ours 12.14 12.14 99.99 99.92 79.81 82.23
SNIP 12.03 13.06 1.73 2.20 12.38 11.93

GraSP 7.23 6.75 1.71 2.19 9.56 7.73

The light blue bars and the deep red bars also represent the

channel mixer.

Comparing these figures, we observe that each layer is

most uniformly pruned when using magnitude pruning. In

contrast, some layers are hardly pruned when using SNIP.

Our proposed method also prunes with bias due to the in-

fluence of SNIP as shown in Figures 6, 7 and 8. However,

our proposed method is less biased than that of simple SNIP

because it includes an evaluation of magnitude pruning.

6. Conclusion
In this paper, we focused on how parameters are in good

agreement before training (initial values) in proportion to

the dataset size used for pre-training. On the basis of this

characteristic, we proposed a pruning method suitable for

pre-trained models. Our proposed method prunes the pre-

trained model for a given task in a single shot prior to re-

training. We empirically showed that the proposed method

exceeds the test accuracy of previous methods in most cases

and is able to remove parameters more evenly than single-

shot network pruning (SNIP). This method facilitates the

deployment of networks that require pre-training in envi-

ronments with limited computational resources. In future

work, we plan to determine the scaling parameter automati-

cally. Our code is available at: https://github.com/
tuna0724/Pruning.
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Figure 6. Sparsity at each layer of ViT-B/16. Our proposed method and SNIP have the same tendency that the linear layers in the token

mixer are minimally pruned. However, our proposed method prunes more uniformly than SNIP. Also, each layer is most uniformly pruned.
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Figure 7. Sparsity at each layer of Mixer-B/16. SNIP biasedly prunes the parameters of Token Mixer. Our proposed method is more

uniformly applied to entire layers than SNIP.
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Figure 8. Sparsity at each layer of Pool-M36. Our proposed method and SNIP exhibit the same tendency as in Figure 4. Between our

proposed method and SNIP, our proposed method prunes more uniformly.
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