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Abstract

We present an efficient alternative to the convolutional
layer using cheap spatial transformations. This construc-
tion exploits an inherent spatial redundancy of the learned
convolutional filters to enable a much greater parameter ef-
ficiency, while maintaining the top-end accuracy of their
dense counter-parts. Training these networks is modelled
as a generalised pruning problem, whereby the pruned fil-
ters are replaced with cheap transformations from the set of
non-pruned filters. We provide an efficient implementation
of the proposed layer, followed by two natural extensions to
avoid excessive feature compression and to improve the ex-
pressivity of the transformed features. We show that these
networks can achieve comparable or improved performance
to state-of-the-art pruning models across both the CIFAR-
10 and ImageNet-1K datasets.

1. Introduction

Convolutional neural networks (CNNs) have achieved
state-of-the-art results across a range of computer vision
tasks [0, 45]. Despite their success, these models are typi-
cally far too large and computationally expensive for their
deployment on resource constrained devices, such as mo-
bile phones or edge devices. Recent work on compressing
CNNs [7, 15, 16, 28, 31, 42, 51, 59], have exploited the
inherent weight redundancy using structured pruning. This
approach provides a way to reduce the size of a network
without relying on sparse software libraries or hardware ac-
celerators. Most of these methods involve ranking the im-
portance of filters and then removing those that fall below
a specific threshold. However, it is important to note that
when the pruning rates are high, some of these pruned fil-
ters can still contribute in retaining the top-end accuracy.
To address this limitation, we propose a cheap decompo-
sition of the convolutional layer where the pruned filters
are reconstructed using cheap spatial transformations of the
non-pruned filters, which we call templates. We propose
an approach to transfer an existing CNN to this efficient
architecture through a generalised pruning pipeline. This
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methodology can be considered a natural extension of prun-
ing, but instead of zeroing out the pruned filters, we are re-
placing them with the cheap template transformation. This
work can be related to group equivariant convolutional net-
works [5], which consider the hand-crafted construction of
filters using a pre-defined group to learn equivariant fea-
tures. In contrast to this work, we jointly learn both the
transformations and templates with the alternative objective
of training small and efficient CNNs. Our contributions can
be summarised as follows:

e We propose a novel approach to construct expressive
convolutional filters from cheap spatial transforma-
tions using a set of filter templates.

e We model the training as a generalised pruning prob-
lem with a simple magnitude based saliency measure.

e We introduce a grouped extension to mitigates exces-
sive feature compression.

* QOur results show competitive performance over state-
of-the-art pruning methods on both the CIFAR-10 and
ImageNet-1K datasets.

1.1. Related work

The most relevant work can be divided into pruning, low-
rank decomposition, and knowledge distillation.

Pruning explicitly exploits the inherent parameter re-
dundancy by removing individual weight entries or entire
filters that have the least contribution to the performance
on a given task. This was first introduced in [13, 26] us-
ing the Hessian of the loss to derive a saliency measure
for the individual weights. SNIP [27] proposed to prune
weights using the connection sensitivity between individ-
ual neurons. Subsequent work propose a sparse neuron
skip layer [46] to achieve fast training convergence and a
high connectivity between layers. Cheap heuristic measures
have also been used, such as the magnitude [12, 28], geo-
metric median [15], or average percentage of zeros [20].
Although some of these unstructured pruning methods are
able to achieve significant model size compression, the the-
oretical reduction in floating-point operations (FLOPs) does
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Figure 1. Constructing more convolutional filters using cheap spatial transformations. (a) Original convolutional layer. (b) Depth-wise
separable layers, which fully decouple the spatial and depthwise aggregation of features. (c) Proposed layer expressed new filters as spatial

transformations of a smaller set of templates.

not translate to the same practical improvements without
the use of dedicated sparse hardware and software libraries.
This has led to the more widespread adoption of structured
pruning approaches, which focus on removing entire fil-
ters. [59] introduced additional loss terms to select the
channels with the highest discriminative power, while [55]
proposed to prune in accordance with a neural importance
score. DMCP [10] models the pruning operation as a dif-
ferentiable markov chain, where compression is achieved
through a sparsity inducing prior. Similarly, [1, 57] model
pruning in the probabilistic setting using both hierarchical
and sparsity inducing priors. Unlike these prior works, we
propose to reconstruct the pruned filters using cheap trans-
formations. These reconstructed filters are shown to be ex-
pressive and learn diverse features, thus mitigating the need
for any sophisticated pruning strategies.

Low-rank decomposition is concerned with compactly
representing a high-dimensional tensor, such as the convo-
lutional weights, as linear compositions of much smaller,
lower-dimensional, tensors, called factors. Any linear op-
erations that are then parameterised by these weights can
be expressed using cheaper operations with these factors,
which can lead to a reduction in the computational com-
plexity. Depthwise separable convolutions split the standard
convolution into two stages, the first extracts the local spa-
tial features in the input, while the second aggregates these
features across channels. They were originally proposed in
Xception [4] but have since been adopted in the design of
a range of efficient models [2, 9, 19, 47]. This has led to
the development of optimized GPU kernels that bridge the
gap between the theoretical FLOP improvements and the
practical on-device latency. Both CP-decomposition [18]
and Tucker decomposition [49] have also been used to con-
struct or compress pre-trained models [21, 23, 37]. Another
line of work has explored the use of tensor networks as a

mathematical framework for generalising tensor decompo-
sition in the context of deep learning [14, 50]. Ghost mod-
ules [1 1] use depthwise convolutions to construct more fea-
tures, leading to improved capacity at a much smaller over-
head. Our proposed layer can be seen as an alternative pa-
rameterisation of the convolutional weights which can be
naturally pruned using a generalised pruning pipeline.
Knowledge distillation attempts to transfer the knowl-
edge of a large pre-trained model (teacher) to a much
smaller compressed model (student). This was origi-
nally introduced in the context of image classification [17],
whereby the soft predictions of the teacher can act as pseudo
ground truth labels for the student. This methodology en-
ables the student model to more easily learn the correla-
tions between classes which are not available through the
one-hot encoded ground truth labels. Hinted losses further
provide knowledge distillation for the intermediate repre-
sentation [43] and can be modelled as reconstruction L2
loss terms in the same space or in a projected feature
space [3, 36, 38, 39, 41, 52]. Weight sharing and jointly
training models at different widths/pruning-rates has also
been shown to provide implicit knowledge distillation to the
smallest models [53, 54]. In general, our proposed method
is orthogonal to knowledge distillation - its adoption can be
employed in addition to further improve performance.

2. Method

In this section we propose a novel decomposition of the
convolutional layer. We do this be expressing the convo-
Iutional filters as spatial transformations of a compact set
of template filters. These templates are obtained through
a well-established pruning procedure, ensuring discrimi-
native features. Subsequently, we present an algorithmi-
cally equivalent derivation of this layer that has much fewer
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floating-point operations (FLOPs). Moreover, we extend
our approach naturally by introducing a group extension,
which enhances the connectivity between layers. This ex-
tension enables an improved channel connectivity, fostering
more robust and informative feature propagation.

2.1. Constructing diverse convolutional filters.

Let W = {W, € RFE*KXCIN_ describe the set of
filters for a given convolutional layer with an input depth
C, output depth NV, and a receptive field size of K x K.
Our method is based on an assumption that a large sub-
set of these filters can be faithfully approximated as spatial
transformations of a much smaller set of filters, which we
call templates B. For simplicity, and without loss in gen-
erality, consider the scalar transformations, which can be
implemented as cheap element-wise products between the
spatial entries of the templates. Thus, fora K x K x C
template, each transformation can be parameterised using
K x K learnable weights. Consider the case with N tem-
plates and IV output feature maps. The proposed decompo-
sition is given as follows:

K C
Z Z Xh’,w’,i ’ th,kw,c,n (D)

kw,kp 1
K C

Z Z Xt i Bry, kwsin * Thnkown (2)

K ki i
B =(h-1)s+k,—p w=w-1s+ky,—p

yh,w,n =

Q

where s is the stride and p is zero-padding. The gen-
eral formulation using affine transformations is illustrated
in figure 1. Model compression can be achieved when the
number of basis filters M is less than the number of output
feature maps N. This is realised through pruning, which is
discussed in second 2.2. In this case, the templates are then
re-used to compute more filters using different transforma-
tions.

The choice of mapping from which template to which
output feature map is not critical, as long as it is fixed af-
ter the pruning stage to enable fine-tuning. For our exper-
iments, we set this mapping to be ¢« = 7 mod M, where
the ith output feature map is allocated the jth template, and
where M is the total number of templates. This choice of
mapping ensures that all templates are uniformly used, thus
enabling a diverse set of transformed filters. The spatial
transformations are then jointly learned alongside the tem-
plates.

2.2. Using pruning to select the filter templates.

The pruning literature has proposed increasingly sophis-
ticated pruning heuristics and training pipelines. Exam-
ples of such including layer-wise pruning strategies [8] and

c M N C G-M N
B %

X Z

1x1 Convolution Gather
Figure 2. Too few templates can overly compress the input fea-
tures. We propose to introduce a group parameter to naturally
balance the expressiveness of the both the template and transfor-
mation stages.

gradient-based saliency measures [40], which incur addi-
tional hyperparameters and increased computational costs.
In favour of simplicity, and to demonstrate the general-
isability of our decomposition, we propose to use a very
simple magnitude-based criterion to rank the importance of
filters for selecting the set of templates. We observe that
this choice of saliency measure naturally leads to a uniform
pruning strategy across all layers in the network (figure 6),
which reduces excessive feature compression for any given
layer (see section 2.4).
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Figure 4. Comparison with a pruned baseline and the im-
portance of which pruning heuristic. (left) Performance of
a VGG16 network trained using affine (with) and scalar (with-
out) spatial transformations with the same training methodology.
(right) show the performance trade-off at different pruning rates
using both a magnitude-based and a gradient-based saliency.

We provide an ablation on the importance on the choice
of saliency measure in figure 4 (right). In this ablation
we compare the performance using two different measures,
namely magnitude based and gradient based [40]. Although
in some cases the gradient based measure does lead to bet-
ter performance, which is attributed to a more discrimina-
tive selection of templates, it does come at an increased
computational overhead. In favour of simplicity, and to
demonstrate the robustness to the choice of templates, we
use a magnitude based measure throughout. In fact, for the
ImageNet-1K experiments we extend this hypothesis and
use a randomly initialised network to begin with, rather than
from a pre-trained network - as is more commonly used in
the pruning literature.
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Figure 3. Visualising learned transformations for a given layer. (left) original learned filters. (middle) expressive filters using affine
template transformations. (right) pruning filters. Both the vanilla pruned layer and the decomposed layers use a pruning rate of 0.7. Each

column represents a filter for a given output channel and black pixels represent zero entries.

2.3. Performance and efficient implementations.

Computing the output features using the transformed fil-
ters and then using a standard convolution would not lead
to any reduction in FLOPs. To address this, we propose
to decompose the convolutional layer into two stages. The
first computes the template features Z using the template
filters B, while the second projects these features to a dif-
ferent space using the spatial transformations 7. The out-
put features are then the union of the original template fea-
tures (identity transformations) and the transformed fea-
tures. This two stage implementation is algorithmically
equivalent to first constructing the filters and then perform-
ing a convolution, and its derivation is given as follows:

K C
§ § Xh’,w/,i : Bkh,kw,i,n : E;L,kw,n (3)

yh,w,n ~
kuw,kn 1
K c
= > Tonkwm | D Xnrwri Brokasin | @)
kwrkh i

Z

Computing Z can be achieved using a pointwise convolu-
tion, which translates to an optimised general matrix multi-
ply primitive. The second stage, which consists of project-
ing Z to the output space, reduces to a series of gather oper-
ations and multiplications, which will implement the spatial
transformations. Both of these operations can be trivially
implemented in most deep learning frameworks.

2.4. Channel connectivity and feature compression.

By design, the proposed decomposition preserves the
same number of input and output channels as the original
convolution. This means that all the pruned filters are be-
ing reconstructed using some cheap and learned template
transformation. The consequence of this design is that at
high pruning rates there will be a significant bottleneck in
the latent space Z (see figure 2). This bottleneck can re-
sult in significant feature compression that can degrade the

downstream performance and discriminative power of rep-
resentations. We could address this problem by simply in-
creasing the number of templates per layer, but this would
incur a significant overhead in terms of both parameters and
FLOPs. Instead, we propose to introduce a grouped ex-
tension that can naturally scale the dimensionality of the
latent space Z with a minimal computational and parame-
ter overhead. To do this we replace the pointwise convolu-
tion in the two stage processing with a grouped pointwise
convolution [25], which has an efficient implementation in
most deep learning frameworks. This transformation then
translates to the sum of G transformations applied to fea-
ture maps from the G distinct groups. Doing so in this
way enables cross-group information flow without the need
for any channel shuffles [56]. Figure 2 graphically demon-
strates this grouped extension. On the left is the original
case, whereby G = 1. At this pruning rate, there is a very
large compression of features. Increasing the groups to 2 (as
shown on the right) provides a natural scheme for increasing
the depth of Z without incurring any significant computa-
tional overhead. The results of the G different transforma-
tions across groups are then added to form each of the N
output channels.
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Figure 5. Importance of channel connectivity and the group
extension. (left) Using more groups enables a smaller bottleneck
ratio, which improves the top-end accuracy. (right) shows that
increasing the minimum number of templates also reduces feature
compression but at a much larger overall cost.
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In the limiting case where G = M, the channel connec-
tivity pattern is very similar to that of depthwise-separable
convolutions since there will be a one-to-one mapping
between channels in the first stage, while the second stage
will be fully connected. However, there is still a significant
distinction between the two - our proposed decomposition
enables spatial aggregation of features in both stages.

Figure 2 demonstrates the importance of this grouped ex-
tension at high pruning rates. We find that although simply
increasing the minimum number of templates in each layer
does implicitly address this feature compression problem, it
comes at a much larger overall cost. In general, G can be
tuned depending on the target pruning rate.

2.5. Computational cost and parameter efficiency.

The standard convolutional layer has the computational
cost of the order of H - W - K2 - C - N, whereas the cost of
the proposed decomposition is given by:

FLOPS:H~W-K2-Z,-M~G+ (5)
H-W-K*.G-(N—-M)

Where M indicates the number of templates and G
is the number of groups. The reduction in computation
(FLOPS |) is subsequently given by:

HWK?.C-M+HWK?-G- (N — M)

FLOPS | = HWK?-C-N
(6)
M G GM
“NTCcToN @

We prune the set of templates such that M < N and
we set G < C to yield a reduction in FLOPs. We further
improve the bottleneck problem by using G - M templates
applied to C/G channels that are efficiently implemented
with grouped convolutions. Finally, we ensure cross-group
information flow by increasing the number of cheap spatial
transformations that are then applied cross group.

From a similar view, we can also derive the reduction in
parameters, where the number of parameters for a convolu-
tional layer is given by:

PARAMS = K?.C-N (8)

and our proposed decomposition has a parameter count
given by:

PARAMS:KQ-g~M+K2-G-(N—M) 9)

Not the subtraction is because we use M identity trans-
formation, while the rest of the output features are com-
puted using cheap spatial transformations. Using both
8 and 9, we can derive the reduction in parameters
(PARAMS ), which ends up being identical to equation
7.

K?. & M+K?.G-(N-M)

PARAMS | = TR (10)
M G GM

— - 11

GN ' C CN (1D

When using more general and expressive spatial trans-
formations, such as GL(3) or SO(3), the second stage can
instead be implemented using a bilinear sampling of neigh-
bouring spatial pixels in Z. These transformations will be
parameterised using a 2 X 3 matrix and result in the number
of floating point operations being increased to 4 per spatial
location. This increase in FLOPs and the number of param-
eters is often small, but it enables a significant increase in
the expressiveness of transformations. However, in general,
we observe that a learned scalar transformations can still
yield a strong accuracy v.s. performance trade-off (see fig-
ure 2 left and table 3). We wish to highlight that in the case
of these more general spatial transformations, the parame-
ter reduction equation 11 and flop reduction equation 7 will
differ.
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Figure 6. Comparing the pruning rates of each layer using dif-
ferent saliency measures. We see that a magnitude based (MAG)
criterion exhibits a more uniform pruning rate than gradient based
measures (FO).

3. Experiments

In this section we evaluate our approach on the CIFAR
and ImageNet datasets. The models are compared through
the number of parameters, the number of floating point
operations, followed by the top-1 classification accuracy.
All of these models are trained on a single NVIDIA RTX
2080Ti GPU using either stochastic gradient descent (CI-
FAR10) or AdamW (ImageNet-1K). We set the minimum
number of templates for each layer to be 8 for CIFAR10 and
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Model Method Baseline Acc. (%) Acc. (%) Acc. Drop (%) FLOPs | (%) Parameters | (%)

Hinge [20] 9359 94.02 043 39.07 19.95
s 93.26 93.92 -0.66 45.56 56.77
NSPPR [55] 93.88 93.92 -0.04 54.00 )
vaale  AOFPIT] 9338 93.84 046 60.17 i
DLREC [16] 9325 93.93 0,68 61.23 92.86
DPEPS [44] 93.85 93.67 0.18 70.85 93.92
s 93.26 93.62 -0.36 6138 81.15
ABC [30] 93.02 93.08 -0.06 73.68 88.68
HRank [32] 93.96 9123 273 76.50 92.00
AOFP [7] 93.38 93.28 0.10 7527 ;
s 93.26 92.74 0.52 80.89 95.26
NISP [55] 93.04 93.01 0.03 43.60 42.60
Ours 93.60 94.18 -0.58 35.91 51.64
FPGM [15] 93.59 93.49 0.10 53.00 )
NSPPR [55] 93.83 93.84 20,03 47.00 ;
ABC [30] 9326 9323 0.03 54.13 54.20
ResNet36  GRR-GR [51] 93.38 93.75 037 53.80 )
(s 93.60 93.35 0.25 48.27 71.24
DPFPS [44] 9381 93.20 0.61 52.86 46.84
s 93.60 92.81 0.79 56.36 80.05

Table 1. Comparison to other pruning methods on CIFAR10. Each model is trained using a magnitude based measure for selecting the
filter templates, number of groups = 2, and with a minimum of 8 template filters per layer to avoid catastrophic pruning.

32 for ImageNet-1K. Finally, we use the number of groups  sure described in section 3.1. In general, magnitude pruning
in each layer to be 2 for all the main benchmark experiments ~ Was empirically shown to provide a more uniform pruning

rate across all of the residual blocks, which is important to
3.1. Experimental results on CIFAR-10 avoid overly compressing intermediate features. We set the

The CIFAR 10 dataset [24] consist of 60K 32 x 32 RGB minimum number .of templates for each layer to be 8 anq the
. . .. . number of groups in each layer to be 2. The model is trained
images across 10 classes and with a 5:1 training/testing

split. The chosen VGG16 [45] architecture is modified for fora 300 °p ochs with a llgear learning rat§ decay every 25

. . . epochs. Finally, we use MixUp and CutMix augmentations
this dataset with batch normalisation layers after each con- . .

. . . with « set to 0.1 and 1.0 respectively.

volution block and by reducing the number of classifica- h : h i table 2 and sh
tion layers to one. During training, we augment the datasets The ImageNet results are shown in table and show
using random horizontal flips, random 32 x 32 crops, and comparable performance to state-of-the-art pruning meth-
random rotations. The baseline architectures are trained for o@s Wlthom the need for extensive pruning and ﬁne-tgmng
300 epochs with a step learning rate decay and we use a pipelines. To further demonstrate the robustness of this de-
simple magnitude based criterion for ordering and select- comp051't19n to the choice of ternp lates 'ar}d the effective-
ing the most important filters to form the set of templates. ness of joint template/transformation training, we propose
This selection is in conjunction with a simple linear prun- to .begln tralmng.from a randomly initialised network. . In
ing schedule that spans the first 40 epochs of training. We dou;lg (Sjo’l we attal'nhcom%arabled[;erformancial.ot}ler I:jf umng
highlight that this choice of pruning schedule is in contrast methodologies, without the need for any sophisticated prun-

to most of the other pruning methods [35, 59], which can ing pipeline and stopping conditions.
adopt much longer pruning stages and introduce additional
layer-by-layer stopping conditions. The results are shown
in table 1 and show comparable or improved performance Group extension. To demonstrate the benefit of our pro-
to the much more sophisticated pruning strategies across a posed group extension, we train a VGG16 network at dif-
wide range of compression ratios. ferent pruning rates and with a varying number of groups.
The results in figure 5 (left) show that at high pruning rates,
whereby the layer will incur a large compression of fea-

For experiments on ImageNet-1K we use the ResNet-50 tures, increasing the number of groups will help. Although
architecture and the same magnitude based saliency mea- increasing the minimum number of templates per layer can

3.3. Ablation experiments

3.2. Experimental results on ImageNet-1K
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Model Method Baseline Acc. (%) Acc. (%) FLOPs | (%) Parameters | (%)
G-SD-B [33 76.15 75.85 44 23
MetaPruning [34] 76.60 75.40 50 -
NSPPR [58] 76.15 75.63 54 -

DPFPS [44] 76.15 75.55 46 -
ResNet30 g cop 4g] 76.15 75.26 54 52
LRF-60 [22] 76.15 75.71 56 53
DLRFC [16] 76.13 75.84 54 40
Ours 76.20 75.59 47 40

Table 2. Comparison to other pruning methods on ImageNet-1K. Our model is trained from random initialisation and with a simple
magnitude based criterion. Using number of groups = 2 and with a minimum of 32 templates per layer.

also partially address this problem as shown in figure 5
(right), it would come with a much more significant compu-
tational overhead. In practice, we find that carefully select-
ing both the minimum number of templates and the number
of groups can lead to the best performance trade-off.

Transformation family. We explore the importance of
choosing a suitable parametric family of transformations for
the template filters. To do this, we first consider simple
scalar multiplications of the templates, and then we con-
sider learnable rotations. Finally, we consider the more ex-
pressive affine transformations. The results are shown in
figure 3. We find that introducing more expressive transfor-
mations does improve the attainable performance, which is
more significant at the higher pruning rates.

We explore the importance of selecting an appropriate
parametric family of transformations for the template fil-
ters. To do this, we first consider a simple scalar multipli-
cations applied to the templates. Subsequently, we extend
our analysis to encompass learnable rotations, further ex-
panding the range of potential transformations. Finally, to
unlock the full expressive transformations, we consider the
general linear group, which provide a richer and more ver-
satile set of manipulations.

The empirical findings from our experiments are pre-
sented in the illustrative Figure 3, which serves as a visual
representation of the attained results. Notably, we observe
a discernible improvement in performance as we progress
from simpler transformations to more expressive ones. This
enhancement is particularly pronounced when operating at
higher pruning rates, highlighting the significance of em-
bracing the full spectrum of transformation possibilities.

Visualising learned transformations. Figure 3 provides
a comparison between the original filters, the reconstructed
filters, and the pruned filters. We can discern that the
the reconstructed filters are significantly distinct, thus en-
abling highly discriminative features for the downstream
task. This result is in stark contrast with conventional prun-
ing, which simply zeroes out these pruned filters. This visu-

Transformations Top-1 Accuracy Pruning Rate
Scalar 90.62% 0.9
SO@3) 92.32% 0.9
GL3) 92.33% 0.9
Scalar 92.48% 0.7
SO@3) 93.48% 0.7
GL@3) 93.57% 0.7

Table 3. Ablating the family of transformations. Increasing the
expressivity of transformations has a small improvement in perfor-
mance, suggesting that most of the network capacity is reserved
for depthwise feature aggregation.

alisation highlights the significance of our novel approach
which not only prunes but also actively reconstructs the
filters, resulting in more informative representation of the
data.

Efficient Implementation. To demonstrate that the theo-
retical reduction in FLOPs can translate to a real reduction
in latency, we implement a simple CUDA kernel for the de-
composed layer. The results are shown in figure 7, where
we can see that at even moderate pruning rates there is a no-
ticeable reduction in latency in comparison to the standard
convolutional layer. We can also see that a large propor-
tion of the latency is being spent on computing the tem-
plate features, while a much smaller proportion comes from
the scalar transformation of these features, which is imple-
mented through a parallelized gather operation.

4. Conclusion and Future work

In this paper, we proposed the use of cheap transforma-
tions to reconstruct pruned filters. Instead of zeroing out the
pruned filters, they are replaced with spatial transformations
from the remaining set of non-pruned filters. These trained
networks are able to achieve comparable or improved re-
sults on the image classification task across a range of
datasets and architectures, despite using a simple magni-
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Figure 7. Latency of the proposed decomposition with an effi-
cient implementation. (left) Compute time of an original VGG16
network with and without the decomposition at various pruning
rates. (right) Cumulative contribution of each operation on the
overall on-device compute time.

tude based pruning criterion. We also introduce a grouped
extension that can mitigate excessive feature compression
at a minimal computational cost. Our approach applied to
VGG16, ResNet34 and ResNet50 is able to significantly re-
duce the models size and computational cost while retaining
the top recognition accuracy on CIFAR-10 and ImageNet-
1K datasets.

Future research may explore potential applications in lo-
calization tasks that rely on equivariant features. Addition-
ally, another promising direction is in data-efficient training.
By incorporating hand-crafted transformations and lever-
aging prior knowledge of the data, it becomes possible to
eliminate the necessity for the network to learn this infor-
mation. Finally, we hope that this work will lead the further
co-design of more weight decompositions using generalised
pruning pipelines.
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