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Abstract

Post-training quantization (PTQ) is the go-to com-
pression technique for large generative models, such as
stable diffusion or large language models. PTQ meth-
ods commonly keep the softmax activation in higher
precision as it has been shown to be very sensitive to
quantization noise. However, this can lead to a signif-
icant runtime and power overhead during inference on
resource-constraint edge devices. In this work, we in-
vestigate the source of the softmax sensitivity to quan-
tization and show that the quantization operation leads
to a large bias in the softmax output, causing accuracy
degradation. To overcome this issue, we propose an of-
fline bias correction technique that improves the quan-
tizability of softmax without additional compute during
deployment, as it can be readily absorbed into the quan-
tization parameters. We demonstrate the effectiveness
of our method on stable diffusion v1.5 and 125M-size
OPT language model, achieving significant accuracy
improvement for 8-bit quantized softmax.

1. Introduction
The increasing prevalence of large generative neural

networks, such as stable diffusion [4, 13, 24], ChatGPT,

and OPT [33], has revolutionized the fields of computer

vision and natural language processing. These mod-

els exhibit exceptional capabilities in generating real-

istic images and human-like text. However, deploying

them on edge devices is challenging due to their size and

computational demands. To address this issue, quan-

tization has emerged as the most promising technique

to optimize model deployment on resource-constrained

devices, with a plethora of work emerging for both vi-

sion [14, 3, 18] and language models [19, 8, 6].

Post-training quantization (PTQ) is the go-to method

*Qualcomm AI Research is an initiative of Qualcomm Technolo-

gies, Inc

for quantizing such models because accessing original

training data and pipelines can be difficult, and training

them requires vast computing resources. However, acti-

vation quantization remains challenging because certain

layers, such as the softmax in transformers, are particu-

larly sensitive to quantization. This issue is even more

pronounced in diffusion models due to the iterative na-

ture of the denoising process leading to error accumu-

lation. For this reason, it is common practice to keep

the softmax unquantized or in higher precision leading

to significant latency overhead, especially in networks

with larger sequence lengths [29].

In this work, we systematically investigate the source

of the softmax sensitivity to quantization and show that

quantization operation leads to a large bias degrading

accuracy. We introduce a hardware-friendly bias cor-

rection that acts as an offset at the softmax output,

which can be absorbed into the quantization parame-

ters. Despite its simplicity, our method significantly im-

proves the SQNR and perplexity scores for diffusion [4]

and OPT [33] language models, respectively, with 8-bit

quantized softmax.

2. Background
2.1. Related Work

Quantization is one of the most effective methods

available for reducing latency and power consumption

in neural network inference. This is achieved not only

thanks to reduced model size but because fixed-point op-

erations are more efficient than their floating-point coun-

terparts. In this work, we focus on post-training quan-

tization (PTQ), which takes a pre-trained FP32 network

and converts it directly into a fixed-point network with-

out the need for the original training pipeline [20, 21,

15]. These methods require either no data or only a

small calibration dataset and are easier to use compared

to quantization-aware training (QAT) [5, 11, 10, 23]. For

more details on neural network quantization, we refer

the reader to [9, 22].
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As the success of language models has increased con-

currently with their size, a lot of recent work has focused

on quantizing these models [27, 32, 27, 7]. While few

methods have emerged to address the issue of outliers in

the output of transformers [1, 2, 30], our work is comple-

mentary as we focus on quantizing the attention weights.

Similarly, while recent work on the quantizing diffu-

sion models [17, 12, 26] have discussed various prob-

lems and methods to overcome quantization challenges,

most of these methods keep sensitive activations, such

as softmax, in higher-precision. However, softmax can

be the biggest latency bottleneck due to its inefficient

execution in hardware [29]. Our work is orthogonal to

existing methods as we focus on improving the quantiz-

ibility of softmax layers to lower bits.

2.2. Motivation

Softmax accounts for a significant fraction of the to-

tal runtime of transformers accounting for up to 40%

for sequence lengths larger than 2048 [29]. As a re-

sult, keeping softmax in low precision can accelerate in-

ference by reducing the size of the look-up tables re-

quired to estimate exponential functions. As modern

diffusion model, e.g. stable diffusion v1.5 1 reach se-

quence lengths of 4096, low-bit softmax is imperative if

we want to achieve competitive on-device performance.

However, when quantizing the softmax in stable dif-

fusion to 8 bits, we observe a considerable deviation

in the generated images compared to the floating-point

model (see columns FP32 and W8A16-SM8 in figure 2).

On the contrary, when keeping softmax at 16 bits (col-

umn W8A16 in figure 2), the generated image matches

that of the floating-point model very closely.

To confirm our hypothesis that the softmax layers in

the diffusion process are particularly sensitive to quan-

tization, we perform the following sensitivity analysis:

we quantize individual attention tensors to 8 bits in the

denoising U-Net while keeping the rest of the network in

FP32 and measure the signal-to-quantization noise ratio

(SQNR) between the quantized and full-precision at the

end of the denoising process. We use a calibration set X
of 400 input latents sampled uniformly across all time

steps and report the mean SQNR in dB in table 1. We

calculate the SQNR using the following formula:

SQNRdB = 10 logEx

[ ‖φ (x) ‖22
‖q (φ (x))− φ (x) ‖22

]
, (1)

where x ∈ X , φ(·) is the output of the denoising U-Net,

and ‖ · ‖2 is the Forbenious norm.

1https://github.com/runwayml/
stable-diffusion

Activation in 8 bits SQNR(↑)

Query (Q) 32.36
Key (K) 29.77
Value (V) 26.58
Attention score (softmax input) 28.09
Softmax output 3.24

Table 1: Quantization sensitivity analysis for attention layers

in the denoising U-Net of stable diffusion. We quantize each

activation to 8 bits while keeping the rest of the network un-

quantized, and report mean SQNR(↑): the higher, the better.

Figure 1: x-axis: sum of 8-bit quantized softmax vectors be-

fore bias correction while keeping rest of the network in FP32

Ex [q(softmax (x)]); y-axis: SQNR between full-precision

and quantized UNet outputs after final diffusion step.

We can see from table 1 that quantizing the softmax

output leads to an 8-fold degradation in SQNR com-

pared to the second most sensitive activation, the value

tensor (V).

2.3. Quantized softmax is biased

Why is the softmax output so sensitive to quantiza-

tion? Having a closer look at the values of the quan-

tized softmax, we found that up to 99% of the values are

rounded to zero. As all these values are rounded down,

the resulting quantization error is biased, and the soft-

max probabilities are not correctly normalized anymore,

which can degrade the model’s performance. In the scat-

ter plot of figure 1, we see that many quantized softmax

outputs do not add up to 1.0. In fact, the expected sum

of the softmax output over the calibration set can be as

low as 0.3. We also observe a high correlation between

quantization bias and degradation of the denoising pro-

cess: the larger gap from the expected softmax output

(1.0), the lower the SQNR at the U-Net output.

3. Quantized activation bias correction
In the previous section, we experimentally estab-

lished that quantizing the softmax in the transformer can
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lead to highly-biased outputs causing significant distor-

tion in stable diffusion’s output. In this section, we out-

line a simple but effective method for correcting this bias

and improving performance.

We define quantization bias as the systematic discrep-

ancy between quantized and unquantized activation vec-

tor y:

β (y; T ) = E [T y]− E [q (T y)] , (2)

where T is the transformation function acting on y, and

q(·) is the quantization function. The transformation T
could be the identity or a simple linear transformation,

such as a reduction along a certain axis. We can now

correct for this bias by adding back to the quantized ac-

tivation yq = q (T y), such that

E [T yq + β (y; T )] = E [T y] . (3)

In practice, we calculate an empirical estimate of the

bias, β̂, using the available calibration data.

3.1. Softmax bias correction

In the case of softmax activations, we know in ad-

vance that its output is normalized and should thus sum

to 1.0. Using the notation of equation (2), the transfor-

mation T is an inner product with the vector of ones

along the normalization dimension: E

[
1�y

]
= 1. In

transformers, the input to the softmax layer is typically

three-dimensional X ∈ R
nheads×nseq×nseq and the soft-

max is applied across the last dimension. Depending

on the capabilities of the hardware available, we could

have a per-tensor or per attention-head correction fac-

tor, which would require reducing the output of the soft-

max output accordingly. For example, the per-tensor
correction factor is calculated by:

β =
1

nseq

−
Ex

[∑nheads

i

∑nseq

j

∑nseq

k Yi,j,k

]
nheadsn2

seq

, (4)

where Y = q (softmax (X)) and β is added elemen-

twise to the whole quantized output Y. In later sec-

tions (cf. Sec 4.1), we perform an ablation study for

bias correction granularities.

3.2. Absorbing bias correction

An important benefit of our bias correction method

is that it can be easily absorbed into the offset of asym-
metric quantization. For a b bitwidth uniform quantizer

with scale s and zero-point z, asymmetric quantization

is defined as:

yq = q(y; s, z, b)

= s ·
[
clamp

(⌊y
s

⌉
+ z, 0, 2b − 1

)
− z

]
= s · yint − c,

(5)

Type of correction SD (SQNR↑)

None 3.17
Per-tensor 5.77
Per attention-head 6.05
Time-step aware, per-tensor 5.93
Time-step aware, per attention-head 6.06

Table 2: Granularity ablation study for bias correction: we

quantize the softmax to 8 bits, keeping the rest of the network

in FP32. We report SQNR for stable diffusion (SD) (↑): the

higher, the better

where c = s · z is a floating-point offset of the quan-

tization grid, as the scale s is typically a floating-point

number [15]. For bias correction, we only have to ab-

sorb the correction factor into the offset, c′ = s · z − β,

while keeping everything else the same. Given that

activations are most commonly asymmetrically quan-

tized [1, 30, 22, 2], our bias correction leads to no ad-

ditional compute.

4. Experiments
In this section, we demonstrate the advantages of

softmax bias correction. We perform experiments on

stable diffusion v1.52 and extend our analysis to a

transformer-based language model. We experiment with

the 125M-sized variant of OPT [33] pre-trained using

the causal language modeling (CLM) objective. We use

a validation pipeline for HuggingFace libraries [31, 16]

and evaluate on Wikipedia validation set2. We report

SQNR between the full-precision and quantized U-Net

output for stable diffusion (the higher, the better), and

CLM perplexity for OPT (the lower, the better).

We use PyTorch v1.11 and the AI Model Efficiency

Toolkit (AIMET)3 [28] to quantize the models to desired

bitwidths. We implement per-tensor symmetric quanti-

zation for weights and asymmetric quantization for acti-

vations.

4.1. Granularity of bias correction

As mentioned in section 3.1, depending on the tar-

get hardware, we can apply bias correction at different

granularities of attention tensor, e.g. per-attention head
or per-tensor. Due to the iterative nature of the denois-

ing process in diffusion models, activation distributions

in the U-Net are time-step dependent, hence motivating

2https://github.com/huggingface/diffusers
2Specifically, we use the English subset of Wiki-40b, https://

huggingface.co/datasets/wiki40b, that contains cleaned-

up text of English Wikipedia and training/validation splits.
3AIMET is a product of Qualcomm Innovation Center, Inc., avail-

able on GitHub at https://github.com/quic/aimet
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(a) First shot of the Milky Way (b) Tuscany, Italy, Country Side, Sunrise, Foggy, Dawn, Landscape,

Aerial view, Meadow, 5K

(c) skeleton in heaven dressed as renaissance artist painting a portrait of

a model dressed as a Saint, painting, renaissance art, detailed,oil painting

(d) highly detailed oil painting of a western dragon emerging from a hot

spring, fantasy, featured on art station

Figure 2: Visual comparison between FP32, W8A16, W8A16 with softmax quantized to 8 bits without and with per attention head

based bias correction generated using 20 diffusion steps on test prompts from LAION Aesthetics dataset [25].

us to use the time-step as an additional axis of granu-

larity to perform time-step-aware bias correction. We

compare the results from the different schemes in table

2.

We observe that the per-attention head correction

scheme performs on par or better than all other schemes,

making it a favorable choice for on-device deployment

due to its minimal computational overhead compared to

its time-aware counterpart.

4.2. Main Results

We extend our analysis to include the 125M-size

OPT language model, and we report results using per-

attention head bias correction in table 3. We quantize

softmax to 8 bits (SM8) and keep the rest of the net-

work at either full-precision (FP32) or 8-bit weights and

16-bit activations (W8A16). With bias correction, we

achieve over 2.7dB improvement for stable diffusion and

roughly 4.8 improvement in perplexity for OPT in both

quantization settings. In the case of diffusion, we also

demonstrate the improvement visually in figure 2, by

showing the generated images of the quantized diffu-

sion with and without bias correction. As we can see,

the generated image with bias correction very closely

resembles the full precision output.

5. Conclusions
In this work, we investigated a common prevail-

ing issue of softmax sensitivity to quantization in the

case of generative models. To understand the source

of the softmax sensitivity to quantization, we analyzed

Configuration SD (SQNR↑) OPT (ppl↓)

FP32 baseline - 27.73

FP32-SM8 3.17 34.98
FP32-SM8 + bias correction 6.05 30.19

W8A16 baseline 9.66 27.77

W8A16-SM8 3.05 35.11
W8A16-SM8 + bias correction 5.76 30.24

Table 3: Per-attention bias correction for stable diffusion (SD)

and 125M OPT model for different quantization configurations

(W8A16 & FP32), while keeping the softmax to 8 bits (SM8).

We report SQNR for stable diffusion (SD) and CLM perplexity

for OPT. (↑): the higher, the better; (↓): the lower, the better.

the softmax distributions and showed that the quanti-

zation operation led to a significant bias in the soft-

max output degrading the performance of generative

models when represented in lower precision. To over-

come this issue, we proposed a simple yet effective

hardware-friendly offset correction to improve the quan-

tizability of softmax layers to lower bits, which is key

to achieving competitive on-device performance, espe-

cially for transformer-based networks with longer se-

quence lengths. We demonstrated the effectiveness of

our method on stable diffusion v1.5 and 125M-size OPT

language model, achieving over 2.7dB improvement for

stable diffusion and roughly 4.8 improvement in per-

plexity for OPT respectively for the 8-bit weights and

16-bit activations (W8A16) quantization setting.
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ablani, Bhavitvya Malik, Simon Brandeis, Teven Le

Scao, Victor Sanh, Canwen Xu, Nicolas Patry, An-

gelina McMillan-Major, Philipp Schmid, Sylvain Gug-

ger, Clément Delangue, Théo Matussière, Lysandre De-
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