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Abstract

Generative Adversarial Networks (GANs) have proven to
exhibit remarkable performance and are widely used across
many generative computer vision applications. However,
the unprecedented demand for the deployment of GANs on
resource-constrained edge devices still poses a challenge
due to huge number of parameters involved in the genera-
tion process. This has led to focused attention on the area of
compressing GANs. Most of the existing works use knowl-
edge distillation with the overhead of teacher dependency.
Moreover, there is no ability to control the degree of com-
pression in these methods. Hence, we propose CoroNet-
GAN for compressing GAN using the combined strength of
differentiable pruning method via hypernetworks. The pro-
posed method provides the advantage of performing con-
trollable compression while training along with reducing
training time by a substantial factor. Experiments have been
done on various conditional GAN architectures (Pix2Pix
and CycleGAN) to signify the effectiveness of our approach
on multiple benchmark datasets such as Edges → Shoes,
Horse ↔ Zebra and Summer → Winter. The results ob-
tained illustrate that our approach succeeds to outperform
the baselines on Zebra → Horse and Summer → Winter
achieving the best FID score of 32.3 and 72.3 respectively,
yielding high-fidelity images across all the datasets. Ad-
ditionally, our approach also outperforms the state-of-the-
art methods in achieving better inference time on various
smart-phone chipsets and data-types making it a feasible
solution for deployment on edge devices.

1. Introduction

Computer vision applications such as image-to-image

translation, image synthesis, image generation, super res-
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olution etc. have seen tremendous progress yielding high-

fidelity images with the advent of GANs[1]. The develop-

ment of image-based GAN applications have in-turn accel-

erated the demand for deployment of such models on edge

devices for the usage of the end consumers. However, the

complexity of training such parameter heavy models to gen-

erate visually pleasing images result in high computational

and memory overhead which acts as a bottleneck in de-

ployment of GANs on mobile devices. For instance, the

popular CycleGAN requires over 56.8G MACs (Multiply-

Accumulate Operations) for generating a single image of

resolution 256 × 256 pixels. On the other hand, Pix2Pix

requires 18.6G MACs which is 4X compared to traditional

Res-Net50 [2] architecture. This huge number of operations

is not desirable for the deployment on edge devices. Hence,

there is a need for compressing these networks by remov-

ing the redundant parameters and reducing the memory and

computational consumption.

Discriminative approaches such as image classification,

object detection and semantic segmentation have been at

the receiving end of undivided focus since these networks

have surpassed human imagination but still, for the learn-

ing to saturate, these networks take huge amount of train-

ing time. For instance, the popular image classification

model, Alexnet [3] has 60 million parameters and requires

about 240 MB of memory while VGG16 [4] has 130 mil-

lion parameters and has takes around 500 MB of memory.

The research community has given unmitigated attention on

the application of model compression techniques to acceler-

ate deployment of image classification and object detection

networks using techniques like weight quantization [5, 6],

pruning [7, 8] and knowledge distillation [9, 10]. How-

ever, these methods are not directly applicable to genera-

tive models such as GANs. A lot of the recently proposed

methods have tried to compress generative adversarial net-

works using the combined techniques of knowledge distil-

lation [11, 12] and channel pruning[13, 14]. However, these

approaches don’t allow controllable compression to happen

neither using a single technique nor through the combina-
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tion of multiple techniques.

To address the above-mentioned issues, we propose a

novel method for compressing the GAN using differentiable

pruning method using the concept of hypernetwork. The

compression is performed during the training regime. The

proposed hypernetwork takes latent vector as an input and

dynamically produces weights of a given layer of the gen-

erator network. This input latent vector decides the pruning

rate for different layers in the network. Sparsification of

latent vector is achieved via proximal gradient. Post spar-

sification, the latent vectors are passed through the hyper-

network that in turn generates the weight of the generator

network. Since the latent vector and the weights of the gen-

erator network are covariant with each other, the sparsifica-

tion of latent vectors leads to the pruning of the weights of

the concerned network. The proposed method also helps in

reducing the training time and inference time as compared

to that of conventional GAN training method. Through the

experiments on different conditional generative models on

various datasets, the potential of the proposed method is re-

vealed. The main contributions of the paper can be summa-

rized as follows:

1. We propose CoroNetGAN, an approach based on dif-

ferentiable pruning via hypernetworks for GAN com-

pression. To the best of our knowledge, this is the first

work that achieves model compression using control-

lable pruning via hypernetwork for conditional GANs.

Our proposed approach compresses the GAN network

in a controlled way by providing the compression rate

as an input to the algorithm.

2. Compression is achieved simultaneously alongside

training unlike the distillation based methods that in-

volve teacher dependency [15]. CoroNetGAN outper-

forms state-of-the-art compression technique [15] on

training time on all the datasets validating the effec-

tiveness of our technique both on training latency and

visual appearance of the generated images. This will

be of great advantage in reducing the training time

while maintaining the accuracy when training GANs

on bigger datasets containing billion of images.

3. Our proposed approach, CoroNetGAN outperforms

state-of-the-art conditional GAN compression meth-

ods on widely used Zebra → Horse and Summer →
Winter datasets. CoroNetGAN obtains reasonable

qualitative and quantitative results on other datasets.

CoroNetGAN also outperforms state-of-the-art com-

pression techniques [15] on inference time.

2. Related Work

2.1. Generative Adversarial Networks

GANs [1] have proven to generate realistic results on

a variety of tasks. For instance, Isola et al. [16] propose

Pix2Pix for paired image-to-image translation trained via

the combination of adversarial loss and pixel-wise regres-

sion loss in order to ensure the visual quality of generated

images. Later, [17] is proposed that helps to increase the

resolution of translated images with multi-scale neural net-

works and edge maps. GANs have also been proposed to

perform image deblurring [18], style transfer [19, 20], im-

age super resolution [21] along with text-to-image genera-

tion [22]. Zhu et al. [23] propose CycleGAN for unpaired

image-to-image translation. The algorithm trains generators

on different domains of data through a weakly supervised

setting using cycle consistency loss. The final objective is

to convert the data from one domain to other without using

any label information.

2.2. GAN Compression

The tremendous resource consumption by GANs has

garnered recent attention towards GAN compression. Wang

et al.[24] proposes a novel quantization method and multi-

precision quantization algorithm considering different sen-

sitivities of discriminator and generator. Aguinaldo et al.

[11] introduces the idea of knowledge distillation in GANs

between large over-parameterized network and small few

parameter networks optimized using joint and mean squared

error loss functions. However, the only focus here is to com-

press the generator keeping the discriminator intact. Most

usage of GANs in mobile devices is based on the appli-

cation of image-to-image translation task. [12] distills the

student discriminator to assist training of the student gen-

erator and also focused on image translation problem us-

ing Pix2Pix framework. Chang et al. in [25] focuses to

mimic the functionality of BigGAN with a smaller com-

pressed network and fewer parameters. Different devices

with varied computing power require generators of different

sizes. In order to accommodate this trade-off, Slimmable-

GAN[26] proposes flexible switching between the multi-

width configurations. Further, Ren et al.[15] overcomes the

complex multi-stage compression process and proposes a

single-stage GAN online distillation strategy to obtain the

compressed model. However, these approaches use images

from the teacher directly to distill knowledge. Zhang et

al.[27] proposes the idea of investigating GAN compres-

sion from frequency perspective and introduces the idea of

wavelet analysis. They decompose the image into frequency

bands and perform distillation only on bands with higher

frequency unlike naive methods that do not prioritize the

high frequency. [28] aims to find crucial regions in the im-

age using attention module. Considering the attention value
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important to the region, features are distilled from teacher to

student. Recent works such as [29] introduce an Inception-

based Residual block replacing the original residual blocks

in CycleGAN and search for student generator from teacher

generator via pruning followed by Similarity based Knowl-

edge Distillation. Further, approaches integrating various

compression techniques are also proposed. [13] combines

model distillation, channel pruning and quantization and

generate a unified optimization form which achieves supe-

rior trade-off compared with standalone compression tech-

niques. Liu at al.[14] combines the idea of channel pruning

and knowledge distillation and mainly expands the focus on

accelerating unconditional GANs.

2.3. HyperNetworks

Hypernetworks are a group of smaller networks that

generates the weights for a larger network. These

smaller neural networks have been used historically for

vision[30], functional representation[31] and bayesian in-

ference tasks[32].

Albeit the word hypernetwork has been coined recently,

the concept of using dynamic parameter generation has

been used by researchers for a long time [33]. Von der Mals-

berg et al.[34] indicates a possibility of dynamic modelling

between a slow classical weight and a dynamic decaying

connection. The technique to model short term memory by

computing weight changes of another network was initiated

by Schmidhuber et al.[35]. Parameter prediction through

co-relation between different parameters of the neural net-

work was extensively studied in [36]. A weight matrix is

produced using a learnable lower dimensional matrix using

a linear operation.[37] uses weight matrices as a factored

representation and feed forward one-shot learners reduc-

ing the dimensionality of the hypernetwork.[38] proposes

an approach to calculate the parameters for image transfor-

mation using a weight generating network. [39] proposes

an approach for generating weights for visual question an-

swering task. The parameter prediction network takes input

the questions post which the network predicts weights of the

main network. In addition, they also use hashing of parame-

ters to reduce the size of the final matrix of parameters. The

concept of dynamic filters has been used for image super-

resolution [30]. These filters are computed based on input

using a similar concept to hypernetwork.

3. Methodology
GAN consist of a generator and a discriminator network

employed in a min-max game. The proposed method al-

lows compression of the generator network while training.

Compression is achieved using differentiable meta pruning

which is based on the idea of hypernetwork. Hypernetwork

is responsible for generating the weights of the generator

network for each of its layer. The input to the hypernetwork

is a latent vector and the output is a weight matrix of the

generator network.

During the forward pass, latent vector is given as an in-

put to hypernetwork to generate the weights of the genera-

tor. During back-propagation, the gradient flows in the hy-

pernetwork instead of the main network. It is designed in

a way such that its output is covariant with the input latent

vector. Proximal Gradient helps in pruning of output chan-

nels of the generator network by eliminating the redundant

parameters automatically.

3.1. HyperNetwork Design

The hypernetwork consists of three layers. The latent

layer takes as input the latent vectors and computes a latent

matrix. The embedding layer projects the elements of the

latent matrix to an embedding space. The final layer con-

verts the embedded vectors to the final output. The design

is taken from [40]. As an example, consider the generator to

be an L-layer convolutional neural network. Each layer of

the network has its own corresponding latent vector that is

responsible for generating the weights of the corresponding

layer. The size of the latent vector is equal to the number

of output channels in that layer. For instance, consider an

l-th convolutional layer having n ∗ c ∗ w ∗ h number of pa-

rameters, where n and c are the output and input channels

and w*h is the size of kernel respectively. Suppose that the

latent vector corresponding to that particular l − th layer

is vl ∈ Rc. Therefore, the previous layer has latent vector

vl−1 ∈ Rn. The hypernetwork takes latent vector of cur-

rent layer (vl) and its previous layer (vl−1) as input and will

output the weights matrix of the l-th layer of the generator

network. Initially, the first layer of the hypernetwork com-

putes a latent matrix using the two latent vectors:

Vl = vl.vl−1T + B0 (1)

where,

Vl,B0 ∈ Rn∗c

Here, [T] denotes transpose of the matrix while [.] denotes

matrix multiplication.

Subsequently, the second layer of the hypernetwork

projects every element of the latent matrix to a m-

dimensional embedding space as follows:

Sl
ij = Vl

ijwl
1 + b1

l i = 1..n, j = 1...c (2)

where,

Sl
ij ,wl

1, b1
l ∈ Rm

Here, we are considering wl
1 and b1

l as different for

different elements of the matrix. The subscript (i, j) has not

been used for easier interpretation of the above mentioned

equations. The vectors wl
1, b1

l and Sl
ij for all the elements
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Figure 1. Illustration of the proposed algorithm designed for compressing GAN’s using controllable differentiable pruning. A latent vector

is attached to each of the convolution layer of the generator. The latent vector generates the weights for the generator via hypernetwork.

Sparsification of the latent vector leads to pruning of the corresponding weights of the generator network. The proposed design allows the

latent vector and its corresponding weight matrix to be covariant with each other. The generator generates visual results using the computed

weight matrix through the hypernetwork (Best viewed when zoomed).

of the matrix together forms a 3D tensor, i.e., Wl
1, Bl

1 and

Sl
1 ∈ Rn∗c∗m.

After the second step, the final layer of the hypernetwork

is responsible for converting the embedding vectors to the

output(Fl
ij) which can be used as weight matrix of the Gen-

erator network. This is done by multiplying the embedded

vectors Sl
ij by an explicit matrix as follows:

Fl
ij = wl

2.S
l
ij + b2

l i = 1..n, j = 1...c (3)

where,

Fl
ij , bl

2 ∈ Rwh

and,

wl
2 ∈ Rwh∗m

wl
2 and b2

l are different and unique for each of the element

and subscript (i,j) has not been used for easier interpreta-

tions. Vectors wl
2, b2

l and Fl
ij for all the elements together

will be high-dimensional tensors i.e., Wl
2 ∈ Rn∗c∗wh∗m

and Bl
2 and Fl ∈ Rn∗c∗wh.

Combining 1, 2 and 3, the functionality of the proposed

approach can be collectively written as:

Fl = h(vl, vl−1;Wl,Bl), (4)

where, h(.) denotes the functionality of the above architec-

ture. The final output Fl will be used as the weight param-

eter of the l-th layer. The hypernetwork is designed in such

a way that the weight matrix of the generator is covariant

with it’s corresponding input latent vector as pruning an el-

ement in the latent vector automatically leads to removal of

corresponding slice in the final weight matrix( Fl). Figure 1

depicts the overall workflow of the proposed CoroNetGAN.

While designing the hypernetwork, we also execute

residual connections in the network. In case of residual or

skip connections, we take the input latent vector as the com-

bination of the latent vector of the previous layer and the

corresponding layer from which the skip connection origi-

nates. We concatenate both the input latent vectors to cre-

ate one single input latent vector. The resultant input latent

vector along with latent vector of the current layer is used

to create the latent matrix. The creation of latent matrix is

followed by execution of steps((2),(3)) for generating the

weights matrix of the convolution layer.

3.2. Vector Sparsity using Proximal Gradient

The differentiable property of the algorithm comes

through the use of proximal gradient. Proximal gradient

helps in sparsification of the latent vector by searching the

potential candidates. Since latent vector is covariant with

the weight matrix of the Generator network, it leads to

compression of the Generator network. During training

time, the parameters of the hypernetwork is updated using
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Stochastic Gradient Descent (SGD) optimization algorithm.

During back-propagation, gradients flow from the Genera-

tor network to the hypernetwork. The latent vectors are up-

dated using the proximal gradient [40] which leads to spar-

sified input latent vectors as follows:

v[k + 1] = proxλμR(v[k]− λμ∇L(v[k])) (5)

The proximal gradient algorithm forces the potential ele-

ments of the latent vectors to approach zero quicker than the

others without any human effort and interference in this pro-

cess. Due to the fact that proximal operator has closed-form

solution and use of SGD, the whole solution is recognized

as approximately differentiable.

3.3. Network Pruning

Our proposed method allows the weight matrix to be co-

variant with the it’s corresponding latent vector. Hence,

sparsifictaion of latent vector leads to the pruning of the cor-

responding weights of the CNN layer in the generator net-

work. Our training regime consists of two stages, namely

searching stage and converging stage. During the searching

stage, proximal gradients helps in identifying the potential

candidates of the latent vector. Therefore, after the search-

ing stage, we get the sparsified latent vector (v̂l). Proxi-

mal gradient help in elements of the latent vector either be

zero or approaching towards zero. We use a mask(ml) on

the sparsified latent vector with a predefined threshold(τ ).

This is followed by masking operation that compares ev-

ery element of the latent vector with the threshold value. If

greater than threshold, the returned value is one else zero.

The sparsified latent vector, v̂l is pruned with the help of the

computed mask (ml).

Once the target compression ratio is achieved, the algo-

rithm shifts from searching to the converging stage. In the

converging stage, hypernetwork is discarded, and the train-

ing of the generator follows the conventional GAN train-

ing procedure. Upon extensive experimentation, it is ob-

served that the number of epochs in searching stage is much

smaller than the number of epochs in the converging stage.

The pseudo-code of the proposed algorithm is mentioned in

Algorithm 1.

4. Experiments

4.1. Experiment Setting

4.1.1 Models and Datasets

We evaluate our approach incorporating the following mod-

els to demonstrate the effectiveness of the proposed method:

1. Pix2Pix [16] for paired image-to-image translation

with original U-Net generator architecture.

Algorithm 1 CoroNetGAN Pseudo Code

total epochs ← total number of epochs
targetflops ← target compression ratio
latent vectors(v1, v2, .., vi)
converging ← False
epochs ← 0

Compression via Differentiable Pruning
while converging �= True do

• Sample m{z1, z2, .., zi} images from given dataset

• Sample m{x1, x2, .., xi} ground-truths

• Update Hypernetwork using SGD

�θh

1

m

∑m
i=1 log(1−D(G(zi)))

• Update Discriminator using SGD

�θd

1

m

∑m
i=1{logD(xi) + log(1−D(G(zi)))}

• Compress latent vector using proximal gradient

v[k + 1] = proxλμR(v[k]− λμ∇L(v[k]))
• epochs ← epochs+ 1
if flops− target flops ≤ threshold then

converging ← True
end if
if epochs ≤ total epochs then

break
end if

end while

Finetuning
while epochs ≤ total epochs do

• Sample m{z1, z2, .., zi} images from given dataset

• Sample m{x1, x2, .., xi} ground-truths

• Update Generator using SGD

�θg

1

m

∑m
i=1 log(1−D(G(zi)))

• Update Discriminator using SGD

�θd

1

m

∑m
i=1{logD(xi) + log(1−D(G(zi)))}

• epochs ← epochs+ 1
end while

2. CycleGAN [23] for unpaired image-to-image transla-

tion using Res-Net architecture to perform transforma-

tion on an image belonging to source domain to desired

target domain.

3. Deep Convolutional Generative Adversarial Net-

work (DCGAN) [41] that uses convolutional and

convolutional-transpose layers in the discriminator and

generator, respectively.

For the purpose of quantitative and qualitative evalua-

tion, four datasets are utilised including Edges → Shoes,

Horse ↔ Zebra, Summer → Winter and CIFAR10.

1. Edges → Shoes [16] is a paired image-to-image
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Figure 2. Graphical representation of training time(in minutes) and FID for Pix2Pix(left) on Edges → Shoes and CycleGAN(middle,right)

on Horse → Zebra and Summer → Winter datasets respectively. From the graphs, it is evident that total training time for our proposed

approach is significantly lesser compared to OMGD [15]. For CycleGAN on Summer → Winter dataset, our algorithm outperforms

OMGD [15] on both training time and FID (Best viewed when zoomed).

Figure 3. Samples generated from our approach. First row con-

tains translated images from Zebra → Horse dataset. The second

row contains translated images from Horse → Zebra dataset (Best
viewed when zoomed).

translation dataset including images edges of shoes to

be mapped to their corresponding complete image of

shoes. The dataset consists of 49825 images.

2. Horse ↔ Zebra [23] dataset contains images origi-

nally from ImageNet [42]. It is an unpaired image-

to-image translation dataset used for translating horse

images to zebra and vice versa. In our experiments,

the training set includes 1067 horse images and 1334

zebra images.

3. Summer → Winter [23] is also unpaired image-to-

image translation dataset which translates summer im-

ages to winter. We have used 1231 summer images for

training purpose.

4. CIFAR10 dataset [43] consists of 50000 training im-

ages and 10000 test images across 10 different classes.

Our approach CoroNetGAN with Pix2Pix architecture is

bench-marked on Edges → Shoes dataset. On the other

hand, CoroNetGAN with CycleGAN has been bench-

marked on Horse ↔ Zebra and Summer → Winter

datasets.

Although our proposed approach focuses on the com-

pression for conditional GAN, we also made initial attempts

to perform compression using our proposed algorithm for

unconditional GAN (specifically DCGAN).

Figure 4. Qualitative comparison of CoroNetGAN with Cycle-

GAN architecture on Summer → Winter dataset compared with

original CycleGAN [23], GAN Compression [44] and OMGD [15]

algorithms. Our approach generates visually realistic images and

outperforms all the other algorithms on the FID metric (Best
viewed when zoomed).

4.1.2 Implementation Details

We train our proposed approach using single NVIDIA Tesla

V100 GPU on PyTorch deep learning framework. For the

algorithm to compress the network, a target compression ra-

tio needs to be selected. When the difference between the

actual compression and the target compression ratio falls

below 2%, pruning stops and model moves to fine-tuning

state from the compression state. The number of parameters

in the hypernetwork is proportional to the size of the em-

bedding space. For the experimentation, embedding space

is set to 8 across all the experiments. Learning rate is set

to 0.0002. Batch size has been set to 4 and 1 for Pix2Pix

and CycleGAN respectively on all the experiments across

different datasets. The sparsity regularization factor for the

proximal gradient is set to 0.5 across all the experiments.

4.1.3 Evaluation Setting

For the quantitative performance comparison, we adopt

Frechet Inception Distance (FID) [45] as common evalu-

ation metric. FID is specifically developed for assessing the

performance of GANs. It is used to evaluate the quality of

the images generated by generative models by comparing

the distribution of features corresponding to real and gen-
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Figure 5. Qualitative comparison of CoroNetGAN with Pix2Pix

architecture on Edges → Shoes dataset compared with origi-

nal Pix2Pix [16], GAN Compression [44] and OMGD [15] algo-

rithms. Our approach generates visually plausible images com-

pared to state-of-the-art methods (Best viewed when zoomed in).

erated images using an InceptionV3 [46] network. A lower

FID score is an indicator of high similarity between both

the distributions and thus better quality of generated images.

We have evaluated FID for different architectures with our

approach on multiple datasets and compared it against ex-

isting methodologies.

4.2. Experimental Results

4.2.1 Quantitative Results

We evaluate our approach on different models and datasets

using evaluation setting mentioned in the previous section

and report quantitative results compared with the corre-

sponding state-of-the-art methods. The results can be sum-

marized as follows:

Pix2Pix: We incorporate Pix2Pix with its original U-Net

architecture in our proposed approach and report the exper-

imental results in Table 1. We observe that our approach is

able to achieve second best FID score on Edges → Shoes

dataset. We are also able to outperform the results of

[28, 27, 47] by achieving a better FID. Although, our FID

score is higher than [15] but our approach outperforms it in

terms of training time. Figure 2 illustrates that our approach

significantly improves training time however elevates FID

score compared to [15].

CycleGAN: Similar to previous works, we include Res-

Net style CycleGAN in our method and report the results in

Table 1. We observe that the results on Zebra → Horse

dataset outperform all the state-of-the-art approaches by

achieving the best FID score of 32.3 corresponding to 75%

compression. Additionally, our approach is also able to im-

prove over all the existing baselines by achieving FID score

of 72.3 on Summer → Winter dataset. As illustrated in

Figure 2 we also outperform [15] on both training time and

FID.

Furthermore, we also observe that our approach with Cy-

cleGAN is able to beat the results of [28, 27, 47, 44, 48] on

Horse → Zebra dataset. Even though, we achieve greater

FID score than [15, 29], CoroNetGAN outperforms [15] on

training time as illustrated in Figure 2. One thing to note

is that we compare CoroNetGAN quantitative results with

compression rates of 75% and 85 % using CycleGAN ar-

chitecture unlike 95% in Pix2Pix since it becomes difficult

to compress CycleGAN architecture beyond 85% due to its

huge model complexity.

DCGAN: We demonstrate the applicability of our ap-

proach on unconditional GAN. For the experimentation and

evaluating our approach, we adopt DCGAN [50] on CI-

FAR10 dataset [43] with original FID score of 45.8. As

per the results, we were able to achieve FID score of 56.3

with 50% compression ratio which outperforms the results

obtained with random pruning which achieves FID score of

68.8.

Inference Time Comparisons: Additionally, a compara-

tive analysis of the inference time is conducted between the

95% compressed model obtained from our approach and

OMGD [15]. Both the models are trained on Edges →
Shoes and evaluated using diverse smartphone chipsets and

data types. The inference results, as presented in Table 3,

demonstrate that our proposed model achieves superior in-

ference time performance compared to OMGD.

4.2.2 Qualitative Results

We further show visualization results of our proposed

method in comparison with state-of-the-art methodologies

in Figure 3, 4 and 5 demonstrating the effectiveness of

our approach. As illustrated, our method can generate

high-fidelity images comparable to other state-of-the-art ap-

proaches across multiple datasets. The reason we believe

our approach generates realistic images is that the compres-

sion state of our algorithm forces the generator to generate

visually plausible images while competing in the min-max

game.

4.2.3 Ablation Studies

Our proposed method for GAN compression shows promis-

ing results and outperform state-of-the-art methods on some

conditional GANs. We perform extensive ablation stud-

ies to further demonstrate the effectiveness of hypernet-

works on GAN compression on U-Net based architecture

for Pix2Pix.

We tried exhaustive hyperparamter search and fine-

tuning the learning rate. All the modifications result in a

very negligible change of overall FID score. We also en-

abled a learning rate scheduler to check the improvement in

model performance but quantitatively, no major change was

observed. We also tried increasing the layer structure of the

hypernetwork employed by increasing the dimension of the

embedding space. However, this led to an increase in the

training time with a small change in the overall FID score.
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Model Dataset Paper Params(M) FLOPs(G) MACs(G) FID

Pix2Pix Edges → Shoes

Original [16] 54.4 – 18.6 34.31

Region-Aware [28] 13.61 (4.00×) 1.56 – 77.69±3.14

Wavelet KD [27] 13.61 (4.00×) 1.56 – 80.13±2.18

DMAD [47] 2.13 (25.5×) – 2.99 (6.2×) 46.95

OMGD [15] 3.404 (16.0×) – 1.219 (15.3×) 25
CoroNetGAN(75%) 13.225 4.8879 – 39.1

CoroNetGAN(95%) 4.721 1.2551 – 54.3

CycleGAN

Horse → Zebra

Original [23] 11.3 – 56.8 61.53

Region-Aware [28] 1.61 (7.08×) 7.29 – 60.01±5.22

Wavelet KD [27] 1.61 (7.08×) 7.29 – 61.65±4.73

DMAD [47] 0.42 (26.9×) – 3.97 (14.3×) 62.41

Teachers Do More Than Teach [29] – – 2.56 53.48

GAN Compression [44] 0.34 (33.3×) – 2.67 (21.2×) 64.95

Revisiting Discriminator in GAN Compression [48] – – 2.40 59.31

OMGD [15] 0.137 (82.5×) – 1.408 (40.3×) 51.92
CoroNetGAN(75%) 2.685 0.217 – 57.7

CoroNetGAN(85%) 1.670 0.1347 – 60.9

Zebra → Horse

Original [23] 11.3 49.64 – 138.07±4.01

Region-Aware [28] 1.61 (7.08×) 7.29 (6.80×) – 137.03±3.03

Wavelet KD [27] 1.61 (7.08×) 7.29 (6.80×) – 138.84±1.47

DMAD [47] 0.30 (37.7×) – 3.50 139.3

CoroNetGAN (75%) 2.685 0.217 – 32.3

Summer → Winter

Original [23] 11.3 – 56.8 79.12

DMAD [47] 0.24 (47.1×) – 3.18 (17.9×) 78.24

OMGD [15] 0.137 (82.5×) – 1.408 (40.3×) 73.79

Auto-GAN [49] – 4.34 – 78.33

CoroNetGAN (75%) 2.685 0.217 – 72.3
CoroNetGAN (85%) 1.670 0.1347 – 74.7

Table 1. Performance comparison of CoroNetGAN with state-of-the-art algorithms on Pix2Pix and CycleGAN architectures. It can be

observed that our approach achieves best FID with CycleGAN on Zebra → Horse and Summer → Winter datasets. Our results also

outperform [28, 27, 47, 11, 48] and achieve competitive FID on Horse → Zebra dataset. We also achieve second best FID score on

Edges → Shoes dataset beating the results of [28, 27, 47].

Model Dataset Method Params(M) FLOPs(G) FID

Pix2Pix Edges → Shoes

Original [16] 54.41 – 34.31

CoroNetGAN(75%) 13.225 (24.31%) 4.8879 (26.94%) 39.1

CoroNetGAN(G + D)(75%) Generator 13.321 (24.48%) Generator 4.8993 (27%)
38.6

Discriminator 0.725 (26.23%) Discriminator 0.4767 (26.74%)

Table 2. Generator and Discriminator compression in CoroNetGAN in Pix2Pix architecture on Edges → Shoes dataset. It is evident that

compressing both generator and discriminator helps in improving the FID score.

Chipset d-type Model GPU Inference Time(CL)(ms)

Qualcomm Snapdragon SM8450

32-bit
Ours 12.5419

OMGD [15] 15.3378

16-bit
Ours 11.794

OMGD [15] 15.283

8-bit
Ours 12.244

OMGD [15] 16.0191

Dimensity 1200-Max Octa

32-bit
Ours 20.7268

OMGD [15] 21.1919

16-bit
Ours 20.1961

OMGD [15] 20.9635

8-bit
Ours 20.9972

OMGD [15] 21.541

Table 3. Shows inference time comparison between the model compressed by our methodology to 95% and the model compressed from

OMGD on different processors. Both the models are trained on Edges → Shoes dataset. The inference time is computed for the input

resolution of 256×256. The 8-bit quantization of the compressed model results in increased processing time due to the presence of a higher

number of quantization and de-quantization blocks compared to other data types.

Compression of both generator and discriminator:
To evaluate the significance of our approach, we design

a variant CoroNetGAN(G+D compression) which com-

presses both the generator and discriminator till 75% dur-

ing training. As mentioned in Table 2, this ablation results

in improving the FID score from 39.1 to 38.6 as the gener-

ator is able to generate better results while compression of

discriminator.

Generator finetuning through HyperNetwork: We also

tried to finetune the weights of the generator generated from

the compression state through the HyperNetwork itself, but

we did not find any significant improvements in the evalua-

tion metric.

5. Conclusion
In this work, we propose a novel method CoroNetGAN

for GAN compression based on differentiable pruning via

hypernetworks. Unlike other approaches having teacher de-

pendency overhead or post-hoc compression, the compres-

sion in our approach is done during the training time itself
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giving us the benefit of reducing overall time. Experiments

conducted on conditional GANs (Pix2Pix, CycleGAN) sub-

stantiate the effectiveness of our proposed method where we

have been able to outperform various state-of-the-art tech-

niques on multiple datasets without compromising the vi-

sual quality of generated images. Our approach offers sig-

nificant improvement in training time and inference time as

compared to the existing methods. Additionally, we also

demonstrate the ability of our approach to be applicable for

unconditional GANs (specifically DCGAN). The applica-

bility on other unconditional GANs are open avenues for

future work.
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