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Abstract

We present an efficient alternative to the convolutional
layer using cheap spatial transformations. This construc-
tion exploits an inherent spatial redundancy of the learned
convolutional filters to enable a much greater parameter ef-
ficiency, while maintaining the top-end accuracy of their
dense counter-parts. Training these networks is modelled
as a generalised pruning problem, whereby the pruned fil-
ters are replaced with cheap transformations from the set of
non-pruned filters. We provide an efficient implementation
of the proposed layer, followed by two natural extensions to
avoid excessive feature compression and to improve the ex-
pressivity of the transformed features. We show that these
networks can achieve comparable or improved performance
to state-of-the-art pruning models across both the CIFAR-
10 and ImageNet-1K datasets.

1. Introduction
Convolutional neural networks (CNNs) have achieved

state-of-the-art results across a range of computer vision

tasks [6, 45]. Despite their success, these models are typi-

cally far too large and computationally expensive for their

deployment on resource constrained devices, such as mo-

bile phones or edge devices. Recent work on compressing

CNNs [7, 15, 16, 28, 31, 42, 51, 59], have exploited the

inherent weight redundancy using structured pruning. This

approach provides a way to reduce the size of a network

without relying on sparse software libraries or hardware ac-

celerators. Most of these methods involve ranking the im-

portance of filters and then removing those that fall below

a specific threshold. However, it is important to note that

when the pruning rates are high, some of these pruned fil-

ters can still contribute in retaining the top-end accuracy.

To address this limitation, we propose a cheap decompo-

sition of the convolutional layer where the pruned filters

are reconstructed using cheap spatial transformations of the

non-pruned filters, which we call templates. We propose

an approach to transfer an existing CNN to this efficient

architecture through a generalised pruning pipeline. This

methodology can be considered a natural extension of prun-

ing, but instead of zeroing out the pruned filters, we are re-

placing them with the cheap template transformation. This

work can be related to group equivariant convolutional net-

works [5], which consider the hand-crafted construction of

filters using a pre-defined group to learn equivariant fea-

tures. In contrast to this work, we jointly learn both the

transformations and templates with the alternative objective

of training small and efficient CNNs. Our contributions can

be summarised as follows:

• We propose a novel approach to construct expressive

convolutional filters from cheap spatial transforma-

tions using a set of filter templates.

• We model the training as a generalised pruning prob-

lem with a simple magnitude based saliency measure.

• We introduce a grouped extension to mitigates exces-

sive feature compression.

• Our results show competitive performance over state-

of-the-art pruning methods on both the CIFAR-10 and

ImageNet-1K datasets.

1.1. Related work

The most relevant work can be divided into pruning, low-

rank decomposition, and knowledge distillation.

Pruning explicitly exploits the inherent parameter re-

dundancy by removing individual weight entries or entire

filters that have the least contribution to the performance

on a given task. This was first introduced in [13, 26] us-

ing the Hessian of the loss to derive a saliency measure

for the individual weights. SNIP [27] proposed to prune

weights using the connection sensitivity between individ-

ual neurons. Subsequent work propose a sparse neuron

skip layer [46] to achieve fast training convergence and a

high connectivity between layers. Cheap heuristic measures

have also been used, such as the magnitude [12, 28], geo-

metric median [15], or average percentage of zeros [20].

Although some of these unstructured pruning methods are

able to achieve significant model size compression, the the-

oretical reduction in floating-point operations (FLOPs) does
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Figure 1. Constructing more convolutional filters using cheap spatial transformations. (a) Original convolutional layer. (b) Depth-wise

separable layers, which fully decouple the spatial and depthwise aggregation of features. (c) Proposed layer expressed new filters as spatial

transformations of a smaller set of templates.

not translate to the same practical improvements without

the use of dedicated sparse hardware and software libraries.

This has led to the more widespread adoption of structured

pruning approaches, which focus on removing entire fil-

ters. [59] introduced additional loss terms to select the

channels with the highest discriminative power, while [55]

proposed to prune in accordance with a neural importance

score. DMCP [10] models the pruning operation as a dif-

ferentiable markov chain, where compression is achieved

through a sparsity inducing prior. Similarly, [1, 57] model

pruning in the probabilistic setting using both hierarchical

and sparsity inducing priors. Unlike these prior works, we

propose to reconstruct the pruned filters using cheap trans-

formations. These reconstructed filters are shown to be ex-

pressive and learn diverse features, thus mitigating the need

for any sophisticated pruning strategies.

Low-rank decomposition is concerned with compactly

representing a high-dimensional tensor, such as the convo-

lutional weights, as linear compositions of much smaller,

lower-dimensional, tensors, called factors. Any linear op-

erations that are then parameterised by these weights can

be expressed using cheaper operations with these factors,

which can lead to a reduction in the computational com-

plexity. Depthwise separable convolutions split the standard

convolution into two stages, the first extracts the local spa-

tial features in the input, while the second aggregates these

features across channels. They were originally proposed in

Xception [4] but have since been adopted in the design of

a range of efficient models [2, 9, 19, 47]. This has led to

the development of optimized GPU kernels that bridge the

gap between the theoretical FLOP improvements and the

practical on-device latency. Both CP-decomposition [18]

and Tucker decomposition [49] have also been used to con-

struct or compress pre-trained models [21, 23, 37]. Another

line of work has explored the use of tensor networks as a

mathematical framework for generalising tensor decompo-

sition in the context of deep learning [14, 50]. Ghost mod-

ules [11] use depthwise convolutions to construct more fea-

tures, leading to improved capacity at a much smaller over-

head. Our proposed layer can be seen as an alternative pa-

rameterisation of the convolutional weights which can be

naturally pruned using a generalised pruning pipeline.

Knowledge distillation attempts to transfer the knowl-

edge of a large pre-trained model (teacher) to a much

smaller compressed model (student). This was origi-

nally introduced in the context of image classification [17],

whereby the soft predictions of the teacher can act as pseudo

ground truth labels for the student. This methodology en-

ables the student model to more easily learn the correla-

tions between classes which are not available through the

one-hot encoded ground truth labels. Hinted losses further

provide knowledge distillation for the intermediate repre-

sentation [43] and can be modelled as reconstruction L2

loss terms in the same space or in a projected feature

space [3, 36, 38, 39, 41, 52]. Weight sharing and jointly

training models at different widths/pruning-rates has also

been shown to provide implicit knowledge distillation to the

smallest models [53, 54]. In general, our proposed method

is orthogonal to knowledge distillation - its adoption can be

employed in addition to further improve performance.

2. Method

In this section we propose a novel decomposition of the

convolutional layer. We do this be expressing the convo-

lutional filters as spatial transformations of a compact set

of template filters. These templates are obtained through

a well-established pruning procedure, ensuring discrimi-

native features. Subsequently, we present an algorithmi-

cally equivalent derivation of this layer that has much fewer
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floating-point operations (FLOPs). Moreover, we extend

our approach naturally by introducing a group extension,

which enhances the connectivity between layers. This ex-

tension enables an improved channel connectivity, fostering

more robust and informative feature propagation.

2.1. Constructing diverse convolutional filters.

Let W = {Wn ∈ IRK×K×C}Nn=1 describe the set of

filters for a given convolutional layer with an input depth

C, output depth N , and a receptive field size of K × K.

Our method is based on an assumption that a large sub-

set of these filters can be faithfully approximated as spatial

transformations of a much smaller set of filters, which we

call templates B. For simplicity, and without loss in gen-

erality, consider the scalar transformations, which can be

implemented as cheap element-wise products between the

spatial entries of the templates. Thus, for a K × K × C
template, each transformation can be parameterised using

K × K learnable weights. Consider the case with N tem-

plates and N output feature maps. The proposed decompo-

sition is given as follows:

Yh,w,n =
K∑

kw,kh

C∑
i

Xh′,w′,i · Wkh,kw,c,n (1)

≈
K∑

kw,kh

C∑
i

Xh′,w′,i · Bkh,kw,i,n · Tkh,kw,n (2)

h′ = (h−1)s+ kh − p, w′ = (w − 1)s+ kw − p

where s is the stride and p is zero-padding. The gen-

eral formulation using affine transformations is illustrated

in figure 1. Model compression can be achieved when the

number of basis filters M is less than the number of output

feature maps N . This is realised through pruning, which is

discussed in second 2.2. In this case, the templates are then

re-used to compute more filters using different transforma-

tions.

The choice of mapping from which template to which

output feature map is not critical, as long as it is fixed af-

ter the pruning stage to enable fine-tuning. For our exper-

iments, we set this mapping to be i = j mod M , where

the ith output feature map is allocated the jth template, and

where M is the total number of templates. This choice of

mapping ensures that all templates are uniformly used, thus

enabling a diverse set of transformed filters. The spatial

transformations are then jointly learned alongside the tem-

plates.

2.2. Using pruning to select the filter templates.

The pruning literature has proposed increasingly sophis-

ticated pruning heuristics and training pipelines. Exam-

ples of such including layer-wise pruning strategies [8] and

1×1 Convolution Gather

Figure 2. Too few templates can overly compress the input fea-
tures. We propose to introduce a group parameter to naturally

balance the expressiveness of the both the template and transfor-

mation stages.

gradient-based saliency measures [40], which incur addi-

tional hyperparameters and increased computational costs.

In favour of simplicity, and to demonstrate the general-

isability of our decomposition, we propose to use a very

simple magnitude-based criterion to rank the importance of

filters for selecting the set of templates. We observe that

this choice of saliency measure naturally leads to a uniform

pruning strategy across all layers in the network (figure 6),

which reduces excessive feature compression for any given

layer (see section 2.4).

Figure 4. Comparison with a pruned baseline and the im-
portance of which pruning heuristic. (left) Performance of

a VGG16 network trained using affine (with) and scalar (with-

out) spatial transformations with the same training methodology.

(right) show the performance trade-off at different pruning rates

using both a magnitude-based and a gradient-based saliency.

We provide an ablation on the importance on the choice

of saliency measure in figure 4 (right). In this ablation

we compare the performance using two different measures,

namely magnitude based and gradient based [40]. Although

in some cases the gradient based measure does lead to bet-

ter performance, which is attributed to a more discrimina-

tive selection of templates, it does come at an increased

computational overhead. In favour of simplicity, and to

demonstrate the robustness to the choice of templates, we

use a magnitude based measure throughout. In fact, for the

ImageNet-1K experiments we extend this hypothesis and

use a randomly initialised network to begin with, rather than

from a pre-trained network - as is more commonly used in

the pruning literature.
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Figure 3. Visualising learned transformations for a given layer. (left) original learned filters. (middle) expressive filters using affine

template transformations. (right) pruning filters. Both the vanilla pruned layer and the decomposed layers use a pruning rate of 0.7. Each

column represents a filter for a given output channel and black pixels represent zero entries.

2.3. Performance and efficient implementations.

Computing the output features using the transformed fil-

ters and then using a standard convolution would not lead

to any reduction in FLOPs. To address this, we propose

to decompose the convolutional layer into two stages. The

first computes the template features Z using the template

filters B, while the second projects these features to a dif-

ferent space using the spatial transformations T . The out-

put features are then the union of the original template fea-

tures (identity transformations) and the transformed fea-

tures. This two stage implementation is algorithmically

equivalent to first constructing the filters and then perform-

ing a convolution, and its derivation is given as follows:

Yh,w,n ≈
K∑

kw,kh

C∑
i

Xh′,w′,i · Bkh,kw,i,n · Tkh,kw,n (3)

=
K∑

kw,kh

Tkh,kw,n

(
C∑
i

Xh′,w′,i · Bkh,kw,i,n

)
︸ ︷︷ ︸

Z

(4)

Computing Z can be achieved using a pointwise convolu-

tion, which translates to an optimised general matrix multi-

ply primitive. The second stage, which consists of project-

ing Z to the output space, reduces to a series of gather oper-

ations and multiplications, which will implement the spatial

transformations. Both of these operations can be trivially

implemented in most deep learning frameworks.

2.4. Channel connectivity and feature compression.

By design, the proposed decomposition preserves the

same number of input and output channels as the original

convolution. This means that all the pruned filters are be-

ing reconstructed using some cheap and learned template

transformation. The consequence of this design is that at

high pruning rates there will be a significant bottleneck in

the latent space Z (see figure 2). This bottleneck can re-

sult in significant feature compression that can degrade the

downstream performance and discriminative power of rep-

resentations. We could address this problem by simply in-

creasing the number of templates per layer, but this would

incur a significant overhead in terms of both parameters and

FLOPs. Instead, we propose to introduce a grouped ex-

tension that can naturally scale the dimensionality of the

latent space Z with a minimal computational and parame-

ter overhead. To do this we replace the pointwise convolu-
tion in the two stage processing with a grouped pointwise
convolution [25], which has an efficient implementation in

most deep learning frameworks. This transformation then

translates to the sum of G transformations applied to fea-

ture maps from the G distinct groups. Doing so in this

way enables cross-group information flow without the need

for any channel shuffles [56]. Figure 2 graphically demon-

strates this grouped extension. On the left is the original

case, whereby G = 1. At this pruning rate, there is a very

large compression of features. Increasing the groups to 2 (as

shown on the right) provides a natural scheme for increasing

the depth of Z without incurring any significant computa-

tional overhead. The results of the G different transforma-

tions across groups are then added to form each of the N
output channels.

Figure 5. Importance of channel connectivity and the group
extension. (left) Using more groups enables a smaller bottleneck

ratio, which improves the top-end accuracy. (right) shows that

increasing the minimum number of templates also reduces feature

compression but at a much larger overall cost.
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In the limiting case where G = M , the channel connec-

tivity pattern is very similar to that of depthwise-separable

convolutions since there will be a one-to-one mapping

between channels in the first stage, while the second stage

will be fully connected. However, there is still a significant

distinction between the two - our proposed decomposition

enables spatial aggregation of features in both stages.

Figure 2 demonstrates the importance of this grouped ex-

tension at high pruning rates. We find that although simply

increasing the minimum number of templates in each layer

does implicitly address this feature compression problem, it

comes at a much larger overall cost. In general, G can be

tuned depending on the target pruning rate.

2.5. Computational cost and parameter efficiency.

The standard convolutional layer has the computational

cost of the order of H ·W ·K2 ·C ·N , whereas the cost of

the proposed decomposition is given by:

FLOPS = H ·W ·K2 · C
�G

·M ·�G+ (5)

H ·W ·K2 ·G · (N −M)

Where M indicates the number of templates and G
is the number of groups. The reduction in computation

(FLOPS ↓) is subsequently given by:

FLOPS ↓ =
HWK2 · C ·M +HWK2 ·G · (N −M)

HWK2 · C ·N
(6)

=
M

N
+

G

C
− GM

CN
(7)

We prune the set of templates such that M � N and

we set G � C to yield a reduction in FLOPs. We further

improve the bottleneck problem by using G · M templates

applied to C/G channels that are efficiently implemented

with grouped convolutions. Finally, we ensure cross-group

information flow by increasing the number of cheap spatial

transformations that are then applied cross group.

From a similar view, we can also derive the reduction in

parameters, where the number of parameters for a convolu-

tional layer is given by:

PARAMS = K2 · C ·N (8)

and our proposed decomposition has a parameter count

given by:

PARAMS = K2 · C
G

·M +K2 ·G · (N −M) (9)

Not the subtraction is because we use M identity trans-

formation, while the rest of the output features are com-

puted using cheap spatial transformations. Using both

8 and 9, we can derive the reduction in parameters

(PARAMS ↓), which ends up being identical to equation

7.

PARAMS ↓ =
K2 · C

G ·M +K2 ·G · (N −M)

K2 · C ·N (10)

=
M

GN
+

G

C
− GM

CN
(11)

When using more general and expressive spatial trans-

formations, such as GL(3) or SO(3), the second stage can

instead be implemented using a bilinear sampling of neigh-

bouring spatial pixels in Z . These transformations will be

parameterised using a 2× 3 matrix and result in the number

of floating point operations being increased to 4 per spatial

location. This increase in FLOPs and the number of param-

eters is often small, but it enables a significant increase in

the expressiveness of transformations. However, in general,

we observe that a learned scalar transformations can still

yield a strong accuracy v.s. performance trade-off (see fig-

ure 2 left and table 3). We wish to highlight that in the case

of these more general spatial transformations, the parame-

ter reduction equation 11 and flop reduction equation 7 will

differ.

Figure 6. Comparing the pruning rates of each layer using dif-
ferent saliency measures. We see that a magnitude based (MAG)

criterion exhibits a more uniform pruning rate than gradient based

measures (FO).

3. Experiments
In this section we evaluate our approach on the CIFAR

and ImageNet datasets. The models are compared through

the number of parameters, the number of floating point

operations, followed by the top-1 classification accuracy.

All of these models are trained on a single NVIDIA RTX

2080Ti GPU using either stochastic gradient descent (CI-

FAR10) or AdamW (ImageNet-1K). We set the minimum

number of templates for each layer to be 8 for CIFAR10 and
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Model Method Baseline Acc. (%) Acc. (%) Acc. Drop (%) FLOPs ↓ (%) Parameters ↓ (%)

VGG16

Hinge [29] 93.59 94.02 -0.43 39.07 19.95

Ours 93.26 93.92 -0.66 45.56 56.77
NSPPR [58] 93.88 93.92 -0.04 54.00 -

AOFP [7] 93.38 93.84 -0.46 60.17 -

DLRFC [16] 93.25 93.93 -0.68 61.23 92.86

DPFPS [44] 93.85 93.67 0.18 70.85 93.92

Ours 93.26 93.62 -0.36 61.38 81.15
ABC [30] 93.02 93.08 -0.06 73.68 88.68

HRank [32] 93.96 91.23 2.73 76.50 92.00

AOFP [7] 93.38 93.28 0.10 75.27 -

Ours 93.26 92.74 0.52 80.89 95.26

NISP [55] 93.04 93.01 0.03 43.60 42.60

ResNet56

Ours 93.60 94.18 -0.58 35.91 51.64
FPGM [15] 93.59 93.49 0.10 53.00 -

NSPPR [58] 93.83 93.84 -0.03 47.00 -

ABC [30] 93.26 93.23 0.03 54.13 54.20

SRR-GR [51] 93.38 93.75 -0.37 53.80 -

Ours 93.60 93.35 0.25 48.27 71.24
DPFPS [44] 93.81 93.20 0.61 52.86 46.84

Ours 93.60 92.81 0.79 56.36 80.05

Table 1. Comparison to other pruning methods on CIFAR10. Each model is trained using a magnitude based measure for selecting the

filter templates, number of groups = 2, and with a minimum of 8 template filters per layer to avoid catastrophic pruning.

32 for ImageNet-1K. Finally, we use the number of groups

in each layer to be 2 for all the main benchmark experiments

3.1. Experimental results on CIFAR-10

The CIFAR10 dataset [24] consist of 60K 32× 32 RGB

images across 10 classes and with a 5:1 training/testing

split. The chosen VGG16 [45] architecture is modified for

this dataset with batch normalisation layers after each con-

volution block and by reducing the number of classifica-

tion layers to one. During training, we augment the datasets

using random horizontal flips, random 32 × 32 crops, and

random rotations. The baseline architectures are trained for

300 epochs with a step learning rate decay and we use a

simple magnitude based criterion for ordering and select-

ing the most important filters to form the set of templates.

This selection is in conjunction with a simple linear prun-

ing schedule that spans the first 40 epochs of training. We

highlight that this choice of pruning schedule is in contrast

to most of the other pruning methods [35, 59], which can

adopt much longer pruning stages and introduce additional

layer-by-layer stopping conditions. The results are shown

in table 1 and show comparable or improved performance

to the much more sophisticated pruning strategies across a

wide range of compression ratios.

3.2. Experimental results on ImageNet-1K

For experiments on ImageNet-1K we use the ResNet-50

architecture and the same magnitude based saliency mea-

sure described in section 3.1. In general, magnitude pruning

was empirically shown to provide a more uniform pruning

rate across all of the residual blocks, which is important to

avoid overly compressing intermediate features. We set the

minimum number of templates for each layer to be 8 and the

number of groups in each layer to be 2. The model is trained

for a 300 epochs with a linear learning rate decay every 25

epochs. Finally, we use MixUp and CutMix augmentations

with α set to 0.1 and 1.0 respectively.

The ImageNet results are shown in table 2 and show

comparable performance to state-of-the-art pruning meth-

ods without the need for extensive pruning and fine-tuning

pipelines. To further demonstrate the robustness of this de-

composition to the choice of templates and the effective-

ness of joint template/transformation training, we propose

to begin training from a randomly initialised network. In

doing so, we attain comparable performance other pruning

methodologies, without the need for any sophisticated prun-

ing pipeline and stopping conditions.

3.3. Ablation experiments

Group extension. To demonstrate the benefit of our pro-

posed group extension, we train a VGG16 network at dif-

ferent pruning rates and with a varying number of groups.

The results in figure 5 (left) show that at high pruning rates,

whereby the layer will incur a large compression of fea-

tures, increasing the number of groups will help. Although

increasing the minimum number of templates per layer can
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Model Method Baseline Acc. (%) Acc. (%) FLOPs ↓ (%) Parameters ↓ (%)

ResNet50

G-SD-B [33] 76.15 75.85 44 23

MetaPruning [34] 76.60 75.40 50 -

NSPPR [58] 76.15 75.63 54 -

DPFPS [44] 76.15 75.55 46 -

S-COP [48] 76.15 75.26 54 52

LRF-60 [22] 76.15 75.71 56 53

DLRFC [16] 76.13 75.84 54 40

Ours 76.20 75.59 47 40

Table 2. Comparison to other pruning methods on ImageNet-1K. Our model is trained from random initialisation and with a simple

magnitude based criterion. Using number of groups = 2 and with a minimum of 32 templates per layer.

also partially address this problem as shown in figure 5

(right), it would come with a much more significant compu-

tational overhead. In practice, we find that carefully select-

ing both the minimum number of templates and the number

of groups can lead to the best performance trade-off.

Transformation family. We explore the importance of

choosing a suitable parametric family of transformations for

the template filters. To do this, we first consider simple

scalar multiplications of the templates, and then we con-

sider learnable rotations. Finally, we consider the more ex-

pressive affine transformations. The results are shown in

figure 3. We find that introducing more expressive transfor-

mations does improve the attainable performance, which is

more significant at the higher pruning rates.

We explore the importance of selecting an appropriate

parametric family of transformations for the template fil-

ters. To do this, we first consider a simple scalar multipli-

cations applied to the templates. Subsequently, we extend

our analysis to encompass learnable rotations, further ex-

panding the range of potential transformations. Finally, to

unlock the full expressive transformations, we consider the

general linear group, which provide a richer and more ver-

satile set of manipulations.

The empirical findings from our experiments are pre-

sented in the illustrative Figure 3, which serves as a visual

representation of the attained results. Notably, we observe

a discernible improvement in performance as we progress

from simpler transformations to more expressive ones. This

enhancement is particularly pronounced when operating at

higher pruning rates, highlighting the significance of em-

bracing the full spectrum of transformation possibilities.

Visualising learned transformations. Figure 3 provides

a comparison between the original filters, the reconstructed

filters, and the pruned filters. We can discern that the

the reconstructed filters are significantly distinct, thus en-

abling highly discriminative features for the downstream

task. This result is in stark contrast with conventional prun-

ing, which simply zeroes out these pruned filters. This visu-

Transformations Top-1 Accuracy Pruning Rate

Scalar 90.62% 0.9

SO(3) 92.32% 0.9

GL(3) 92.33% 0.9
Scalar 92.48% 0.7

SO(3) 93.48% 0.7

GL(3) 93.57% 0.7

Table 3. Ablating the family of transformations. Increasing the

expressivity of transformations has a small improvement in perfor-

mance, suggesting that most of the network capacity is reserved

for depthwise feature aggregation.

alisation highlights the significance of our novel approach

which not only prunes but also actively reconstructs the

filters, resulting in more informative representation of the

data.

Efficient Implementation. To demonstrate that the theo-

retical reduction in FLOPs can translate to a real reduction

in latency, we implement a simple CUDA kernel for the de-

composed layer. The results are shown in figure 7, where

we can see that at even moderate pruning rates there is a no-

ticeable reduction in latency in comparison to the standard

convolutional layer. We can also see that a large propor-

tion of the latency is being spent on computing the tem-

plate features, while a much smaller proportion comes from

the scalar transformation of these features, which is imple-

mented through a parallelized gather operation.

4. Conclusion and Future work
In this paper, we proposed the use of cheap transforma-

tions to reconstruct pruned filters. Instead of zeroing out the

pruned filters, they are replaced with spatial transformations

from the remaining set of non-pruned filters. These trained

networks are able to achieve comparable or improved re-

sults on the image classification task across a range of

datasets and architectures, despite using a simple magni-
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Original

Ours

Figure 7. Latency of the proposed decomposition with an effi-
cient implementation. (left) Compute time of an original VGG16

network with and without the decomposition at various pruning

rates. (right) Cumulative contribution of each operation on the

overall on-device compute time.

tude based pruning criterion. We also introduce a grouped

extension that can mitigate excessive feature compression

at a minimal computational cost. Our approach applied to

VGG16, ResNet34 and ResNet50 is able to significantly re-

duce the models size and computational cost while retaining

the top recognition accuracy on CIFAR-10 and ImageNet-

1K datasets.

Future research may explore potential applications in lo-

calization tasks that rely on equivariant features. Addition-

ally, another promising direction is in data-efficient training.

By incorporating hand-crafted transformations and lever-

aging prior knowledge of the data, it becomes possible to

eliminate the necessity for the network to learn this infor-

mation. Finally, we hope that this work will lead the further

co-design of more weight decompositions using generalised

pruning pipelines.
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