
QBitOpt: Fast and Accurate Bitwidth Reallocation during Training

Jorn Peters, Marios Fournarakis, Markus Nagel, Mart van Baalen, Tijmen Blankevoort
Qualcomm AI Research*

Amsterdam, The Netherlands
{jpeters,mfournar,markusn,mart,tijmen}@qti.qualcomm.com

Abstract

Quantizing neural networks is one of the most effective
methods for achieving efficient inference on mobile and em-
bedded devices. In particular, mixed precision quantized
(MPQ) networks, whose layers can be quantized to different
bitwidths, achieve better task performance for the same re-
source constraint compared to networks with homogeneous
bitwidths. However, finding the optimal bitwidth allocation
is a challenging problem as the search space grows expo-
nentially with the number of layers in the network. In this
paper, we propose QBitOpt, a novel algorithm for updat-
ing bitwidths during quantization-aware training (QAT). We
formulate the bitwidth allocation problem as a constraint
optimization problem. By combining fast-to-compute sen-
sitivities with efficient solvers during QAT, QBitOpt can
produce mixed-precision networks with high task perfor-
mance guaranteed to satisfy strict resource constraints.
This contrasts with existing mixed-precision methods that
learn bitwidths using gradients and cannot provide such
guarantees. We evaluate QBitOpt on ImageNet and confirm
we outperform fixed-precision methods. We also achieve
comparable accuracy to other mixed-precision methods,
while always meeting the exact resource constraint with-
out the need for hyper-parameter search over regularization
strength.

1. Introduction
Neural networks have driven some of the most signifi-

cant advances in artificial intelligence. However, searching

for better-performing neural networks has increased their

resource requirements substantially. This is most notable in

transformer models in computer vision [12, 39] and natu-

ral language understanding [34, 5]. Deploying these ever-

growing models on resource-constrained devices, such as

mobile phones, embedded systems, and IoT devices, re-

mains a challenge. Quantization has been proven to be a

*Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc.

���������	
���

����������	�
	���

�����������������

�����	��������

����	�	�	�	�� �	�
	������	��	���	��

�����	�������	�	��

����
����
�������	���

Figure 1: QBitOpt uses a quantization sensitivity metric to

infer bitwidths while taking (hardware) constraints into ac-

count. The bitwidth allocation is used within a QAT training

loop.

very effective method of addressing this constraint by re-

ducing the memory and computational cost of neural net-

works without sacrificing task performance [22, 26, 29].

This is achieved by compressing weights and activations

to a more efficient low bitwidth fixed-point representation.

Deploying quantized neural networks on devices is also be-

coming easier as an increasing number of devices support

efficient low-precision operations.

Various methods for neural network quantization have

emerged in recent years. Broadly, we can distinguish

them into two main groups: post-training quantiza-
tion (PTQ) [31, 43, 28, 15, 27, 16], and quantization-aware
training (QAT) [24, 14, 25, 30, 40, 23]. In PTQ, we take a

pre-trained neural network as input and infer the quantiza-

tion setting that maximizes task performance without access

to labeled data or the original training pipeline. In contrast,

in QAT, we simulate quantization during training and al-

low the network parameters to adjust to quantization noise.

In both cases, the target quantization bitwidth is commonly

determined beforehand and is set homogeneously over the

entire network. A crucial drawback of this approach is that

the homogeneous bitwidth can only be as low as the net-

work’s most sensitive layer allows.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

1282

However, not all layers in a neural network are equally

sensitive to quantization. Hence, it is beneficial to quantize

some layers at a higher bitwidth than others. For example,

it is common in quantization literature [14, 23, 13, 30] to

keep the first and last layer of a neural network at a higher

bitwidth than the rest of the network because it improves

accuracy with only an incremental increase in resource re-

quirements. Allowing for a heterogeneous bitwidth alloca-

tion across the layers of a neural network is called mixed-
precision quantization (MPQ). The main challenge of MPQ

algorithms is to determine the optimal bitwidth per layer

that achieves the highest task performance while minimiz-

ing resource requirements. In general, these are opposing

objectives leading to a trade-off. What makes the MPQ par-

ticularly hard is that the search space grows exponentially

in the number of neural network layers.

Since the bitwidth allocation problem is a trade-off be-

tween neural network resources and task performance, there

will be many Pareto optimal solutions to the problem. How-

ever, in many real-world applications, the specific deploy-

ment target and associated resource constraints are often

known beforehand. Assuming this, the MPQ bitwidth allo-

cation problem becomes a constrained single objective op-

timization problem. Leveraging this observation, we pro-

pose QBitOpt, a novel method for inferring near-optimal

bitwidth allocations during QAT. We achieve this by mea-

suring the sensitivity of each layer to quantization noise and

assigning them bitwidths that (1) satisfy the total resource

requirements constraints and (2) minimize the total network

quantization sensitivity. Our method stands out from previ-

ous mixed-precision work in the following ways:

• It is guaranteed to satisfy resource constraints. Most

existing methods rely on hyperparameter search to bal-

ance the accuracy/resource constraints without guaran-

tees.

• By formulating the bitwidth allocation problem as a

constrained convex optimization problem, our method

scales to large networks.

• We integrate optimization-based bitwidth allocation

with existing quantization-aware training methods

and perform competitively competing mixed-precision

methods on ImageNet under average bitwidths con-

straints.

• We show that updating the bitwidth allocation during

training is crucial for optimal performance and that it

outperforms common post-training bitwidth allocation

followed by quantization-aware fine-tuning.

2. Neural network quantization
The purpose of neural network quantization is to reduce

the resource requirements and improve the latency of neural

network inference while maintaining the task performance

as much as possible and without changing the original net-

work architecture. To achieve this we quantize the parame-

ters and activations of a network to a quantization grid that

is commonly learned during QAT [14, 6, 40]. In this paper,

we define the quantization operation as follows:

Q(x; z, δ, b) = δ · clamp

(⌊
x+ z

δ

⌉
; l(b), u(b)

)
− z. (1)

Here x denotes the quantizer input (i.e. network parame-

ters or activations), z the zero-point of the quantizer, and

δ the quantizer step-size. u(b) and l(b) map the quantizer

bitwidth to the upper and lower clamping threshold in the

integer domain. These can differ depending on the quan-

tizer specifics (e.g. (a)symmetric or (un)signed quantizers).

�·� denotes the round-to-nearest integer mapping.

A neural network is quantized by a set of K quantizer

{Q1, . . . , QK}, each associated with a different part of the

neural network, such as parameters or activations. In this

paper, we assume symmetric uniform quantization [29] (i.e.

z = 0) for all quantizers in the network. Moreover, for

quantizer i, the step-size δi is defined in terms of the quan-

tizer bitwidth bi and a learned range parameter αi:

δi = αi/(2
bi − 1). (2)

For ease of presentation, throughout this paper, we assume

unsigned integer quantization. For more details on neural

network quantization, we refer the reader to [29, 17].

To enable gradient-based learning during QAT, we need

to overcome the fact that the gradient of the step function

is zero almost everywhere. A common solution is to ap-

proximate the gradient of the quantization function w.r.t.

its input with the straight-through estimator (STE) [21, 3].

[14, 25] extend this approach to allow for gradient-based

range learning.

2.1. Pseudo-quantization noise

Quantization has been studied in-depth in classical sig-

nal processing literature [18]. A common assumption is

that the quantization error ε = x − Q(x) is uniformly dis-

tributed with zero-mean and a standard deviation of δ/
√
12,

where δ denotes the step-size of the quantizer Q. This as-

sumption can be shown to hold exactly under some condi-

tions [44, 45]. The relationship between quantization noise

and quantization is studied in-depth in [46] and, when used

in practice, the noise εq = x − Q(x) ∼ U [− δ
2 ,

δ
2

]
is re-

ferred to as pseudo-quantization noise (PQN).

Following the PQN formulation, we define the pseudo-

quantization noise quantizer QP as follows:

QP (x; z, δ, b) = δ · clamp

(
x+ z

δ
+ ε; l(b), u(b)

)
− z.

(3)

1283

Here ε ∼ [− 1
2 ,

1
2] and everything else remains the same

as in (1). The PQN formulation is an attractive proposition

for QAT because it is differentiable and, for this reason, it

has been studied by [8, 38]. However, there is no concrete

evidence that it outperforms hard quantization with STE.

2.2. Mixed-precision quantization objective

In mixed-precision quantization, we want to solve a

multi-objective optimization problem, which involves max-

imising the task performance while minimizing resource re-

quirements. Assuming a neural network with parameters

Θ, we quantize each part of this network is quantized by

a separate quantizer Qi ∈ {Q1, . . . , QK}. For example,

one quantizer for parameters and activations per layer. Let

bi ∈ b = [b1, . . . , bK] denote the bitwidth associated with

quantizer Qi. We denote the quantized forward pass of

this neural network, using a specific bitwidth allocation as

Q(Θ, b) and the quantized task loss as L(Q(Θ, b)) for an

arbitrary task loss L.

To complete the MPQ task, we introduce a resource cost

π(b), e.g., memory requirements, CPU cycle counts, or run-

time. Throughout this paper, we assume the resource cost

(or constraint) is either differentiable or a differentiable re-

laxation exists. An often used approach to MPQ task is min-

imizing a scalarized objective [41, 40, 38] similar to:

LMPQ(Θ, b) = λL(Q(Θ; b)) + π(b), (4)

where λ > 0 is a scaling factor that weights the relative

importance between the task loss and the resource cost.

This approach is common because it allows us to learn

the bitwidths and network parameters simultaneously, but it

suffers from two main drawbacks: (1) it requires searching

over values of λ to find a trade-off that is acceptable to the

user, and (2) there are no guarantees that the constraint will

be met (cf. section 5.3). Our proposed method is designed

to mitigate these constraints.

3. QBitOpt
We introduce QBitOpt, our novel method for mixed-

precision quantization (MPQ). We previously established

that the MPQ objective is a multi-objective optimization

problem. As a result, the solution to the scalarized objec-

tive from equation (4) will depend on the weighting term λ.

In practice, finding the optimal λ between the two objec-

tives that meet real-life resource constraints can be cumber-

some and time-consuming. Instead, choosing a strict upper

bound on the resources and optimizing the task performance

within these bounds would be beneficial.

We adopt this approach for QBitOpt, resulting in the fol-

lowing constrained optimization objective:

minimize LQ(Θ, b) = L(Q(Θ, b))

subject to π̂(b) � 0
(5)

In the above, π̂(·) denotes the resource constraint and �
element-wise inequality. This encodes a similar resource

cost as π(·) in equation (4). However, instead of mini-

mizing the resource constraint, we only aim to satisfy an

upper-bound constraint. Note that whereas we describe our

method in terms of parameter quantization, this is not an

intrinsic limitation of our method. We discuss details of ac-

tivation quantization in appendix A.

Following the PQN model, we approximate the opti-

mization objective further:

L(QP (Θ, b)) ≈ Eε [L(Θ+ ε′)] , ε′ ∼ U [−δ

2
,
δ

2
],

= Eε

[
L(Θ+

α

2b − 1
ε)

]
, ε ∼ U [−1

2
,
1

2
],

(6)

where δ = [δ1, . . . , δ|Θ|] denotes the step-size associated

with each parameter. Moreover, α and b broadcast to the

parameter dimensions. Following our formulation, the step

size is a function of both the quantizer range α and the

bitwidth b. The reparametrization in the second equality

follows from this. By splitting the optimization objective

in (5) over the network parameters and the bitwidth alloca-

tion into two separate minimizations, and substituting the

result of equation (6), we obtain our QBitOpt optimization

objective:

min
Θ

min
b

Eε

[
L
(
Θ+

α

2b − 1
ε

)]
s.t. π̂(b) � 0. (7)

This objective can now be optimized directly using, e.g.,

the penalty method [47] or the augmented Lagrangian

method [47]. However, this would require retraining the

neural network to converge multiple times, which is costly.

Instead, in QBitOpt, we efficiently solve an approximation

to the inner minimization problem and use the solution b∗ to

update Θ using common gradient-based QAT techniques.

3.1. Approximate bitwidth minimization

The QBitOpt optimization, as stated in (7), can be

solved directly, but doing so may be very costly. To en-

able gradient-based training of the network parameters Θ,

we derive an efficient method for inferring the quantizer

bitwidth and solving the bitwidth allocation problem. To

this end, we focus on the inner optimization problem of (7):

b∗ = argmin
b

Eε

[
L
(
Θ+

α

2b − 1
ε

)]
s.t. π̂(b) � 0.

(8)

We first approximate (8) using a second-order Taylor ap-

proximation w.r.t α/(2b − 1) around 0:

b∗ = min
b

h�
(

α

2b − 1

)2

, hi = ∇2L(Θ)ii

subject to π̂(b) � 0,

(9)

1284

where h is the diagonal of the Hessian of the neural net-

work. The first-order term cancels because the expectation

of the pseudo-quantization noise is zero, and the constant

term does not depend on b. For the full derivation, see ap-

pendix B. The obtained objective is similar to the objective

in [11]. However, they make an explicit assumption that the

pre-trained floating-point network has converged, whereas

we reach the same conclusion using only the zero-mean

PQN assumption and make no assumptions about the state

of the network. This distinction is important when solv-

ing (7) because it allows us to solve this inner optimization

during QAT regardless of whether the outer optimization

over Θ has converged yet.

Depending on the exact choice of resource constraints π̂,

(9) is a convex program and can be solved very efficiently.

In section 3.2, we discuss the choice of resource constraints

and optimization methods in more detail.

Putting everything together, the QbitOpt optimization

procedure consists of the following steps: first, solve (9)

to obtain b∗, and second, perform backpropagation keeping

b∗ constant to update step for Θ and α using gradients:

∇(Θ,α)Eε

[
L
(
Θ+

α

2b
∗ − 1

ε

)]
. (10)

3.1.1 Quantization Sensitivities

The optimization procedure we established for b in (9) de-

pends on the diagonal of the Hessian of the neural network.

In this optimization problem, the Hessian diagonal captures

how sensitive a parameter or a group of parameters is to

quantization or perturbations in general. We formally de-

fine sensitivity as a statistic that quantifies how much the

output of a neural network is affected by quantization. The

diagonal of the Hessian in (9) is only one type of sensitivity,

and one can imagine using other measures of sensitivity. In

fact, this could be beneficial as calculating the Hessian diag-

onal of a neural network is often computationally expensive.

This is why we use an approximation to the hessian diago-

nal called FIT [50]. Another potential shortcoming of the

Hessian is that it captures the effect of infinitesimal pertur-

bations, whereas low-bit quantization perturbations may be

pretty significant. We leave such an investigation for future

work.

FIT is a sensitivity that has been shown to correlate well

with the hessian diagonal [50]. For this reason, we use FIT

as a drop-in replacement for the more expensive hessian di-

agonal. It is defined as:

h̃i = [∇ΘL(Θ)]
2
. (11)

Note that FIT, similar to the hessian sensitivity, is computed

based on the non-quantized neural network. As such, it re-

quires an extra full precision forward and backward pass to

compute and update sensitivities. Moreover, since we can

only obtain gradients with respect to a subset of the training

set, the computed FIT sensitivities are stochastic in nature.

To address the stochasticity in the sensitivity estimation and

to reduce the computational requirements, we keep a run-

ning exponential moving average of FIT sensitivities and

only update them every τ iteration. See Appendix D.2 for

more details on the choice of the EMA estimator.

So far, we have only focused on the quantization noise

that stems from the rounding operator and can be effec-

tively modeled as additive noise with PQN. However, the

quantization operator of equation (1) also involves clipping
of values outside the quantization grid limits. Clipping be-

comes an integral part of the training during QAT and can

lead to considerable accuracy degradation if removed from

the quantized model [1]. For this reason, we compute FIT

using the clipped model parameters Θ̃ = clip(Θ,α).

3.2. Choice of Resource Constraints and Optimiza-
tion Methods

So far, we have left the resource constraint π̂(·) unde-

fined. In this section, we discuss the choices for π̂(·) and

its implications on the optimization problem. We aim to

satisfy two goals: First, the optimization problem must be

efficiently solved to be integrated into training, and second,

the constraints should express realistic resource constraints.

We accomplish the first goal by restricting the constraints to

be of the form:

π̂i(b) ≤ 0 i = 1, . . . ,m (12)

ρj(b) = 0 j = 1, . . . , p, (13)

where the inequality constraint functions π̂i(b) are convex

functions and the equality constraint functions ρi(b) are

affine. Combining constraints of this form with the op-

timization objective (9) results in a convex program1 [4].

Such convex programs can be solved efficiently using off-

the-shelf convex optimization libraries, such as [9], allow-

ing us to solve the bitwidth allocation problem frequently

during training. In section 5.2, we demonstrate that up-

dating bitwidths during training leads to higher task perfor-

mance.

The convexity constraints of (12) and (13) may appear

quite restrictive at first, but a lot of real-life constraints can

be expressed this way, such as the BOPs, the network’s av-
erage bitwidth or the network size bits. Even if the resource

constraints are not strictly convex, there is extensive liter-

ature on expressing non-convex problems as convex opti-

mization problems [4, Part II].

In our constraint optimization objective so far, we have

not restricted the solution b∗ to be a positive integer, which

1we referred to a single constraint π̂ up to this point. However, the

convex program defined here allows for multiple inequality and equality

constraints at the same time. Hence, π̂ refers to a set of constraints.

1285

is necessary for finding realistic solutions. Including such

a constraint turns the optimization problem into an integer

program which is, in general, NP-complete [33] and would

be infeasible to solve for large networks. However, certain

resource constraints admit efficient and specific optimiza-

tion procedures. For example, the average bitwidth con-

straint admits the greedy integer method presented in Algo-

rithm 2. Alternatively, we can relax the integer constraint by

allowing fractional bits and solve the optimization problem

efficiently using a convex program. We can use this relax-

ation during the bitwidth update phase of training, where

speed is important, and perform a final expensive integer

program to infer the final bitwidth allocation before the final

fine-tuning stage. We discuss these choices in more detail

in ablation studies of section 5.2.

3.3. Integrated QBitOpt QAT pipeline

Algorithm 1 describes our integrated QAT and QBitOpt

pipeline. At each training iteration, we update the quanti-

zation sensitivities Sq for each quantizer using an exponen-

tial moving average, as described in (3.1.1), and perform

a back-propagation step keeping the bitwidth b to update

the network Θ and quantization parameters α. For every

τ iteration, we update the quantizer bitwidth, solving the

convex optimization problem under the specified resource

constraint, described in section 3.2. We do not update the

bitwidths at every iteration in order to reduce the computa-

tional overhead and to give the network parameters enough

time to adjust to the new bitwidth allocation. For a high-

level schematic, see Figure 1.

Algorithm 1 QBitOpt

Require: Neural network N , task loss L(·), resource con-

straints π̂(·), and sensitivity method S
for iteration i = 1, . . . , T do

for quantizer q = 1, . . . ,K do
S
(i)
q = γS(L(Θ(i−1)))q + (1− γ)S

(i−1)
q

end for
if i mod τ == 0 then

b = BitOptimizer(S
(i)
1 , . . . , S

(i)
k)

end if
Θ(i) = Θ(i−1) + η∇ΘL(Q(Θ(i−1); b,α(i−1))

α(i) = α(i−1) + η∇αL(Q(Θ(i−1); b,α(i−1))
end for

4. Related Work
Neural network quantization has been a topic of interest

in the research community for several years due to attractive

hardware properties of quantized networks [7, 19, 24, 2, 14].

For recent in-depth surveys on PTQ and QAT topics, we

refer the reader to [29] and [17].

Algorithm 2 Greedy integer assignment for average

bitwidth

Initialize b ← [1, . . . , 1]
B ← |b| · (β − 1)
Sq ← sum of param./act. sensitivities for quantizer q
for iteration 1, . . . ,B do

q ← argminj Sj

[
αj/(2

bj − 1)
]

bq ← bq + 1
end for

Several methods for MPQ have been introduced in recent

years. In gradient-based MPQ approaches [41, 40, 20, 48],

a bitwidth for each quantizer is learned through gradient-

based optimization. An extension of gradient-based meth-

ods can be found in PQN-based approaches [8, 38]. Using

PQN instead of simulated quantization avoids the (biased)

STE [21] and allows direct learning of each quantizer’s

bitwidth. While these methods are efficient to run, defin-

ing a specific resource or accuracy target is impossible. In-

stead, a search over some regularization hyper-parameter is

necessary. Several reinforcement learning techniques have

been introduced [42, 35], in which an agent selects quanti-

zation policies that balance hardware constraints with accu-

racy targets. These methods show promising results but re-

quire very long training times to achieve good performance.

Our work extends to a different branch of MPQ liter-

ature, in which sensitivity is used as a statistic to select

a bitwidth for each quantizer. In these methods, quantiz-

ers with high quantization sensitivity are assigned higher

bitwidths. Similarly to our work, the HAWQ line of re-

search [11, 10, 49] defines sensitivity as either the spec-

tral norm or the trace of the Hessian. Their approach sig-

nificantly differs from ours in how sensitivity is incorpo-

rated: due to the large computational requirements of their

method, bitwidths are only estimated once, after which

the network is iteratively fine-tuned. [51] use a first-order

Taylor expansion information to estimate sensitivity during

QAT and reduce bitwidths for quantizers for the least sen-

sitive quantizers. Since their method only allows iterative

bitwidth reduction, it can never recover from faulty bitwidth

assignments. Taking a slightly different approach, [32]

measure a quantizer’s sensitivity through signal-to-noise ra-

tio on the network’s output by lowering the bitwidth of a

target quantizer. They then use this information to itera-

tively reduce each quantizer’s bitwidth until some target ac-

curacy or efficiency metric is reached. While the authors

show good results, similarly to the HAWQ line of work, this

approach is too slow to incorporate in QAT and is only used

in PTQ settings. FIT [50] proposes a new sensitivity metric

based on the trace of the Empirical Fisher matrix, which ef-

ficiently approximates the computationally expensive Hes-

sian sensitivity in HAWQ. We use this sensitivity metric in

1286

QBitOpt to perform bitwidth allocation during QAT effi-

ciently. Lastly, [37] compares several sensitivity metrics for

post-training MPQ.

5. Experiments

In this section, we evaluate the effectiveness of QBitOpt

by comparing it with other fixed-precision QAT methods

and mixed-precision methods from the literature on the Im-

ageNet [36] classification benchmark. We focus on low-bit

quantization (4 and 3 bits on average) of efficient networks

with depth-wise separable methods that are generally harder

to quantize than fully convolutional networks [30, 29].

5.1. Experimental setup

Quantization We follow the example of existing QAT lit-

erature and quantize the input to all layers except for the

first layer and normalizing layers. In contrast to most exist-

ing QAT literature, we quantize all layers, including the first

and last layer, and let QBitOpt decide the optimal bitwidth

for these layers. We quantize weights (per-channel) and

activation (per-tensor) using hard quantization and train all

network parameters, including the quantization threshold α,

using the straight-through estimator, similar to LSQ [14].

Mixed-Precision Our training consists of two phases.

In the first phase of mixed-precision QAT, we calculate

FIT sensitivities while training the quantized network and

re-allocate bitwidths every τ=250 training iterations. In

the second (or fine-tuning) phase, we freeze the obtained

bitwidth allocation and fine-tune the remainder of the train-

able parameters. This two-phase approach is quite common

in the mixed-precision literature [38, 41]. Both phases are

balanced in our experiments, and each takes up 50% of the

training time unless stated otherwise. We study the effect of

this choice in table 4.

Resource Constraint In most experiments, we use the

average bitwidth constraint across all quantizers in the neu-

ral network, including activations and weights. We restrict

the bitwidths to integers that are greater or equal to 2 bits

and solve the optimization problem with the greedy algo-

rithm 1. The abbreviation X/XMP below reflects this con-

straint with a target average bitwidth of X .

In table 6, we additionally use the average bitwidth
weighed by tensor size constraint, which is applied inde-

pendently for weights and activations:

ρw(bw) =

∑
i b

w
i · ewi∑
i e

w
i

, bw � 2, (14)

ρa(ba) =

∑
i b

a
i · eai∑
i e

a
i

, ba � 2, (15)

Architecture W/A h̃FP h̃clip

MobileNetV2 4/4MP 69.44 69.71

MobileNetV3-Small
4/4MP 63.47 64.23
3/3MP 56.64 57.14

Table 1: QBitOpt using clipped sensitivities h̃clip and full-

precision sensitivities h̃FP. Validation accuracy (%) on Im-

ageNet.

Architecture W/A Fractional Integer

MobileNetV2
4/4MP 67.91 69.71

3/3MP 65.65 65.65

MobileNetV3-Small
4/4MP 64.23 64.39

3/3MP 57.14 57.14

Table 2: Integer vs. fractional bits. Validation accuracy (%)

on ImageNet.

where bwi /bai and ewi /eai denote the bitwidth and number of

elements of the ith layer’s weight/activation, respectively.

These results are included for a fair comparison to the

NIPQ [38] method, which uses this constraint.

Optimization In all cases, we start from a pre-trained

full-precision network (see appendix C.3 for the origin of

the checkpoints) and instantiate the weight and activation

quantization parameters using MSE range estimation [29].

We train MobileNetV2 and EfficientNet-Lite for 30 epochs

with SGD and momentum of 0.9 and MobileNetV3-Small

for 40 epochs. More details about the optimization can be

found in the appendix C.1.

5.2. Ablation studies

Sensitivities computation In section 3.1.1, we argued

that clipped network sensitivities are better suited for infer-

ring bitwidth during QAT. The results in table 1 confirm our

hypothesis and show that in all cases, using the clipped sen-

sitivities leads to better accuracy. In some cases, such as for

MobileNetV3, not clipping during sensitivity computation

can result in a substantial accuracy drop.

Fractional vs. integer bitwidth Constraining all

bitwidths to natural numbers turns the convex program into

an integer program (see section 3.2), which is NP-hard.

Here, we experimentally validate and compare our two pro-

posed solutions, the greedy integer method and fractional
bitwidth. In table 2, we show the effect of both optimiza-

tion methods on the final accuracy. We observe that in most

cases, these lead to very similar performance, except for

1287

Architecture W/A Hard Quant PQN

MobileNetV2
4/4MP 69.71 69.25

3/3MP 65.65 64.21

MobileNetV3-Small
4/4MP 64.23 53.92

3/3MP 57.14 14.61

Table 3: Training with hard quantization and STE compared

versus PQN during the MPQ phase of QAT. Validation ac-

curacy (%) on ImageNet.

Arch. W/A 0% 25% 50% 75% 100%

MNv2
4/4MP 68.63 69.55 69.71 69.7 67.81

3/3MP 62.71 65.83 65.65 65.56 62.47

MNv3
4/4MP 59.62 64.39 64.23 64.34 62.66

3/3MP 43.70 57.49 57.14 56.9 54.94

Table 4: MobileNetV2 and MobileNetV3-Small for various

fractions (%) of the total training time. 0% corresponds to

using QBitOpt on a subset of training data before training.

Validation accuracy (%) on ImageNet.

MobileNetV2 with a 4 bits target where greedy integers

perform better. In figure 4 (in Appendix D.3), we illus-

trate the progression of the bitwidth allocation during train-

ing. Moreover, we observe that for greedy integer, some

bitwidths oscillate between two values which could intro-

duce noise in the network optimization. On the other hand,

fractional bitwidths progress much smoother during mixed
precision phase, however at the end of the phase, there is

a jump once the bitwidth gets rounded to a viable natural

number for the fine-tuning phase. For the remainder of the

experiments, we use the greedy integer method.

Pseudo-noise vs. hard quantization In the mixed pre-
cision phase, we jointly train the network weights lever-

aging QAT while updating the bitwidth allocation. Since

updating the sensitivities is independent of the QAT up-

date, we can choose any quantization method for QAT.

Two natural choices are pseudo-quantization noise (PQN),

which we used to derive our sensitivity metric, and hard-

quantization with STE, which is often used in most QAT

literature [24, 26, 14, 30]. In table 3, we compare both

choices. Hard quantization with STE outperforms PQN for

all models tested. Particularly for MobileNetV3-Small, the

performance gap between the methods is substantial. We

hypothesize that it is important for the network to early in

training adapt to the exact quantization noise present during

inference.

Two-phase mixed-precision training In this section, we

study the impact of our two-phased mixed-precision train-

ing. In table 4, we show the results with various divi-

sions of the training time between the mixed precision phase

and the fine-tuning phase. Most importantly, these results

demonstrate that both phases are important for obtaining

the best mixed-precision performance. When only fine-

tuning is used after a post-training bitwidth allocation (0%

column), the performance significantly degrades compared

to updating the bitwidth during training using QBitOpt

— especially for 3-bit quantization. This shows that our

novel QBitOps algorithm, which integrates bitwidth alloca-

tion into QAT, compares favorably to common post-training

MPQ followed by fine-tuning. On the other hand, updat-

ing the bitwidth allocations up to the conclusion of training

(100% column) adversely affects performance. The non-

constant bitwidths add extra noise to the optimization pro-

cedure. This can be harmful in the last phase of training, as

discussed in the previous paragraph, and is a common issue

known in the MPQ literature. As such, most training-based

approaches circumvent this by not updating the bitwidths

towards the end of training [41, 38].

While having both phases is clearly essential in finding

the best mixed-precision network, our framework is rela-

tively stable to the exact division of the training time be-

tween them. For most networks and bitwidth, using be-

tween 25% and 75% for the mixed precision phase leads

to good results.

5.3. Comparison to existing methods

We compare QbitOpt to other QAT approaches: (a)

LSQ [14] for fixed-precision quantization; (b) differentiable
quantization (DQ) [40] and noise injection pseudo quanti-
zation (NIPQ) [38] for mixed-precision. For a fair com-

parison, we have re-implemented DQ and NIPQ, adhering

to their implementation details and modifying them appro-

priately to match our constraints and quantization assump-

tions. We performed an extensive hyperparameter search on

the regularization strength λ and learning rates. For further

details, refer to appendix D.

In table 5, we present the results for MobileNetV2,

MobileNetV3-Small and EfficientNet-Lite on the ImageNet

classification benchmark. QbitOpt significantly outper-

forms the strong fixed-precision LSQ baseline in all cases.

Especially for the challenging to quantize MobileNetV3-

Small, the accuracy improves up to 5%. We also outper-

form differential quantization (DQ), in terms of quantized

accuracy, despite DQ achieving average bitwidths higher

than the specified target. These results showcase one of

the biggest strengths of our method, namely that the re-

source constraint is met exactly. This contrasts with the

other mixed-precision methods, where we struggle to meet

the target constraint even after an extensive hyperparameter

1288

Method W/A Avg. Bits Acc. (%)
M

o
b

il
eN

et
V

2

Full-precision 32/32 - 71.72

LSQ [14] 4/4 4.0 69.450.07

DQ [40] 4/4MP 4.080.01 68.550.30

QBitOpt (ours) 4/4MP 4.0 69.750.04

LSQ [14] 3/3 3.0 65.170.12

DQ [40] 3/3MP 3.100.01 64.860.07

QBitOpt (ours) 3/3MP 3.0 65.710.07

M
o

b
il

eN
et

V
3

-S
m

al
l Full-precision 32/32 - 67.67

LSQ [14] 4/4 4.0 61.580.07

DQ [40] 4/4MP 4.100.01 63.600.02

QBitOpt (ours) 4/4MP 4.0 64.340.06

LSQ [14] 3/3 3.0 51.920.04

DQ [40] 3/3MP 3.090.01 57.260.44

QBitOpt (ours) 3/3MP 3.0 57.360.17

E
ffi

ci
en

tN
et

-l
it

e

Full-precision 32/32 - 75.42

LSQ [14] 4/4 4.0 72.930.09

DQ [40] 4/4MP 4.080.01 72.290.21

QBitOpt (ours) 4/4MP 4.0 73.320.10

LSQ [14] 3/3 3.0 69.620.15

DQ [40] 3/3MP 3.130.01 68.820.21

QBitOpt (ours) 3/3MP 3.0 70.000.07

Table 5: ImageNet image classification benchmark. We

report validation accuracy, target bitwidth (W/A) and the

achieved average bitwidth (Avg. Bits) averaged over 3 seeds

(STD in superscript). † denotes only 2 seeds due to unstable

training.

search.

In table 6, we compare QBitopt to NIPQ [38] using the

same constraint as in their work (cf. equation (14)): the

per-element average bitwidth constraint. NIPQ outperforms

QBitOpt in terms of accuracy by a small margin (≤0.6%)

for MobileNetV2, but NIPQ struggles to reach to specified

bitwidth constraint for activations in the case of 4 bits or

weights in the case of 3 bits. The accuracy gap grows fur-

ther to 2.44% in the case of the MobileNetV3-Small W4A4,

but so does the gap of NIPQ from the target bitwidth. De-

spite aggressive regularization and extensive search, we

could not bring the activations’ average bitwidth under 4.25

bits. For MobileNetV3-Small W3A3, NIPQ closes the gap

to target bitwidth for activations but is still not on target.

While NIPQ is indeed a strong mixed-precision benchmark,

this study once again highlights the main advantage of our

QBitOpt, which is ease and speed of experimentation. In

the case of QBitOpt, we only had to search for learning rate

schedules to achieve quantized models that are guaranteed

Method Bits(W/A) Acc. (%)

M
N

v
2

NIPQ [38] 3.90/4.18 71.00

QBitOpt (ours) 4/4 70.390.05

NIPQ [38] 3.18/3.06 68.76

QBitOpt (ours) 3/3 68.440.0

M
N

v
3

-S
m

al
l

NIPQ [38] 3.94/4.25 64.89

QBitOpt (ours) 4/4 62.450.21

NIPQ [38] 2.98/3.09 59.54

QBitOpt (ours) 3/3 57.820.29

Table 6: Average bitwidth weighed by tensor size constraint

independently optimized for weights and activation. We re-

port validation accuracy and the achieved average bitwidth
for weights/activations over 3 seeds (STD in superscript) for

QBitOpt and results for a single seed for NIPQ.

to satisfy the constraint, while for NIPQ, we required exten-

sive and time-consuming search across learning rates and

regularization strength.

6. Conclusion

In this work, we introduced QBitOpt, a novel algorithm

for allocating bitwidths under strict resource constraints.

QBitOpt leverages techniques from convex optimization

and QAT to obtain high-performing neural networks in the

sense of resource requirements and task performance with-

out the need to carefully balance task loss and resource

cost through a cumbersome hyper-parameter. We justify

using Hessian-based sensitivities, traditionally only used

for fully converged neural networks, during training. Our

greedy integer method and efficient FIT approximation al-

low us to regularly update the bitwidth allocations during

quantization-aware training.
We demonstrate the efficacy of QBitOpt on several

architectures in which QBitOpt compares favorably to
competing fixed-precision and mixed-precision approaches.
We further examine various properties of our method
through ablation studies. Specifically, we show that
regularly reallocating bitwidths during training is crucial
for optimal performance. We identify improved sen-
sitivities that more closely capture quantization pertur-
bation and the design of convex relaxations for hard-
ware constraints as exciting avenues for future research.

References

[1] Milad Alizadeh, Arash Behboodi, Mart van Baalen, Christos

Louizos, Tijmen Blankevoort, and Max Welling. Gradient

l-1 regularization for quantization robustness. arXiv preprint
arXiv:2002.07520, 2020. 4

1289

[2] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry.

Scalable methods for 8-bit training of neural networks. Ad-
vances in neural information processing systems, 31, 2018.

5

[3] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 2

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.

Convex optimization. Cambridge university press, 2004. 4

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-

hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom

Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,

Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Rad-

ford, Ilya Sutskever, and Dario Amodei. Language models

are few-shot learners. 2020. 1

[6] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,

Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash

Gopalakrishnan. Pact: Parameterized clipping activa-

tion for quantized neural networks. arXiv preprint
arXiv:1805.06085, 2018. 2

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Training deep neural networks with low precision

multiplications. arXiv preprint arXiv:1412.7024, 2014. 5

[8] Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.

Differentiable model compression via pseudo quantization

noise. Apr. 2021. 3, 5

[9] Steven Diamond and Stephen Boyd. CVXPY: A Python-

embedded modeling language for convex optimization. Jour-
nal of Machine Learning Research, 17(83):1–5, 2016. 4

[10] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,

Michael W Mahoney, and Kurt Keutzer. Hawq-v2: Hessian

aware trace-weighted quantization of neural networks. Ad-
vances in neural information processing systems, 33:18518–

18529, 2020. 5

[11] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Ma-

honey, and Kurt Keutzer. Hawq: Hessian aware quantization

of neural networks with mixed-precision. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019. 4, 5

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1

[13] Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.

Differentiable model compression via pseudo quantization

noise. arXiv preprint arXiv:2104.09987, 2021. 2

[14] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani,

Rathinakumar Appuswamy, and Dharmendra S. Modha.

Learned step size quantization. In International Conference
on Learning Representations (ICLR), 2020. 1, 2, 5, 6, 7, 8

[15] Elias Frantar and Dan Alistarh. Optimal brain compres-

sion: A framework for accurate post-training quantization

and pruning. In Alice H. Oh, Alekh Agarwal, Danielle Bel-

grave, and Kyunghyun Cho, editors, Advances in Neural In-
formation Processing Systems, 2022. 1

[16] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan

Alistarh. GPTQ: Accurate post-training compression

for generative pretrained transformers. arXiv preprint
arXiv:2210.17323, 2022. 1

[17] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,

Michael W Mahoney, and Kurt Keutzer. A survey of quanti-

zation methods for efficient neural network inference. arXiv
preprint arXiv:2103.13630, 2021. 2, 5

[18] Robert M. Gray and David L. Neuhoff. Quantization. IEEE
transactions on information theory, 44(6):2325–2383, 1998.

2

[19] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and

Pritish Narayanan. Deep learning with limited numerical

precision. In International conference on machine learning,

pages 1737–1746. PMLR, 2015. 5

[20] Hai Victor Habi, Roy H Jennings, and Arnon Netzer. Hmq:

Hardware friendly mixed precision quantization block for

cnns. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXVI 16, pages 448–463. Springer, 2020. 5

[21] Geoffrey Hinton. Neural networks for machine learning, lec-

tures 15b. 2012. 2, 5

[22] M. Horowitz. 1.1 computing’s energy problem (and what we

can do about it). In 2014 IEEE International Solid-State Cir-
cuits Conference Digest of Technical Papers (ISSCC), pages

10–14, 2014. 1

[23] B. Ham J. Lee, D. Kim. Network quantization with element-

wise gradient scaling. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2021. 1, 2

[24] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018. 1, 5, 7

[25] Sambhav R. Jain, Albert Gural, Michael Wu, and Chris Dick.

Trained uniform quantization for accurate and efficient neu-

ral network inference on fixed-point hardware. arxiv preprint
arxiv:1903.08066, 2019. 1, 2

[26] Raghuraman Krishnamoorthi. Quantizing deep convolu-

tional networks for efficient inference: A whitepaper. arXiv
preprint arXiv:1806.08342, 2018. 1, 7

[27] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi

Zhang, Fengwei Yu, Wei Wang, and Shi Gu. {BRECQ}:

Pushing the limit of post-training quantization by block re-

construction. In International Conference on Learning Rep-
resentations, 2021. 1

[28] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-

tos Louizos, and Tijmen Blankevoort. Up or down? Adap-

tive rounding for post-training quantization. In International
Conference on Machine Learning (ICML), 2020. 1

[29] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yely-

sei Bondarenko, Mart van Baalen, and Tijmen Blankevoort.

1290

A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295, 2021. 1, 2, 5, 6

[30] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko,

and Tijmen Blankevoort. Overcoming oscillations in

quantization-aware training. In Kamalika Chaudhuri, Ste-

fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and

Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pages 16318–16330.

PMLR, 17–23 Jul 2022. 1, 2, 6, 7, 11

[31] Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and

Max Welling. Data-free quantization through weight equal-

ization and bias correction. In International Conference on
Computer Vision (ICCV), 2019. 1

[32] Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin

Huang, Chirag Patel, and Tijmen Blankevoort. A practi-

cal mixed precision algorithm for post-training quantization.

arXiv preprint arXiv:2302.05397, 2023. 5

[33] Christos H Papadimitriou. On the complexity of integer pro-

gramming. Journal of the ACM (JACM), 28(4):765–768,

1981. 5

[34] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya

Sutskever, et al. Improving language understanding by gen-

erative pre-training. 2018. 1

[35] Manuele Rusci, Marco Fariselli, Alessandro Capotondi, and

Luca Benini. Leveraging automated mixed-low-precision

quantization for tiny edge microcontrollers. In IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and
Mobile for Embedded Machine Learning: Second Interna-
tional Workshop, IoT Streams 2020, and First International
Workshop, ITEM 2020, Co-located with ECML/PKDD 2020,
Ghent, Belgium, September 14-18, 2020, Revised Selected
Papers 2, pages 296–308. Springer, 2020. 5

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision (IJCV),
2015. 6

[37] Clemens JS Schaefer, Elfie Guo, Caitlin Stanton, Xiaofan

Zhang, Tom Jablin, Navid Lambert-Shirzad, Jian Li, Chi-

achen Chou, Yu Emma Wang, and Siddharth Joshi. Mixed

precision post training quantization of neural networks with

sensitivity guided search. arXiv preprint arXiv:2302.01382,

2023. 6

[38] Juncheol Shin, Junhyuk So, Sein Park, Seungyeop Kang,

Sungjoo Yoo, and Eunhyeok Park. Nipq: Noise proxy-

based integrated pseudo-quantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3852–3861, June 2023. 3, 5, 6,

7, 8

[39] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:

Revenge of the vit. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pages 516–533. Springer, 2022. 1

[40] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki

Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,

Thomas Kemp, and Akira Nakamura. Mixed precision dnns:

All you need is a good parametrization. In International
Conference on Learning Representations (ICLR), 2020. 1,

2, 3, 5, 7, 8, 12, 13

[41] Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali

Amjad, Ying Wang, Tijmen Blankevoort, and Max Welling.

Bayesian bits: Unifying quantization and pruning. In H.

Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.

Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 5741–5752. Curran Associates,

Inc., 2020. 3, 5, 6, 7

[42] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612–

8620, 2019. 5

[43] Peisong Wang, Chen Qiang, He Xiangyu, and Jian Cheng.

Towards accurate post-training network quantization via bit-

split and stitching. In Proceedings of the 37nd International
Conference on Machine Learning (ICML), pages 243–252,

July 2020. 1

[44] Bernard Widrow. A study of rough amplitude quantization

by means of nyquist sampling theory. IRE Transactions on
Circuit Theory, 3(4):266–276, 1956. 2

[45] Bernard Widrow. Statistical analysis of amplitude-quantized

sampled-data systems. Transactions of the American Insti-
tute of Electrical Engineers, Part II: Applications and Indus-
try, 79(6):555–568, 1961. 2

[46] B Widrow and M Liu. Statistical theory of quantization.

IEEE Trans. Instrum. Meas., 45(2):353–361, Feb. 1996. 2

[47] Stephen Wright, Jorge Nocedal, et al. Numerical optimiza-

tion. Springer Science, 35(67-68):7, 1999. 3

[48] Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. Bsq: Ex-

ploring bit-level sparsity for mixed-precision neural network

quantization. arXiv preprint arXiv:2102.10462, 2021. 5

[49] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gho-

lami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida

Wang, Michael Mahoney, and Kurt Keutzer. Hawq-v3:

Dyadic neural network quantization. In Marina Meila and

Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceed-
ings of Machine Learning Research, pages 11875–11886.

PMLR, 18–24 Jul 2021. 5

[50] Ben Zandonati, Adrian Alan Pol, Maurizio Pierini, Olya

Sirkin, and Tal Kopetz. Fit: A metric for model sensitivity.

arXiv preprint arXiv:2210.08502, 2022. 4, 5

[51] Sijie Zhao, Tao Yue, and Xuemei Hu. Distribution-aware

adaptive multi-bit quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9281–9290, 2021. 5

1291

