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Abstract

We present YOLOBench, a benchmark comprised of
550+ YOLO-based object detection models on 4 different
datasets and 4 different embedded hardware platforms (x86
CPU, ARM CPU, Nvidia GPU, NPU). We collect accu-
racy and latency numbers for a variety of YOLO-based
one-stage detectors at different model scales by perform-
ing a fair, controlled comparison of these detectors with
a fixed training environment (code and training hyperpa-
rameters). Pareto-optimality analysis of the collected data
reveals that, if modern detection heads and training tech-
niques are incorporated into the learning process, multiple
architectures of the YOLO series achieve a good accuracy-
latency trade-off, including older models like YOLOv3 and
YOLOv4. We also evaluate training-free accuracy estima-
tors used in neural architecture search on YOLOBench and
demonstrate that, while most state-of-the-art zero-cost ac-
curacy estimators are outperformed by a simple baseline
like MAC count, some of them can be effectively used to
predict Pareto-optimal detection models. We showcase that
by using a zero-cost proxy to identify a YOLO architecture
competitive against a state-of-the-art YOLOv8 model on
a Raspberry Pi 4 CPU. The code and data are available
at https://github.com/Deeplite/deeplite-
torch-zoo.

1. Introduction
Object detection constitutes a pivotal task in the field

of computer vision, entailing the critical process of identi-

fying and localizing objects present within an image. Ap-

plications of object detection models include autonomous

vehicles, surveillance, robotics, and augmented reality [4].

The central problem of deploying deep learning-based object

detection solutions on embedded hardware platforms is the

amount of computation, memory, and power required for

their inference [15]. This necessitates the development of ef-

ficient object detection models specialized for low-footprint

hardware devices to achieve an optimal trade-off of accu-

racy and latency. For years, the state-of-the-art (SOTA) deep

learning approach to object detection has been the series of

YOLO architectures [28]. In recent years, remarkable strides

have been taken in advancing YOLO-like single-stage object

detectors, prioritizing real-time operation while simultane-

ously striving for higher accuracy and deployability on low-

power devices. These advancements have primarily focused

on enhancing various components of the detection pipeline.

Key areas of improvement include the design of accurate

and efficient backbone and neck structures within the net-

work [31], exploration of different detection head designs

(e.g. anchor-based [31] vs. anchor-free [8]), utilization of

diverse loss functions [19], and implementation of novel

training procedures including innovative data augmentation

techniques [13]. These collective efforts have continually re-

fined and evolved YOLO-like architectures, enhancing object

detection effectiveness and efficiency in real-time scenarios.

The differences between consecutive YOLO versions, such

as YOLOv5 [11] and YOLOv6 [17], span various pipeline

components, making it challenging to isolate their individual

contributions. This paper aims to address these challenges by

providing a fair comparison of recent YOLO versions under

controlled conditions (e.g. same training loop for all models)

to demonstrate the impact of the backbone and neck structure

of YOLO-based models in embedded inference applications.

We also use the collected accuracy and latency data for multi-

ple YOLO-based detector variations to empirically evaluate

training-free performance predictors commonly used in neu-

ral architecture search [1]. We summarize our contributions

as follows:

• We provide a latency-accuracy benchmark of 550+

YOLO-based object detection models on 4 different

datasets, called YOLOBench. All the models are val-

idated on 4 different embedded hardware platforms

(Intel CPU, ARM CPU, Nvidia GPU, NPU),

• We show that if modern detection heads and train-

ing techniques are implemented for the detector train-

ing pipeline, multiple backbone and neck variations,

including those of older architectures (e.g. YOLOv3

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Pareto frontiers of YOLOBench models fine-tuned on the VOC dataset (on several target resolutions) from COCO-pretrained

weights on 4 different hardware platforms. Each point represents a single model in the mAP-latency space, with the model family coded

with color and marker shape (all YOLOv6-3.0 models are represented by the same color). Refer to Appendix B for Pareto frontier plots on

other datasets.

and YOLOv4), can be used to achieve state-of-the-art

latency-accuracy trade-off,

• Looking at YOLOBench as a neural architecture search

(NAS) space, we demonstrate that, while most of the

state-of-the-art zero-cost (training-free) proxies for

model accuracy estimation are outperformed by sim-

ple baselines such as MAC count, the NWOT estima-

tor [24] can be effectively used to identify potential

Pareto-optimal YOLO detectors in a training-free man-

ner,

• We showcase the effectiveness of the NWOT estimator

for optimal detector prediction by using it to identify a

YOLO-like model with FBNetV3 backbone that outper-

forms YOLOv8 on the Raspberry Pi 4 ARM CPU.

2. Related Work

There has been a tremendous amount of progress in effi-

cient object detection in recent years pushing the accuracy-

latency frontier, including architectures like YOLOv7 [31],

YOLOv6-3.0 [17], DAMO-YOLO [34], RTMDet [23], RT-

DETR [22] and PP-YOLOE [33]. These works oftentimes

improve upon state-of-the-art latency-accuracy trade-offs,

providing comparisons of several generations of detectors

on the COCO dataset. Benchmarks of different model fam-

ilies are also provided by framework developers, such as

MMYOLO [3] and Ultralytics [12]. Additionally, there ex-

ist third-party benchmarks of several architectures from the

YOLO series on server-grade and embedded GPUs as well

as specialized accelerators [7, 14, 25, 36]. We identify a few

limitations of the existing efficient detector benchmarks that

have served as motivation for YOLOBench:
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Table 1. Pareto-optimal YOLOBench models on 3 datasets and 3 hardware platforms. Shown are the best models in terms of mAP50−95

under a given latency threshold (max. latency). For each model, the scaling parameters are given (d33w25 means depth factor = 0.33 and

width factor = 0.25), corresponding input resolution of the models is indicated in brackets.

HW/max. VOC VOC SKU-110k SKU-110k WIDERFACE WIDERFACE

latency model mAP50−95 model mAP50−95 model mAP50−95

Nano/0.1 sec YOLOv7 0.657 YOLOv8 0.567 YOLOv7 0.336

d1w5 (288) d1w25 (480) d1w25 (480)

VIM3/0.05 sec YOLOv6l 0.620 YOLOv6s 0.556 YOLOv6m 0.318

d67w25 (416) d33w25 (480) d67w25 (480)

Raspi4/0.5 sec YOLOv6l 0.669 YOLOv4 0.569 YOLOv7 0.336

d67w5 (384) d1w25 (480) d1w25 (480)
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Figure 2. Flowchart of the YOLOBench process for model candidate generation, pre-selection and ranking. Pareto-optimal points are depicted

as red crosses.

• Comparisons of different YOLO versions are frequently

done either by using a proxy metric for the actual la-

tency like MAC count and number of parameters or by

reporting latency values on server-grade GPUs, neither

of which is directly indicative of latency on embedded

devices,

• Accuracy metrics are usually reported on the COCO

dataset, which could be considered too large-scale with

respect to actual practical use cases,

• Some architecture parameters (like input resolution) are

often considered to be fixed in detector benchmarking,

while it is known that they serve as important factors in

optimal CNN scaling [10],

• Different YOLO variations being compared to one an-

other are typically trained with different training code-

bases, training techniques (loss functions, data augmen-

tations), and hyperparameter values, making it hard

to disentangle the contribution of the training pipeline

improvements vs. better architecture design.

To address these issues, we conduct a thorough accuracy

and latency benchmarking of state-of-the-art YOLO detector

versions in controlled, fixed conditions to study the impact

of backbone and neck design proposed by several YOLO

model families.

Table 2. YOLOBench architecture space (variation of back-

bone/neck, depth, width, and input resolution).

Model Backbone Neck
YOLOv3 [26] DarkNet53 FPN

YOLOv4 [2] CSPDNet53 SPP-PAN

YOLOv5 [11] CSPDNet53-C3 SPPF-PAN-C3

YOLOv6s-3 [17] EfficientRep RepBiFPAN

YOLOv6m-3 [17] CSPBep (e=2/3) CSPRepBiFPAN

YOLOv6l-3 [17] CSPBep (e=1/2) CSPRepBiFPAN

YOLOv7 [31] E-ELAN SPPF-ELAN-PAN

YOLOv8 [12] CSPDNet53-C2f SPPF-PAN-C2f

Width factor ∈ {0.25, 0.5, 0.75, 1.0}
Depth factor ∈ {0.33, 0.67, 1.0}
Input resolution ∈ {160:480:32}

3. Methodology

The purpose of the current study is to thoroughly study the

impact of the backbone and neck and its parameters (width,

depth, input resolution) on the performance of YOLO detec-

tors in terms of their accuracy and latency. For the rest of the

factors influencing the accuracy-latency trade-off, such as

choice of the detection head, loss function, training pipeline,

and hyperparameters, we aim to have a fixed, controlled

setup, so that we can isolate the effect of backbone and
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neck design on model performance. For this reason, we use

the anchor-free decoupled detection head of YOLOv8 [28],

as well as CIoU and DFL losses for bounding box predic-

tion used in YOLOv8, as they have been shown to produce

state-of-the-art results on the COCO dataset. Anchor-free

detection in YOLO models has been also shown to provide

latency benefits in the end-to-end detection pipelines [22].

Hence, the main source of variation in YOLOBench models

is the structure and parameters of the backbone and neck.

We also use the same training code and hyperparameters

for all models, as set by default in the YOLOv8 training

code released by Ultralytics [12], which provides a relatively

simple training loop capable of producing SOTA results.

The flow of candidate model generation, pre-selection,

and training is shown in Figure 2. First, we generate the full

architecture space consisting of about 1000 models by inde-

pendently varying the backbone/neck structure, depth factor,

width factor, and input resolution (Table 2). For each archi-

tecture, we consider its variations trained and tested on 11
different input resolutions (from 160x160 to 480x480 with a

step of 32) and 12 variations in depth and width, aside from 4
usually considered scaling variants (n, s, m and l). The only

exception is the YOLOv7 models, for which we only vary

the width factor producing 4 variations of the model. For

YOLOv6 models, we use the v3.0 version [17], for which

provided s, m and l variations actually represent different

architectures aside from different depth and width factors

(see Table 2). Hence, we consider YOLOv6s, YOLOv6m

and YOLOv6l as different model families and generate the

same 12 depth-width combinations for each one.

Latency measurements. The actual inference latency

for each model might vary significantly depending on the

deployment environment and runtime. Therefore, we collect

the latency measurements for each of the models by running

inference on 4 different hardware platforms (runtime and in-

ference precisions specified in brackets): (i) NVIDIA Jetson

Nano GPU (ONNX Runtime, FP32), (ii) Khadas VIM3 NPU

(AML NPU SDK, INT16), (iii) Raspberry Pi 4 Model B

CPU (TFLite with XNNPACK, FP32), (iv) Intel� Core™i7-

10875H CPU (OpenVINO, FP32).

We did not consider latency measurements for INT8

precision, as depending on the quantization scheme (e.g.

per-tensor vs. per-channel) and approach (e.g. post-training

quantization vs. quantization-aware training), there can be

a varied impact of INT8 quantization on accuracy. Adding

INT8 results for both accuracy and latency in YOLOBench
is a matter of future work. All latency measurements were

performed with a batch size of 1 averaged over 200 inference

cycles (with 5 warmup steps). We measured the inference

time required to execute the YOLO model graph, without

taking bounding box post-processing (e.g. non-maximum

suppression) into account. Note that for VIM3 NPU mea-

surements, the bounding box decoding post-processing oper-

ations (operations after the last convolutional layers of the

network) were also skipped due to the limitations of VIM3

SDK.

Training pipeline. To obtain the accuracy metric values

for the models, we consider the following 4 datasets: (i)

PASCAL VOC (20 object categories) [6], (ii) SKU-110k (1

class, retail item detection) [9], (iii) WIDER FACE (1 class,

face detection) [35], (iv) COCO (80 object categories) [21].

Our motivation to include several smaller-scale (with respect

to COCO) but challenging datasets stems from the fact that

for many practical deployment use cases, the number of ob-

ject categories to detect and the amount of available data

might be limited. The metric of interest for all datasets is

mAP50−95. For all selected models, the training procedure

starts with pretraining on the COCO dataset (for 300 epochs,

with a batch size of 64 and 640x640 resolution), afterward

the best COCO weights are used as initialization for other

datasets, on which we perform fine-tuning for 100 epochs

(batch size of 64) on all 11 YOLOBench resolutions and se-

lect the best weights (in terms of mAP50−95 value) for each

one. For the COCO dataset, we do not perform fine-tuning

on target resolutions, rather we evaluate the model trained on

640x640 images on all target resolutions (to mimic the de-

ployment of pre-trained COCO weights). All other training

hyperparameters are set as per default values of the Ultra-

lytics YOLOv8 codebase [12]. Model weights are randomly

initialized for all experiments (e.g. no transfer of ImageNet

weights for the backbone is performed).

Candidate model pre-selection. In order to reduce the

number of training runs on the COCO dataset, we filter

out some of the least promising model candidates from the

YOLOBench architecture space as an initial step of our bench-

marking procedure. To determine the most promising mod-

els in terms of the accuracy-latency trade-off, we compute a

proxy metric that is well correlated with the final mAP val-

ues of the models fine-tuned on the target datasets. A natural

choice for such a metric is model performance when trained

on a smaller-scale representative dataset. For this purpose,

we use the VOC dataset to train all the model candidates

from scratch (random initialization) for 100 epochs and use

the resulting mAP50−95 value as a proxy metric to predict

performance on all target datasets (with models fine-tuned

on these datasets from COCO pre-trained weights). We ob-

serve a good correlation of such a training-based accuracy

proxy with final metrics on all considered datasets (even on

datasets from other domains, like SKU-110k; see Appendix

C). We also examine the performance of training-free accu-

racy estimators for this task and compare it to mAP of VOC

training from scratch (see Section 4.2).

Once we have the accuracy proxy values and latency mea-

surements for all models in the dataset, we determine the

models with the best accuracy-latency trade-off (the Pareto

frontier models). We use the OApackage software library [5]
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Figure 3. Statistics of model scaling parameters (depth factor, width factor, input resolutions) in Pareto-optimal models on VOC and WIDER

FACE datasets with latency measured on the Jetson Nano GPU. The size of each point (circle) is proportional to the number of models for

that parameter combination.

to determine the Pareto optimal elements in the latency-

accuracy space. We define the second Pareto set as the set

of models that are Pareto-optimal if the initial Pareto set

models are removed (so that the “second best” models in

terms of latency-accuracy trade-off become the best). Corre-

spondingly, we define the N -th Pareto set.

For our model pre-selection procedure, we consider the

models contained in the first and second Pareto fronts (in

terms of mAP50−95 in VOC training from scratch), with

latency for each considered hardware platform separately.

We merge all the first and second Pareto sets for each HW

platform to form the list of promising architectures to be se-

lected for COCO pre-training. After the COCO pre-training

phase is finished for a model, variations of that architecture

on multiple resolutions are considered in the benchmark.

4. Results

4.1 Pareto-optimal YOLO models
By computing the proxy metric for model accuracy

(mAP50−95 in VOC training from scratch) and latency val-

ues for the whole YOLOBench architecture space on several

hardware platforms, we determine the Pareto sets containing

the most promising models (in terms of latency-accuracy

trade-off) for each HW platform. The first and second Pareto

sets for each device are merged into a unified list of best

architectures, which is comprised of 52 backbone/neck com-

binations for COCO pre-training. Same architectures with

different input resolutions are considered as the same data

points in this list since COCO pre-training is regardless done

on a fixed resolution of 640x640. The COCO pre-training

phase is followed by fine-tuning at 11 different resolutions

(from 160x160 to 480x480 with a step of 32) on all down-

stream datasets (except for COCO), resulting in 572 models

total for each dataset.

Finally, with the obtained fine-tuned model accuracy on

several datasets and latency measurements on several de-

vices, we compute the actual Pareto sets for each particu-

lar dataset/HW platform combination. Figure 1 shows the

Pareto frontiers of YOLOBench models fine-tuned on the

VOC dataset on 4 different devices. Notably, significant

differences emerge in these Pareto frontiers between differ-

ent devices. In particular, the Pareto-optimal set for VIM3

NPU is mostly comprised of YOLOv6 models, with some

YOLOv5, YOLOv7, and YOLOv8 models present in the

higher accuracy region. This is not found to be the case for

the Pareto sets of Intel and ARM CPUs. Despite containing

a few YOLOv6 models in the lower latency region, these

sets also encompass numerous YOLOv5 and YOLOv7 varia-

tions, with limited representation from other model families

such as YOLOv3 and YOLOv4. While the Pareto sets for

Intel and ARM CPUs exhibit a certain degree of similar-
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Table 3. Performance of training-free accuracy predictors on YOLOBench models and two datasets (VOC and SKU-110k, from COCO-

pretrained weights) compared to using metrics of models trained from scratch on the VOC dataset as a predictor. Refer to Appendix C for

the data on all considered zero-cost metrics.

VOC, mAP50−95 SKU-110k, mAP50−95

Predictor metric global τ top-15% τ %Pareto pred.

(GPU)

global τ top-15% τ %Pareto pred.

(GPU)

JacobCov 0.095 -0.078 0.015 0.541 0.136 0.025

ZiCo 0.195 0.016 0.015 0.115 0.081 0.025

Zen 0.255 0.092 0.062 0.146 0.121 0.050

Fisher 0.280 0.156 0.015 -0.380 -0.096 0.025

SNIP 0.336 0.217 0.015 -0.290 -0.059 0.025

#params 0.399 0.372 0.031 0.256 0.119 0.050

SynFlow 0.558 0.227 0.062 0.512 0.254 0.100

MACs 0.739 0.520 0.123 0.604 0.314 0.125

NWOT 0.756 0.622 0.262 0.703 0.321 0.200
NWOT (pre-act) 0.827 0.623 0.292 0.765 0.406 0.200

VOC training 0.847 0.665 0.369 0.739 0.374 0.425
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Figure 4. Percentage of all actual Pareto models (recall) found in the candidate pools consisting of first N (N from 1 to 5) ZC-based Pareto

sets depending on the HW platform and ZC metric. The data shown is for Pareto-optimal models on the VOC dataset. The x-axis shows the

candidate pool size as a percentage of the full dataset size.

ity, the Jetson Nano GPU stands out from the rest of the

devices. It showcases a non-uniform distribution of model

families, with YOLOv5, YOLOv6, YOLOv7, and YOLOv8

models all represented across the entire accuracy/latency

space. Table 1 shows representative Pareto-optimal models

for 3 different datasets (VOC, SKU-110k, WIDERFACE)

and 3 hardware platforms under certain latency thresholds.

Note that although there are similarities of model family dis-

tributions in Pareto sets computed for different datasets (see

Appendix B), the exact optimal model for a given latency

threshold depends on the specific dataset of interest.

Next, we analyze the statistics of Pareto-optimal mod-

els depending on the dataset and hardware platform. Figure

3 shows the distribution of depth factor, width factor, and

input resolution values in Pareto frontier models for VOC

and SKU-110k datasets on Jetson Nano GPU (data for other

datasets and devices are available in Appendix B). The gen-

eral trend indicates that models at lower input resolutions

mostly have lower depth and width factors. This suggests

that achieving an optimal latency-accuracy trade-off involves

scaling down both the architecture’s depth and width before

reducing the input resolution. This effect is more pronounced

in some datasets (SKU-110k and WIDERFACE), where al-

most all optimal models are either at the maximal resolution

we considered (480x480) with variation in width and depth,

or at lower resolutions with minimal width and depth factors.

This effect is dataset-dependent, as a more relaxed trend is

observed for VOC and COCO datasets, where many optimal

models with a variation in width and depth factor are found

at resolutions lower than 480x480.

To summarize, we demonstrate that with a state-of-the-art

training pipeline and detection head structure, YOLO-based
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models with various backbone/neck combinations could

achieve good latency-accuracy trade-offs in various deploy-

ment scenarios, including older backbone/neck structures

from YOLOv4 and YOLOv3 models. Furthermore, we show

that depth/width reduction precedes input resolution down-

scaling in optimal YOLO-based detectors.

4.2 Ranking training-free accuracy predic-
tors

With an increasing number of architecture blocks and hy-

perparameter combinations, the size of the candidate model

space in YOLOBench can further grow exponentially. Hence,

it is important to develop efficient methods of filtering out

bad architecture proposals before running them through the

full training pipeline, including pre-training on the COCO

dataset. In the field of neural architecture search, recent

works have proposed a handful of training-free, zero-cost
(ZC) estimators that have been shown to perform well on

various (relatively simple) benchmarks [1, 18, 24].

Zero-cost estimators were originally proposed by Mellor

et al. [24], and later expanded by Abdelfattah et al. [1] as

a means to quickly evaluate the performance of an archi-

tecture using only a mini-batch of data. These estimators

work by extracting statistics obtained from a forward (and/or

backward) pass of a few mini-batches of data through the

network, hence eliminating the need for full training of the

model. Despite the fact that over 20 different zero-cost accu-

racy estimators have been introduced in recent years, simple

baselines like the number of parameters and MAC count are

still found to be hard to outperform [18].

The vast search space of YOLO-like architectures neces-

sitates the development of effective training-free estimators

to filter out bad candidates and reduce the search space. We

examine the performance of a representative subset of zero-

cost estimators on YOLOBench, namely: Fisher [29], Grad-

Norm [1], GraSP [30], JacobCov [1], Plain [1], SNIP [16],

SynFlow [27], ZiCo [18], Zen-score [20] and NWOT [24].

The NWOT metric is computed by measuring the Hamming

distance between binary codes produced by each layer’s

activations [24]. Although originally proposed for ReLU-

based networks, we observe that it works well in practice

for YOLO variations, most of which contain SiLU activa-

tions. The NWOT metric can also be computed by taking

the signs of each layer’s output features before the activation

layer to form the binary code. We refer to that version of

the NWOT metric as NWOT (pre-act) (”pre-activation”) and

find that its performance might differ significantly from the

original NWOT metric, primarily because the binary codes

are computed before the normalization layers followed by

the activations. We also compare the performance of the

zero-cost predictors with simple baselines such as the num-

ber of trainable parameters and MAC count, as well as with a

training-based proxy that we have used to pre-select models

for YOLOBench (mAP50−95 in training from scratch on the

VOC dataset).

All zero-cost metrics are computed on randomly initial-

ized models with the same loss function as used for training

of all YOLOBench models and using a single mini-batch of

data with a corresponding image resolution (except for ZiCo,

which requires two different mini-batches of data [18]). We

empirically evaluate the considered set of zero-cost proxies

on YOLOBench using the following metrics:

• Kendall τ (global): Kendall rank correlation coefficient

evaluated on all YOLOBench models

• Kendall τ (top-15%): Kendall rank correlation coeffi-

cient evaluated on the top-15% performing YOLOBench
models (in terms of mAP50−95 value)

• Percentage of all actual Pareto-optimal models in the

Pareto set determined with the zero-cost estimator in the

zero-cost proxy-latency space (recall for Pareto-optimal

model prediction using the ZC-based Pareto set)

The last metric effectively measures how accurate the com-

puted Pareto set would be if the proxy values are used instead

of actual mAP to rank models. It is calculated by determining

Pareto fronts for model rankings based on zero-cost proxies

(and real latency measurements) and then estimating how

many models present in the actual Pareto set are also present

in the ZC-based Pareto set. In other words, a recall value of

0.7 would mean that by taking the models from the ZC-based

Pareto set as candidates, we find 70% of all actual Pareto-

optimal models in that candidate set. We report values for

Pareto fronts computed with latency measurements on the

Jetson Nano GPU in Table 3.

We generally find that all of the zero-cost predictors we

consider (except for NWOT) are outperformed by the simple

baseline of MAC count both in terms of Kendall-Tau scores

as well as in the percentage of predicted Pareto-optimal mod-

els (see Table 3). Furthermore, when compared with using

mAP50−95 on VOC training from scratch as a predictor,

we observe that only NWOT comes close to it in terms of

ranking scores. We also find that the pre-activation version

of NWOT tends to work better than standard NWOT on

YOLOBench. For the task of predicting mAP50−95 of mod-

els fine-tuned on SKU-110k, we notably observe that pre-

activation NWOT outperforms VOC training from scratch

metric in terms of Kendall-Tau scores (possibly due to do-

main difference between VOC and SKU-110k datasets), but

the VOC-based proxy metric still performs better for Pareto-

optimal model prediction on SKU-110k. For the data on the

sensitivity of NWOT predictions to hyperparameter values

please refer to Appendix C.

In trying to capture all the real Pareto-optimal models

using ZC scores, one could expand the ZC-based candidate
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Table 4. COCO test and minival mAP and inference latency on

Raspberry Pi 4 CPU (TFLite, FP32) for YOLOv8s vs. a model iden-

tified from the NWOT-latency Pareto frontier. For latency, mean

and standard deviation over 5 runs (each run done for 100 iterations)

are shown, with 640x640 input resolution. For mAP, the mean and

standard deviation over three random seeds are shown.

Model mAPtest
50−95 mAPval

50−95 Latency, ms

YOLOv8s 43.17%

(0.12%)

44.43%

(0.23%)

1476.09

(1.49)

YOLOv8s

(HSwish)

42.90%

(0.00%)

44.23%

(0.10%)

1381.62

(7.34)

YOLO-

FBNetV3-D-

PAN-C3

43.87%
(0.05%)

45.30%
(0.08%)

1355.21
(9.93)

pool by calculating subsequent Pareto sets (second, third,

fourth, and so forth) and incorporating them into the candi-

date pool. By applying this strategy, it’s possible to identify

the complete set of actual Pareto-optimal models while ex-

amining only a subset of the entire dataset (e.g., the first N
ZC-based Pareto fronts). In this context, we compute can-

didate pools consisting of N ZC Pareto fronts for each ZC

metric and look at the percentage of actual Pareto-optimal

models found in the pool versus the pool size (as % of the

full dataset size). Looking at the pool size is motivated by the

observation that the number of models in ZC-based Pareto

fronts can significantly vary depending on the specific ZC

metric used.

Figure 4 shows the percentage of predicted real Pareto-

optimal models on the VOC dataset contained in pools of

N first Pareto fronts for 4 different predictors (VOC train-

ing from scratch, NWOT, pre-activation NWOT, and MAC

count). For ARM and Intel CPUs, we observe a general

trend of VOC training from scratch being the best predictor

and MAC count being the worst at all points. Interestingly,

for Jetson Nano GPU NWOT performs close to VOC train-

ing from scratch for N = 1, 2 but starts to perform worse

with more models in the pool. Surprisingly, MAC count

and pre-activation NWOT, which are training-free predic-

tors, outperform VOC training from scratch in predicting

Pareto-optimal models on VIM3 NPU.

4.3 Pareto-optimal detector identification us-
ing NWOT score

To demonstrate the potential of using ZC-based Pareto sets

in identifying promising detector architectures with good

accuracy-latency trade-off, we additionally generate multiple

candidate architectures based on CNN backbones provided

by the timm library [32]. The architectures are generated

by using one of the 347 CNN-based backbones available

in timm as a feature extractor followed by a modified Path

Aggregation Network (PAN) (same structure with C3 blocks

as in YOLOv5 is used, with the number of channels cor-

responding to YOLOv5s, without the SPPF block) and a

YOLOv8 detection head, as in all other YOLOBench models.

We compute the pre-activation NWOT scores as well as

measure inference latency on Raspberry Pi 4 ARM CPU with

TFLite for all candidate models. We then use the NWOT

score and latency values for each model to compute the

Pareto frontier in the NWOT-latency space (see Appendix

D). We then train one of the models identified to belong to

the NWOT-based Pareto frontier (YOLO with FBNetV3-D

backbone) on the COCO dataset with a similar setup used

to pre-train YOLOBench models (640x640 input resolution,

500 epochs, batch size 256, other hyperparameters set to

default of Ultralytics YOLOv8 [12])1. The resulting model

is found to be more accurate and faster than YOLOv8s (a

model in a similar latency range) when tested on Raspberry

Pi 4 CPU with TFLite (FP32, XNNPACK backend) (see Ta-

ble 4). Furthermore, we look at the accuracy and latency of a

YOLOv8s modification with SiLU activations replaced with

Hardswish activations (Table 4), as we observe the choice of

activation function to be a significant factor affecting TFLite

inference latency. We find that the identified NWOT-Pareto

model (also containing Hardswish activations in the back-

bone, neck, and head) still outperforms YOLOv8s-HSwish

in terms of latency and accuracy.

5. Conclusion

In this work, we present YOLOBench, a latency-accuracy

benchmark of several hundred YOLO-based models on 4

different object detection datasets and 4 different hardware

platforms. The accuracy and latency data are collected in

a fixed, controlled environment with the only variation in

backbone/neck structure and input image resolution of the

detectors. We use these data to demonstrate that it is possible

to achieve Pareto-optimal results with a range of different

backbone structures, including those of the older architec-

tures in the YOLO series, such as YOLOv3 and YOLOv4.

We also observe that depth and width scaling precede input

resolution scaling in optimal YOLO-based detectors.

Finally, we use YOLOBench to evaluate zero-cost ac-

curacy predictors, and find that, while many of the exist-

ing state-of-the-art predictors perform poorly, pre-activation

NWOT score can be effectively used to identify Pareto-

optimal detectors for specific target devices of interest. We

demonstrate that by using NWOT to find a YOLO backbone

(FBNetV3-D) that outperforms a state-of-the-art YOLOv8

model when deployed on a Raspberry Pi 4 ARM CPU.

1Note that YOLOv8s results provided by Ultralytics [12] are slightly higher

than the ones we report. However, no script to reproduce those results has

been released to date.
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