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Abstract

Knowledge distillation is a popular technique for trans-
ferring knowledge from a large teacher model to a smaller
student model by mimicking. However, distillation by directly
aligning the feature maps between teacher and student may
enforce overly strict constraints on the student thus degrad-
ing the performance of the student model. To alleviate the
above feature misalignment issue, existing works mainly fo-
cus on spatially aligning the feature maps of the teacher
and the student, with pixel-wise transformation. In this pa-
per, we newly find that aligning the feature maps between
teacher and student along the channel-wise dimension is
also effective for addressing the feature misalignment issue.
Specifically, we propose a learnable nonlinear channel-wise
transformation to align the features of the student and the
teacher model. Based on this idea, we propose a simple and
generic framework for feature distillation, with only one
hyper-parameter to balance the distillation loss and the task-
specific loss. Extensive experimental results show that our
method achieves significant performance improvements in
various computer vision tasks including image classifica-
tion (+3.28% top-1 accuracy for MobileNetV1 on ImageNet-
1K), object detection (+3.9% bbox mAP for ResNet50-based
Faster-RCNN on MS COCO), instance segmentation (+2.8%
Mask mAP for ResNet50-based Mask-RCNN), and semantic
segmentation (+4.66% mIoU for ResNet18-based PSPNet in
semantic segmentation on Cityscapes), which demonstrates
the effectiveness and the versatility of the proposed method.

1. Introduction

Nowadays, the development of deep neural network

(DNN) architectures, such as ResNet [10], ResNeXt [28],

†Corresponding author.

Task Cls Det Seg
Metric Top-1 Acc BBox mAP mIoU

Student 69.9 36.5 69.9

Teacher 73.6 41.0 75.9

Identity 70.3 (+0.4) 38.8 (+2.3) 46.2 (-23.7)

Linear 71.0 (+1.1) 39.3 (+2.8) 71.4 (+1.5)

Task-Specific∗ 70.9 (+1.0) 39.3 (+2.8) 72.4 (+2.5)

MLP(ours) 71.5 (+1.6) 39.5 (+3.0) 73.5 (+3.6)
∗ We use TaT [15] in Cls and Seg, FGD [30] in Det

Table 1. Comparison of various transformation methods in knowl-

edge distillation for classification(Cls), Segmentation(Seg) and

Detection(Det) tasks. Teacher and student feature maps have the

same number of channels. Distillation with the help of the trans-

formation module can improve student performance compared to

direct mimics.

Faster R-CNN [20], and PSPNet [34], has led to signifi-

cant performance improvements for various computer vi-

sion tasks, such as image classification, object detection,

and semantic segmentation. However, the high performance

of these DNN models comes at the cost of large size and

high computational requirements for these architectures,

which poses challenges for their deployment in resource-

constrained environments. To address this problem, knowl-

edge distillation [12] has been proposed to achieve high

performance with reduced computational cost by transfer-

ring the knowledge from a large model (teacher) to a smaller

model (student).

Specifically, feature-based knowledge distillation meth-

ods, which transfer knowledge from the intermediate layer

features of the teacher model to the student model, have

been intensively studied and demonstrated as a more effec-

tive and generic approach for improving the performance of

the student model.

As pointed out in [15], due to the feature misalignment

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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of the teacher and student model, directly mimicking the

intermediate features of the teacher model via vanilla L2

distances may enforce overly strict constraints on the student,

leading to sub-optimal performance.

To alleviate this problem, existing works design novel

distillation loss functions [11, 22] or feature transformation

modules [2,13,15,30,32] to mimic the teacher’s features indi-

rectly. Specifically, the latter kind of approach often focuses

on the feature transformations along the spatial dimension,

such as guiding the student’s attention towards the key re-

gions of the feature map [13] or the relationship between

different pixels [15, 30, 32].

In this paper, we focus on feature-based knowledge dis-

tillation and try to address the feature misalignment prob-

lem along the channel dimension rather than spatial dimen-

sions. We have observed that channel-wise transformations

(e.g., 1x1 convolution) have been widely used to align the

features of different channel sizes in many tasks includ-

ing feature-based knowledge distillation. Moreover, for the

feature-based knowledge distillation task, these channel-wise

transformation modules are discarded when the channel sizes

of the teacher’s feature and the student’s feature are already

the same. However, we empirically find that a linear channel-

wise transformation, i.e., 1x1 convolution, can result in con-

sistent performance improvements for feature-based knowl-

edge distillation, even when the channel sizes of teacher’s

feature and student’s feature are already the same, the results

are shown in table 1.

Inspired by our empirical findings about the importance of

channel-wise transformations for feature-based distillation,

we propose a simple and generic approach that focuses on

channel-wise feature alignment. Specifically, without careful

selection or design of transformation modules, we imple-

ment the channel-wise transformation as a non-linear MLP

with one hidden layer, which has been demonstrated to have

universal approximation capabilities [5]. With this simple

channel-wise transformation module and the conventional

L2-distance loss, we propose a very simple and generic

method for feature-based distillation. With only one tunable

hyper-parameter, our method is easy to apply to different

tasks.

Our extensive evaluation, as shown in Table 2, reveals that

our method consistently outperforms existing feature-based

distillation methods on dense prediction tasks. In object

detection, we observed consistent performance gains over

two-stage, anchor-based, and anchor-free single-stage detec-

tors, with an average improvement of +3.5% in bbox mAP

across these settings. For semantic segmentation, our method

delivered an average improvement of +4.0% in mIoU over

heterogeneous and homogeneous distillation settings on the

ResNet-18-based PSPNet. Our method also achieves strong

performance on the classification task, with an average in-

crease of +2.4% in Top-1 accuracy, regardless of whether

Cls Det Ins Seg Seg #Hyper

KR [2] +2.5 - - - 2

FGD [30] - +3.1 +2.4 - 5

CWD [22] - - - +3.2 2

MGD [31] +2.4 +3.3 +2.7 +3.3 2

Ours +2.4 +3.5 +2.8 +4.0 1

Table 2. Comparisons of the state-of-the-art methods on image

classification (Cls), object detection (Det), instance segmentation

(Ins Seg), and semantic segmentation (Seg). The metrics reported

are Top-1 accuracy, BBox mAP, Mask AP, and mIoU, improvement

relative to students, respectively. Hyper denotes hyperparameters.

Our method achieves state-of-the-art results with only 1 hyperpa-

rameter.

the number of channels in the student and teacher feature

maps is the same or not.

To sum up, our main contributions are three-fold:

• We reinstate the importance of channel-wise transfor-

mation for aligning the student’s and teacher’s features

in feature-based knowledge distillation.

• We propose a simple and generic framework for feature-

based knowledge distillation which uses MLP as the

channel-wise transformation module to help students

learn more powerful features.

• We achieve state-of-the-art distillation results for multi-

ple dense prediction tasks and comparable state-of-the-

art results for classification tasks.

2. Related Work
The concept of knowledge distillation was first proposed

by Hinton et al. [12], with the goal of transferring dark

knowledge from a cumbersome teacher model to a smaller

student model to improve the student’s performance. Based

on the types of dark knowledge, mainstream knowledge dis-

tillation methods can be divided into two categories: Logits-

based knowledge distillation and feature-based knowledge

distillation.

2.1. Logits-based knowledge distillation

Classical logits-based knowledge distillation meth-

ods [12] minimize the KL divergence between the output

logits of teacher and student models. One recent line of

research focuses on refining the vanilla knowledge distilla-

tion loss function to better leverage the logits information.

WSLD [36] rethinks the knowledge distillation process from

a bias-variance trade-off perspective and proposes weighted

soft labels for knowledge distillation. DKD [33], reformu-

lates the classical knowledge distillation loss into the target
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and non-target part and calculates the distillation loss sepa-

rately. While these works have improved the performance

of logits-based knowledge distillation methods on classifi-

cation tasks, they have often not achieved significant results

on other tasks, such as dense prediction tasks. Another line

of work involves modeling other tasks into a classification

task and adopting the logits-based knowledge distillation on

other tasks. LD [35], reformulates the output form of the

regression head to a probability distribution and applies clas-

sical knowledge distillation to the regression task. However,

it is only for object detection tasks and requires changes to

the detection head. RMKD [14] reformulates the ordering

between anchors into the form of the probability distribution

for knowledge transfer and applies classical knowledge dis-

tillation to the regression task. However, it is only limited to

anchor-based detectors.

2.2. Feature-based knowledge distillation

For classification. The teacher model feature is a kind of

dark knowledge, first used in [21]. Later works focused on

better ways to utilize it. AT [13] uses attention maps to help

students focus on important regions but does not use chan-

nel information. OFD [11] designs a new loss function and

uses marginal ReLU to extract key information. CRD [23]

uses contrastive learning in knowledge distillation, achiev-

ing good performance but with high training costs. KR [2]

conducts knowledge distillation on multi-level features in

a review manner, resulting in good performance. TaT [15]

uses a one-to-all spatial matching approach for knowledge

distillation based on similarity generated from a target-aware

transformer.

For objection detection. Object detection is a challenging

task due to foreground-background pixel imbalance. Knowl-

edge distillation methods attempt to have the student model

imitate the key regions of the teacher model. FGFI [25]

forces students to focus on foreground regions by using

masks. GID [6] identifies regions where the student and

teacher models perform differently as key regions for distil-

lation. Defeat [9] distills foreground and background regions

separately, and FKD [32] uses attention masks to direct the

student model’s focus while non-local modules capture rela-

tionships between pixels. Additionally, FGD [30] proposes

focal and global distillation mechanisms through attention

masks and global context blocks [1]. The goal of these meth-

ods is to enhance the student model’s performance in object

detection tasks. This is achieved through knowledge distil-

lation from the teacher model, as well as a focus on crucial

regions.

For semantic segmentation. Semantic segmentation is a

per-pixel prediction problem, and strictly aligning the feature

maps between the student and teacher models may impose

overly strict constraints and lead to sub-optimal results [22].

Recent works [17, 27] try to force the student to learn the

correlations among different spatial regions. IFVD [27] fo-

cuses on the intra-class feature variation among pixels with

the same label and designs an IFV module to transfer the

structural knowledge. SKDS [17] combines pixel-wise dis-

tillation, pair-wise distillation, and holistic distillation using

a GAN-based approach to align the output maps of teacher

and student models. CIRKD [29] aims to model the pixel-to-

pixel and pixel-to-region relationships as supervisory signals

for knowledge distillation in the semantic segmentation task.

CWD [22] is a method that normalizes the activation maps

of each channel and minimizes the KL divergence between

these probability maps. This helps to improve the accuracy

of predictions in dense tasks like object detection and se-

mantic segmentation in computer vision applications. The

effectiveness of this method has been widely acknowledged

and used in the field. By utilizing advanced AI technology,

CWD is capable of producing highly precise and dependable

probability maps. This greatly enhances the efficiency and

accuracy of image analysis and processing.

For general tasks. MGD [31] employs a generative ap-

proach that involves the use of random masks that randomly

to erases a portion of the student’s feature map and then force

it to generate features similar to the teacher’s through an ad-

versarial generator and applies it to classification, detection,

and segmentation tasks.

In this paper, we focus on channel-wise transformations

and propose a simple and generic method for feature-based

knowledge distillation.

3. Method
In this section, we first briefly introduce the basic form of

intermediate feature-based knowledge distillation and then

present the details of our proposed method.

3.1. Revisiting Feature-based Knowledge Distilla-
tion

In feature-based knowledge distillation, a student model

is generally supervised by a teacher model as [8] :

Lfeat = LKD (Tt (F T ) , Ts (F S)) , (1)

where LKD represents the similarity function used to match

the feature maps of the teacher model, FT, and the student

model, FS. In addition, the transformation functions Tt and

Ts will be applied only if the feature maps of the teacher

and student models have different dimensions. (e.g., a linear

projection layer to align the number of channels in FS with

those in FT).

Recently, several works have employed complex transfor-

mations (Tt and Ts) to facilitate the acquisition of knowledge

(feature alignment) by student networks from teacher net-

works. For example, as depicted in Figure 1a, both FKD [32]
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(a) Some previous methods [30, 32] use both sophisticated designed

mask and spatial-wise transformation for both teacher and student.
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(b) Our proposed method uses learn-able channel-wise transformation only

for the student model.

Figure 1. Difference between our method and existing feature-based knowledge distillation methods.

(a) Non-Local Block used in FKD [32] (b) Global Context Block used in FGD [30] (c) MLP (Ours)

Figure 2. Comparison of different transformation modules in knowledge distillation. FKD [32] uses a non-local module (a), while FGD [30]

employs GCBlock (b) to model the relationships between pixels in an image. Our method utilizes a simple yet effective channel-wise

transformation through an MLP (c), consisting of two 1×1 convolution layers and a ReLU activation layer.

and FGD [30] utilize (1) specific modules, such as the Non-

local module [26] or GCBlock [1], and (2) channel-wise

and spatial-wise attention masks to align the features of the

teacher and student networks. This raises the question of

whether the use of well-designed modules is necessary for

student networks to learn more effective features from the

teacher.

In this paper, we perform empirical studies to address

the question raised above and find that student models can

enhance their representations through a straightforward non-

linear channel-wise transformation. Based on this finding,

as illustrated in Figure 1b, we introduce a simple method

that incorporates a Multi-Layer Perceptron (MLP) into the

student features and aligns the transformed student features

with the teacher features using a conventional L2 distance.

The specifics of our proposed method are outlined in the

subsequent subsection.

3.2. Learnable channel-wise transformation

Instead of using complex transformations on both spa-

tial and channel dimensions, we propose to use a learnable

nonlinear channel-wise transformation to align the feature

maps of the student and the teacher model. In detail, we use

a non-linear MLP with one hidden layer for the student (i.e.,
Tt = identity and Ts = MLP in Equ. 3.1):

MLP(F ) = W2 (σ (W1(F ))) , (2)

where W1 and W2 are learnable parameters implemented

as 1×1 convolutions, and σ represents ReLU activation. As

illustrated in Figure 2, our transformation module (Figure 2c)

is much simpler than the methods proposed in FKD [32] and

FGD [30].

Without bells and whistles, we choose L2 distance for su-

pervising transformed student features and teacher features.
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Algorithm 1 Pseudo code of our method in a PyTorch-like

style.

# f_mlp: 2-layer MLP with ReLU activation
# x_s: student feature [N, C, H, W]
# x_t: teacher feature [N, C, H, W]

def forward(x_s, x_t):
n = x_s.shape[0] # size of mini-batch

# channel-wise non-linear transformation
x_mlp = f_mlp.forward(x_s)

# calculate l2 distance
diff = (x_mlp - x_t).pow(2)

# distillation loss (averaged by batch)
loss = diff.sum() / n

return loss

Specifically, the feature distillation loss is formulated as:

Lfeat =
N∑

i

(MLP (F Si
)− F Ti

)2. (3)

Our approach is straightforward and can be efficiently

executed using prevalent machine learning libraries, such as

PyTorch, as shown in Algorithm 1. The ease of implementa-

tion enables us to leverage existing infrastructure, facilitating

the training process of our model.

3.3. Overall loss

Our method can be easily used in various tasks. Combined

with task-specific losses, the overall loss can be formulated

as:

Ltotal = Ltask + αLfeat (4)

where α is a hyper-parameter to balance the weight of knowl-

edge distillation loss.

4. Experiment
Our approach, which is a feature-based method, is easy

to implement on various models and tasks. In this paper, we

conduct experiments on image classification, object detec-

tion, instance segmentation, and semantic segmentation, to

demonstrate the simplicity, effectiveness, and generality of

our method.

4.1. Image Classification on ImageNet

Settings To test our image classification method, we use

the Imagenet dataset [7]. We train the model using 1.2 mil-

lion images from the Imagenet training set and test it using

50,000 images from the validation set. The evaluation metric

used is Top-1 accuracy. We use a standard training procedure

with the model trained for 100 epochs, learning rate decay at

the 30th, 60th, and 90th epochs, SGD optimizer, and an ini-

tial learning rate of 0.1. The training is done on 8 GPUs with

a batch size of 32 images per GPU. Our method is tested on

both homogeneous and heterogeneous distillation settings

using two model configurations: ResNet34 as the teacher

model and ResNet18 as the student model, and ResNet50 as

the teacher model and MobileNet as the student model. We

use feature maps from the last stage of the backbone to cal-

culate the distillation loss and set the distillation loss weight

α to 7 × 10−5. Our method is compared with single-layer

feature-based methods [19, 23, 31], state-of-the-art logits-

based methods [12, 33], and multi-layer feature-based meth-

ods [2, 11, 13].

Comparison to baseline. As presented in Table 3, our

method demonstrates its effectiveness on the image classifi-

cation task. Specifically, under the homogeneous setting, the

Top-1 accuracy of ResNet-18 is improved by +3.28%. Simi-

larly, under the heterogeneous setting, the Top-1 accuracy of

MobileNet is improved by +1.61%. These results highlight

the superiority of our method in comparison to the baseline

models.

Comparison to single feature distillation methods Our

method outperforms all single-feature distillation methods

[19,23,31] in the heterogeneous setting and is on par with the

state-of-the-art method MGD [31]. These results highlight

the effectiveness of our method in comparison to other single-

feature distillation techniques.

Comparison to previous state-of-the-art Compared to

the previous state-of-the-art method KR [2], which uses

multi-stage features, our simple method achieves comparable

performance with a difference of less than 0.1% in terms of

Top-1 accuracy on both homogeneous and heterogeneous

settings.

4.2. Object Detection on COCO

Settings For the object detection task, we evaluate our

method on the COCO [16] dataset. Specifically, we use

120,000 images from the COCO training set for model train-

ing and 5,000 images from the validation set for model

testing, with mAP as the evaluation metric. Our training

procedure follows a standard 2x schedule, consisting of 24

training epochs, with the reduction of the learning rate at

epochs 16 and 22. The optimization process is performed

using Stochastic Gradient Descent (SGD) and the model is

trained on 8 GPUs, each with a batch size of 2.

We experiment on multiple detector architectures, includ-

ing two-stage, single-stage anchor-based, and single-stage

anchor-free detectors. The distillation loss is computed on

all feature maps output from the neck, and the distillation
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Mechanism Method
Top-1

acc

Top-5

acc
Method

Top-1

acc

Top-5

acc

- ResNet-50(T) 76.55 93.06 ResNet-34(T) 73.62 91.59

- MobileNet(S) 69.21 89.02 ResNet-18(S) 69.90 89.43

Logits
KD [12] 70.68 90.30 KD [12] 70.68 90.16

DKD [33] 72.05 91.0 DKD∗ [33] 71.37 90.26

Multi Feature

AT [13] 70.72 90.03 AT [13] 70.59 89.73

OFD [11] 71.25 90.34 OFD [11] 71.08 90.07

KR [2] 72.56 91.00 KR [2] 71.61 90.51

Single Feature

RKD [18] 71.32 90.62 RKD [18] 71.34 90.37

CRD [24] 71.40 90.42 CRD [24] 71.17 90.13

MGD [31] 72.35 90.71 MGD [31] 71.58 90.35

Ours 72.49 90.81 Ours 71.51 90.32

Table 3. Results of different distillation methods on ImageNet dataset for the image classification task. T and S mean the teacher and student,

respectively. ∗ We report the result inplemented in MMRazor [3].

Method Input Size mIoU

PspNet-Res101(T) 512× 1024 78.34

PspNet-Res18(S) 512× 512 69.85

SKDS [17] 512× 512 72.70

CWD [22] 512× 512 73.53

MGD [31] 512× 512 73.63

Ours 512× 512 74.51

PspNet-Res101(T) 512× 1024 78.34

DeepLabV3-Res18(S) 512× 512 73.20

SKDS [17] 512× 512 73.87

CWD [22] 512× 512 75.93

MGD [31] 512× 512 76.02

Ours 512× 512 76.55

Table 4. Results of the semantic segmentation task on CityScapes

dataset. T and S mean teacher and student, respectively.

loss weight α is set to 5× 10−7 for the two-stage detector

and 2 × 10−5 for the one-stage detector. For the instance

segmentation task, we use a ResNext-101-based Cascade

Mask R-CNN as the teacher model and a ResNet-50-based

Mask R-CNN as the student model. The experimental con-

figuration follows that of the two-stage detector distillation.

Object Detection We compare our method with pre-

vious state-of-the-art methods designed for object detec-

tion [30,32] and a recent generic distillation method [31]. As

shown in Table 5, our simple method can achieve compet-

itive results. For example, on the two-stage detector Faster

RCNN-ResNet50, we get the mAP of the student model

to rise from 38.4 to 42.3, surpassing the previous state-of-

the-art method. On the anchor-based single-stage detector

RetinaNet-ResNet50 and the anchor-free single-stage detec-

tor Reppoints-ResNet50, we also achieve mAP increases of

3.6 and 3.4, respectively, which are comparable to the results

of the state-of-the-art method.

Instance Segmentation Our method demonstrates its ef-

fectiveness on the instance segmentation task, as shown in

Table 5. The results show that our simple approach leads

to +3.2% improvement in bounding box AP and +2.4% im-

provement in mask AP, respectively, outperforming state-of-

the-art methods.

4.3. Semantic segmentation on CityScapes

Settings For the semantic segmentation task, we evaluate

our method with the CityScapes dataset [4]. Specifically,

our experiments are conducted on 2975 training images and

500 validation images, and the evaluation metric is mIoU.

The models are trained for 40,000 iterations using the SGD

optimizer on 8 GPUs with a batch size of 2.

We conduct experiments on two model configurations: a)

a homogeneous setting with PSPNet-Res101 as the teacher

model and PSPNet-Res18 as the student model, and b) a

heterogeneous setting with PSPNet-Res101 as the teacher

model and DeepLabv3-Res18 as the student model. The

input size for both configurations is set to 512 × 512, and

the distillation loss is computed from the features of the last

stage. The distillation loss weight α for the homogeneous

setting and the heterogeneous setting is set to 2× 10−5 and

1× 10−5 respectively.

Results As shown in Table 4, our method achieves re-

markable results in both homogeneous and heterogeneous
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Teacher Student mAP APS APM APL mAR ARS ARM ARL

RetinaNet

ResNeXt101

RetinaNet-ResNet50 37.4 20.6 40.7 49.7 53.9 33.1 57.7 70.2

FKD [32] 39.6(+2.2) 22.7 43.3 52.5 56.1(+2.2) 36.8 60.0 72.1

FGD [30] 40.4(+3.0) 23.4 44.7 54.1 56.7(+2.8) 37.6 61.5 72.4

MGD [31] 40.6(+3.2) 23.4 45.1 54.0 56.7(+2.8) 37.1 61.0 72.5

PKD [31] 40.8(+3.2) 23.4 45.1 54.0 56.7(+2.8) 37.1 61.0 72.5

Ours 41.0(+3.6) 23.1 45.5 55.0 56.8(+2.9) 37.2 60.8 72.4

Cascade

Mask RCNN

ResNeXt101

Faster RCNN-ResNet50 38.4 21.5 42.1 50.3 52.0 32.6 55.8 66.1

FKD [32] 41.5(+3.1) 23.5 45.0 55.3 54.4(+2.4) 34.0 58.2 69.9

FGD [30] 42.0(+3.6) 23.8 46.4 55.5 55.4(+3.4) 35.5 60.0 70.0

MGD [31] 42.1(+3.7) 23.7 46.4 56.1 55.5(+3.5) 35.4 60.0 70.5

PKD [31] 41.7(+3.7) 23.7 46.4 56.1 55.5(+3.5) 35.4 60.0 70.5

Ours 42.3(+3.9) 24.2 46.4 56.1 55.3(+3.3) 34.9 59.8 70.4

RepPoints

ResNeXt101

RepPoints-ResNet50 38.6 22.5 42.2 50.4 55.1 34.9 59.4 70.3

FKD [32] 40.6(+2.0) 23.4 44.6 53.0 56.9(+1.8) 37.3 60.9 71.4

FGD [30] 41.3(+2.7) 24.5 45.2 54.0 58.4(+3.3) 39.1 62.9 74.2

MGD [31] 41.7(+3.1) 24.1 45.8 55.3 57.9(+2.8) 39.0 62.0 73.6

PKD [31] 42.3(+3.7) 23.7 46.4 56.1 55.5(+3.5) 35.4 60.0 70.5

Ours 42.0(+3.4) 24.8 46.0 55.4 57.9(+2.8) 38.9 62.0 73.7

Teacher Student
Boundingbox AP Mask AP

mAP APS APM APL mAP APS APM APL

Cascade

Mask RCNN

ResNeXt101

Mask RCNN-ResNet50 39.2 22.9 42.6 51.2 35.4 19.1 38.6 48.4

FKD [32] 41.7(+2.5) 23.4 45.3 55.8 37.4(+2.0) 19.7 40.5 52.1

FGD [30] 42.1(+2.9) 23.7 46.2 55.7 37.8(+2.4) 19.7 41.3 52.3

MGD [31] 42.3(+3.1) 23.9 46.3 56.2 38.1(+2.7) 17.1 41.1 56.3

Ours 42.4(+3.2) 23.8 46.3 56.6 38.2(+2.8) 17.3 41.2 56.6

Table 5. Results of detectors on COCO dataset.

configurations. Specifically, the ResNet-18-based PspNet

model obtains a mIoU increase of +4.66% under the homo-

geneous setting, and the ResNet-18-based deeplabv3 model

obtains a mIoU increase of +3.28% under the heterogeneous

setting. These results demonstrate the effectiveness of our

method on the semantic segmentation task.

4.4. Ablation Studies and Analysis

4.4.1 Benefits of Channel-wise Transformation

As shown in Table 1, directly using the features from the

teacher and the student without channel-wise transformation

can result in significant distillation performance drops in the

semantic segmentation task.

To better understand this phenomenon, we calculate the

L2-distance between the student feature map and the teacher

feature map on the validation dataset.

The results in Table 6 show that directly mimicking the

teacher feature (corresponding to ‘Identity’ transformation)

can achieve a lower L2-distance to the teacher, but obtain

significantly poorer performance compared to those using

channel-wise transformations. Compared with it, channel-

wise transformation methods can obtain an even lower L2-

distance after the channel-wise transformation, but the L2-

distance before the channel-wise transformation is much

larger. Moreover, the distillation performance of the channel-

wise transformation methods is much better than directly

mimicking.

In the process of distillation, the student model is super-

vised by two signals: distillation losses and task-specific

losses. We conjecture that the limited capacity of the student

model makes it difficult to fully capture the knowledge of the

teacher, and applying strict distillation constraints (i.e., di-

rectly mimicking the teacher feature) may over-optimize the

student feature with the distillation supervision and prevent

them from being trained with the task-specific supervision,

leading to performance degradation. On the contrary, our

method exploits the channel-wise transformation module to

achieve a better balance between task-specific supervision

and distillation supervision.
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Transformation
L2-distance

Before After mIoU

Identity 0.217 0.217 46.2

Linear 0.4269 0.037 71.4

MLP(ours) 0.7691 0.032 73.5

Table 6. L2 distances with teacher feature and mIoU scores for

different transformations in the semantic segmentation task.

4.4.2 Ablation of Transformation Modules

In this section, we further demonstrate the importance of

the channel-wise transformation module in cases where the

size of the teacher’s feature and the student’s feature are not

equivalent, i.e., when the number of channels is unequal.

We conduct experiments on the heterogeneous segmentation

setting.

Table 7 demonstrates that the student model’s perfor-

mance only slightly improves with a single linear layer and

no non-linear activation. This indicates that non-linear trans-

formation is crucial for the student’s representation ability.

However, adding local spatial transformation with non-linear

activation results in worse performance compared to an MLP.

The Global spatial transformation with Non-Local block

yields the lowest mIoU. We conducted experiments on de-

signing more complex transformation modules involving

stacking and deforming. Unfortunately, for MLP-deeper,

adding an extra hidden layer to the original MLP module

or doubling the hidden dimension of the MLP module for

MLP-wider did not lead to any further improvement. For

the Deformable 3x3 module, we implemented Deformable

Conv3×3-ReLU-Deformable Conv3×3 to allow for defor-

mation in the convolution operation. However, the results

showed that these modifications did not lead to significant

improvements. These modifications were aimed at improv-

ing the performance of the student model by modifying the

transformation process.

These results show that the transformation of spatial di-

mensions and more complex designs do not bring additional

gain to our method. We conjecture that an overly complex

and powerful learnable transformation will make the distil-

lation process concentrate on optimizing the transformation

module rather than the student network itself.

4.4.3 Location of MLP

Previous research on feature-based distillation techniques,

such as FKD [32] and FGD [30], have employed complex

masks in their transformation modules to transform both

the student and teacher features. In contrast, our method uti-

lizes a learnable Multi-Layer Perceptron (MLP) for feature

transformation.

Transform
mIoU

Module Channel Spatial Non-Linear

Stu-Baseline - - - 73.20

Linear � � � 73.40

Conv3×3 � Local � 75.92

Deformable 3×3 � Local � 75.69

Non-Local [26] � Global � 72.05

MLP-base � � � 76.55

MLP-deeper � � � 76.53

MLP-wider � � � 76.10

Table 7. Performance comparison of different transform modules on

semantic segmentation task. The results indicate that our proposed

channel-wise non-linear transformation module (MLP) outperforms

other methods.

When a learnable MLP is used, it can help students learn

better representations from teachers. However, if the learn-

able transformation is applied to both the student and teacher

features and the L2 distance is used as the loss function, it

can result in a trivial solution where the learnable transfor-

mation simply takes the input of the feature and gives zero

outputs. This renders feature distillation ineffective. To ad-

dress this issue, our method only applies the transformation

to the student feature. This ensures that the student model

can learn from the teacher model without compromising the

effectiveness of feature distillation.

5. Conclusion
In this paper, we first present a novel discovery that align-

ing the feature maps between teacher and student along the

channel-wise dimension is also effective for addressing the

feature misalignment issue in feature-based knowledge distil-

lation. Then, we exploit a Multi-Layer Perceptron (MLP) as

the channel-wise transformation module to align the features

of the student and the teacher model. Further, we propose a

simple and generic framework for feature distillation based

on it, with only one hyper-parameter to balance the distilla-

tion loss and the task-specific loss. Extensive experiments

are conducted and the results demonstrate that the proposed

method can achieve significant performance improvements

in various computer vision tasks including image classifi-

cation, object detection, instance segmentation, and seman-

tic segmentation, even outperforming the state-of-the-art

feature-based knowledge distillation methods in some tasks.
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