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Abstract

In this paper we propose the Ray-Patch querying, a novel
model to efficiently query transformers to decode implicit
representations into target views. Our Ray-Patch decod-
ing reduces the computational footprint and increases in-
ference speed up to one order of magnitude compared to
previous models, without losing global attention, and hence
maintaining specific task metrics. The key idea of our novel
querying is to split the target image into a set of patches,
then querying the transformer for each patch to extract a set
of feature vectors, which are finally decoded into the target
image using convolutional layers. Our experimental results
quantify the effectiveness of our method, specifically the no-
table boost in rendering speed for the same task metrics.

1. Introduction
Autonomous agents rely typically on explicit represen-

tations of the environment for localization and navigation

[4, 32, 23, 3]. However, such approaches lack topological

or semantic information, struggle to generalize to changes

to novel viewpoints, and do not scale properly to tasks that

require reasoning about 3D geometry and affordances.

Implicit representations are better suited to reasoning

and hence relevant, as they capture in a continuous space

the main high-level features of the scene. Many ap-

proaches focus on 3D geometry without topological restric-

tions using learned occupancy or signed distance functions

[7, 24, 18, 17, 25, 9]. Nevertheless, the recent success of

neural fields [19] to encode the tridimensional geometry and

lighting of a scene has revolutionized the field [33]. They

have demonstrated promise in a wide array of tasks such

as scene segmentation [41, 13, 5], depth estimation [11],

SLAM [31, 42, 1], scene editing [10, 12, 14, 2, 30, 22], and

many more [33].

The main limitation of neural rendering is its high com-

putational cost. This is mainly due to 1) the exhaustive

querying of the model that is required to recover each pixel

of a specific viewpoint, and 2) the need to fit the NeRF

model for each scene. Several approaches reduced the

Pixel querying Ray-Patch querying (ours)

Figure 1: Light Field Networks sample a ray per pixel to

render the target image (left). Our Ray-Patch (right) groups

pixels in k×k patches and samples a ray per patch, reducing

the querying cost by a factor of k2 without loosing accuracy.

3D querying cost using depth [38, 15, 26, 8], geometry

[34, 6, 40, 37], or changing the discretization [16, 39, 20];

and avoided per-scene optimization using latent vectors

[34, 16, 6, 40, 37, 11, 14]. Among them, the extensions of

Light Field Networks (LFNs) [29] with transformers (Light

Field Transformers or LFTs) [28, 27, 11] have shown po-

tential to alleviate both limitations. However, despite sig-

nificant advances in both qualitative performance and effi-

ciency, all these approaches are still far from being scalable

to real scenarios and from real-time performance on low-

budget hardware.

In this work we propose Ray-Patch, a novel querying

strategy that reduces the computation and memory load of

LFTs up to one order of magnitude. Instead of the typical

per-pixel querying, we group all pixels in a set of square

patches, as shown in Fig.1, and compute a set of feature

vectors, which are then grouped and decoded into the tar-

get viewpoint. Specifically, it adds to current transformer

decoder approaches a convolutional neural networks to re-

duce the cost of the decoder processing. This results in a

drastic reduction in the number of queries, which impacts

quadratically in both training and inference cost. In prac-

tice, it also allows to train more complex configurations in

less time improving both rendering quality and speed.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Preliminaries: NeRFs and LFTs

Given a sparse set of multiple views of a scene, a

NeRF [19] encodes an implicit continuous volumetric rep-

resentation of it on the weigths of a MultiLayer Perceptron

(MLP). After being optimized for a given scene, this model

can then be used to render photorealistic novel views from

arbitrary viewpoints. The rendering process involves pro-

jecting pixels into rays, sampling 3D positions along each

ray, evaluating the MLP network to predict the color and

occupancy of the sampled 3D points, and using a rendering

equation to aggregate predictions along a ray to estimate the

initial pixel value.

Light Field Networks (LFNs) [29] are a variation of

NeRFs which directly rely on evaluating the 3D rays into

the MLP, removing the aggregation process. To render a

novel view they require a single evaluation per pixel rather

than the multiple samples required by NeRFs. Light Field

Transformers (LFTs) [28, 27, 11] are an extension of LFNs

which use a transformer architectures, to encode a latent

representation of a novel scene on a latent vector rather than

on the model’s weights. Therefore, they are able to decode

different points of view of novel-scenes without per-scene

optimization.

2.1. Transformers

Vanilla transformers [35] are encoder-decoder neural

models that incorporate attention mechanisms in their ar-

chitecture. The encoder performs self-attention on a set of

tokens to extract common features. Then the decoder uses

cross-attention between the extracted features and a set of

queries to compute an output per query. The key compo-

nent of transformers is the Multi-Head Attention (MHA)

layer. In each head h, MHA operates in parallel a scaled

dot product attention

Attentionh(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

over a set of the three inputs: keys (K), values (V ), and

queries (Q), projected into a reduced dimension, dk. To

perform self-attention Q = K = V are the tokens to en-

code. Instead for cross-attention K = V are the extracted

features, while Q is the queries to decode.

Computational complexity. The scaled dot product has

O(nqnkvdk) complexity, being nq and nkv the number of

queries and keys/values respectively. For self-attention,

nq = nkv hence the complexity is O(n2
qdk).

2.2. Scene Representation Transformer

The Scene Representation Transformer (SRT) [28] is an

LFT, which parametrizes rays with its 3D coordinates and

their origin position. Given a set of N input views {In}1,

and their relative camera poses {Pn} with camera Instrinsic

parameters {Kn}, the encoder E generates a set-latent scene

representation (SLSR)

Z = E ({In, Pn}) , (2)

To decode a view of the scene, the light-field based de-

coder is queried once per-pixel to recover its RGB value.

Each query refers to the ray direction and camera center for

a given pixel.

The encoder is made of two parts. First, a convolutional

network extracts features from the scene images. Then a set

self-attention blocks computes common features between

the multiple views of the scene to generate a SLSR. The

decoder is a two-blocks cross-attention module. It performs

attention between the ray queries and the SLSR to generate

the RGB pixel values.

Attention cost. With a convolutional encoder which

halves the resolution (divides by four the number of queries)

three times, nq = nkv = N h×w
64 for the encoder self-

attention block. Therefore the complexity is

O
((

Nhw

64

)2

dk

)
. (3)

Instead, for the decoder cross-attention block to decode

an image, nq = h × w and nkv = N h×w
64 , therefore the

complexity is

O
(
N (hw)

2

64
dk

)
. (4)

As a consequence, SRT is limited due to the quadratic

scaling of the attention mechanisms cost with respect to the

number of input images N and number of pixels (quartic

with respect to resolution).

3. Method: Ray-Patch Querying

We propose the Ray-Patch querying to attenuate the

quartic complexity of Light Field Transformers with respect

to image resolution. Instead of using a ray to query the

cross-attention decoder and generate a pixel value, we use a

ray to compute a feature vector of a square patch of pixels.

Then a convolutional decoder unifies the different patches’

feature vectors and recovers the full image. Our approach

reduces the number of queries to hw
k2 and the cross-attention

cost by the same factor.

1We abuse notation here for simplicity, {◦n} ≡ {◦1, . . . , ◦N}
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Parametrization. To decode a target view It ∈ R
h×w×c

of the scene, the view is split into hw
k2 square patches of

size [k, k], being the split image now defined as {Itp ∈
R

h
k×w

k ×3}. Each patch p is parametrized by the location of

the camera ot, and the ray rtp that passes both by the cam-

era position and the center of the patch. Given the camera

intrinsic Kt and extrinsic parameters WTCt = [Rt|ot] ∈
SE(3), the ray rtp is first computed as the unprojection of

the center of patch p in the 2D camera plane, and then trans-

lated to the world reference W .

Using Fourier positional encoding [19], the parametriza-

tion of each patch is mapped to a higher frequency, to gen-

erate a set of queries for the decoder.

{Qtp} = {γ (ot)⊕ γ (rtp)} (5)

Decoder. The decoder D is a composition

D = (DCNN ◦ DA) (6)

of an attention decoder DA, followed by a convolutional

decoder block DCNN. The attention decoder performs cross-

attention between the queries {Qtp} and the SLSR Z , to

compute a set of feature vectors

{Ztp} = DA ({Qtp},Z) (7)

with dimension f . These vectors ensemble a feature map

Zt ∈ R
h
k×w

k ×f , which is decoded by the convolutional de-

coder into the target image

Ît = DCNN (Zt) . (8)

We use a vanilla convolutional decoder DCNN based on

GIRAFFE’s decoder [22]. It is a combination of upsam-

pling blocks with convolutions and preliminary outputs.

Integration. The simplicity of the Ray-Patch querying al-

lows to easily integrate it in different LFTs like SRT, OSRT,

or DeFiNe. Changing the number of channels of the output

of their attention decoders to f , and adding DCNN, they can

be used as DA to decode the final image as

Ît = Dcnn (DA ({Qtp},Z)) . (9)

The optimization process does not change. The model

parameters θ are optimized on a collection of images from

different scenes minimizing the Mean Squared Error (MSE)

of the generated novel-views for RGB images

Lrgb =
1

hw

∑
ij

(
Ît − It

)2

. (10)
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Figure 2: Single image rendering speed scaling. The use

of the Ray-Patch decoder increase rendering speed at high

resolutions up to real-time for both SRT (left).

Attention cost. The proposed Ray-Patch decoder reduces

the complexity of the decoders to

O
(
N (hw)

2

64k2
dk

)
, (11)

for models with the basic Transformer, like SRT and OSRT,

and to

O
(
hw

k2
nldk

)
, (12)

for PerceiverIO based models, like DeFiNe.

4. Experimental Results
We evaluate Ray-Patch integrating it with SRT for novel

view synthesis on the MulstiShapeNet-Easy (MSN-Easy)

dataset [30]. The dataset has 70K training scenes and 10K

test scenes, with resolution 240× 320. Due to the high cost

of training SRT, we work at 120 × 160 and 60 × 80. Each

scene has 3 views sampled at 120◦ steps on a circle around

the center of the scene, with extrinsics and intrinsics camera

annotations. In each scene there are between 2 and 4 objects

of 3 different classes: chair, table, or cabinet.

Given an input image, the model encodes a representa-

tion of the scene, and its goal is decoding the other two

viewpoints. Due to limited resources, we evaluated on

MSN-Easy rather than on MSN-Hard [28, 27], to benefit

from its faster convergence (300k steps vs 3M) for more

experiments.
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MSN-Easy

60× 80 120× 160

SRT
RP-SRT

SRT
RP-SRT

k = 2 k = 4 k = 4 k = 8

↑ PSNR 30.98 31.16 30.92 32.842 32.818 32.306

↑ SSIM 0.903 0.906 0.901 0.934 0.935 0.929

↓ LPIPS 0.173 0.163 0.175 0.250 0.254 0.274

↓ Training time 5.6 days 1.7 day 0.7 days 6.4 days 1.7 days 1 day
↓ Giga FLOPs 48.2 15.8 7.3 192.1 28.5 19.7
↑ Rendering speed 117 fps 288 fps 341 fps 30 fps 275 fps 305 fps

Table 1: Quantitative results on MSN-Easy. Evaluation of new scene novel view synthesis and computational performance

on a simple dataset. While SRT’s performance is surpassed only by the configuration with patch size k = 2, Ray-Patch

increases ×3 and ×10 the rendering speed with minimum impact.

Following Sajjadi et al. [28], rendered views are bench-

marked with PSNR, SSIM, and LPIPS. Computational as-

pects are evaluated measuring image rendering speed, like

Sajjadi et al. [28], Float Point Operations (FLOPs) to en-

code and render an image, and training time. We assume

the use of float-32 data, and evaluate time performance on a

GPU NVIDIA Tesla V100.

4.1. Computational performance

While our Ray-Patch decoder still has quadratic scaling

with nq , the attenuation performed by the patch size to the

number of queries is reflected in a notable boost in the ren-

dering speed, as seen in Fig. 2 and Tab. 1. Furthermore,

when increasing the resolution the patch can also be in-

creased, keeping an appropriate rendering speed at higher

resolutions.

Comparing rendering speeds for different patches and

resolutions in Fig. 2, it can be observed how the improve-

ment tends to saturate for big patch sizes. As a consequence

of reducing the number of queries, its impact on the de-

coder’s scaled-dot product complexity will be out-weighted

by nkv . For nq << nkv . nkv will set a minimum cost and

increasing the patch size over this limit will not be reflected

on the rendering speed. Finally, the decrease in nq implies

a reduced vRAM memory peak in the decoder attention, re-

quiring less gpus to train a similar configuration.

4.2. Novel view synthesis

We evaluate two different patch sizes for each resolution:

2 and 4 for 60× 80; and 4 and 8 for 120× 160.

The experiment metrics shows that all configurations

achieve rendering quality on par with base SRT on all met-

rics. Furthermore, our approach improves rendering speed

×10 for the highest resolution, and reduces training time

almost ×4. This is thanks to scaling the attenuation factor

k together with resolution, compensating for the increasing

number of queries, Nevertheless, the size of the patch im-

pacts on the result with smaller patches having better ren-

dering quality, see Tab. 1. For smaller patches, each feature

vector is decoded into less pixels than for a bigger patch,

and more information is recovered from the same amount

of data. Excessively increasing the patch reduces the qual-

ity of reconstructed views.

5. Limitations

Our proposed decoder reduces the complexity problem

of decoding images with Transformers. Despite that, we

cannot decode single pixels and performance may depend

on choosing an appropriate patch size. As a simple heuris-

tic to choose the patch, we propose to keep nq ∼ nkv , as

it has been shown that 1) rendering speed saturates for big-

ger patches, and 2) too much compression reduces decoding

performance. Nevertheless, hyper-parameter tuning may be

needed to find the best patch size for each model. Also note

that we have only evaluated square patches. Nevertheless

this method can also be used with rectangular patches to

obtain an intermediate number of queries.

6. Conclusion

In this paper we propose Ray-Patch, which reduces sig-

nificantly the cost associated to visual transformer decoders.

We validate experimentally our approach and its benefits by

integrating it into a State-of-the-art LFT model. The mod-

els with our Ray-Patch decoder match or even outperform

the baseline models in photometric metrics, while at the

same time reducing the computation and increasing infer-

ence speed one order of magnitude respectively. In addi-

tion, this is achieved with a minimum modification to the

implementation of the baseline. Reducing the computa-

tional footprint of LFTs is essential for its deployment in

constrained platforms such as mobile devices or robots, in

the same line than works such as [21, 36] did in other archi-

tectures and tasks.
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Leonidas J Guibas, Klaus Greff, and Thomas Kipf. Ob-

ject scene representation transformer. arXiv preprint
arXiv:2206.06922, 2022.

[28] Mehdi SM Sajjadi, Henning Meyer, Etienne Pot, Urs

Bergmann, Klaus Greff, Noha Radwan, Suhani Vora, Mario
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