
Surround the Nonlinearity: Inserting Foldable Convolutional Autoencoders to
Reduce Activation Footprint

Baptiste Rossigneux
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Abstract

Modern deep learning architectures, while highly suc-
cessful, are characterized by substantial computational and
memory demands due to their large number of parame-
ters or the storing of activations. That is why it is hard
to adapt a neural network to the constraints of hardware,
especially at the edge. This paper presents an investi-
gation into a novel approach for activation compression,
which we term ’Projection-based compression on channels’
or ’ProChan’. Our method involves interposing projection
layers into a pretrained network around the nonlinearity, re-
ducing the channel dimensionality through compression op-
erations and then expanding it back. Our module is made to
be then totally fused with the convolutions around it, guar-
anteeing no overhead, and maximum FLOPs reduction. We
studied its absorption of the cost of quantization, to com-
bine the two approaches for footprint reduction. Our find-
ings indicate that the projections likely perform an ’adap-
tive stretching’ operation on the feature space, enabling the
preservation of essential information when constrained by
dimensional limitations. We also perform an ablation study
on the different possible strategies for a stable and quick
training, and analyse the interactions with different quan-
tization paradigms, namely PACT for activations and post-
training quantization (PTQ) methods for weights.

1. Introduction

Deep learning has achieved tremendous successes across

a broad range of applications, especially in computer vi-

sion with Convolutional Neural Networks (CNNs). How-

ever, the power of deep learning models often comes with

the cost of high computational and memory demands due to

the large number of parameters involved. As such, model

compression has become a critical area of study, with the

goal of reducing the size of deep learning models without

significantly compromising their performance.

Most existing model compression methods, including

pruning, quantization, and knowledge distillation, have

their unique strengths and limitations. For instance, pruning

methods reduce the size of models by eliminating less im-

portant connections, while quantization methods decrease

the numerical precision of the weights. Although these

methods can achieve considerable model compression, the

losses each technique brings make it difficult to combine

dimension reduction and quantization.

In this study, our key contribution is a novel approach

to activation compression with a new module, ProChan.

ProChan consists of a two-step operation: an initial com-

pression of the input through a reduction over channels, fol-

lowed by an expansion back to the original size. We demon-

strate that our module can smoothly be coupled with activa-

tion quantization on the nonlinearity, while being entirely

foldable, to ensure no overhead. We integrate our module

into Resnet18 and Efficientnet-lite, demonstrating the ro-

bustness of our approach across a wide range of CNNs.

2. Related works

Most existing works in model reduction focus on param-

eters reduction, but as [4] puts it, since data movement ac-

count for a majority of the energy consumption, limiting

data movement through activation compression is key for

portability. We will focus on the approach of compressing

the activations by adding a trained layer [9] [7] [8]. It is

proposed in [9] a projection into a lower-dimensional man-
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Figure 1: Our method, based on the insertion of an autoen-

coder around the nonlinearity. KC compresses the activa-

tions to meet the memory requirements and decompresses

KD to adapt the tensor for the next convolution. N here is

the initial input depth, so a ×4 compression is applied.

ifold and a quantization that are reversible. [8] improves on

this idea by quantizing in mixed precision - since it gener-

ally shows the best results in average bits per value [10] [6]

- with reinforcement learning, allowing 2.5 bits per value

in Resnet18. While the most used metrics are the number

of elements and bits per elements, [7] proposed the ceiling

compression paradigm, aiming at reducing the maximum

memory requirements of a network, by targeting only the

necessary layers. [4] also sought to distribute peak memory

consumption, but through new architecture design. To the

best of our knowledge, all of these approaches are imple-

mented before the ReLU, and our work is the first to pro-

pose a compression-decompression paradigm surrounding

the ReLU to ensure its foldability, and FLOPs reduction.

Recent advancements in filter pruning also strive to

lower the computational and memory demands of CNNs.

The hardware-friendliness of these methods lies in avoid-

ing the irregular memory access patterns typically associ-

ated with unstructured pruning. Extensive experiments [11]

[5] show that filter pruning stands on par with unstructured

methods, showing that compression in the channel direc-

tion, albeit simple, is a promising research direction.

3. Methodology

3.1. Projection-based compression over channels

The ProChan modules are implemented using a pair of

1x1 convolutions, which serve to compress and decompress

the feature maps within the network. The change from a

basic CNN structure to one with our module is captured by

the equations 1 and 2. The first convolution KC reduces

the number of channels based on a specified ratio, while

the second convolution KD restores the feature map back

to its original dimensions. The matching activation func-

tion is inserted between the convolutions. The compression

ratio of one module is determined by the ceiling compres-

sion paradigm from [7]. For example, when we state using

ProChan ×4, it means that the maximum size of activations

throughout the whole network was reduced by 4. Indeed

if an activation was already 2x smaller than the maximum,

it would be reduced by 2. It smooths the memory require-

ments of each layers throughout the network.

FCNN = Conv2(ReLU(Conv1(X))) (1)

FProChan = Conv2(KD(ReLU(KC(Conv1(X))))) (2)

3.2. Fusing our module

Let us consider the previous convolution KP and the

next one KN with a compression ratio of k, surrounding

our module. Contrary to similar works, our ProChan de-

sign ensures no computational overhead no matter the com-

pression ratio, and no changes in the layer architecture. The

first 1x1 convolution, KC , having k times fewer filters post-

fusion, amounts to kernel pruning, thus promising k times

less computation. The second convolution, KD, reduces

even more computation by reducing the depth of the kernel.

KP has a kernel with size No×Ni×C×C, respectively

for the input size (depth of kernels), the output size (number

of kernels) and for the kernel shape (supposed square, for

clarity). KC and KD each have a set of kernels of size

M × No × 1 × 1 and No × M × 1 × 1 respectively, M

being the compressive fraction of No : M = No

k . After the

fusion of KC , we have a new set of kernels K
′
P with size

M × Ni × C × C, which is calculated as a weighted sum

of the previous kernels KP weighted by one kernel’s KC

values:

K
′
P [m,n, c, c′] =

No∑

i=1

KP [i, n, c, c
′] ·KC [m, i, 1, 1] (3)

∀m ∈ [1,M ], n ∈ [1, Ni], (c, c
′) ∈ [1, C]2.

The fusion of KD with the next convolution KN of

size N
′
o × No × C × C operates by weighing the depth

of each kernels to get the new kernels of K ′
N of size

No ×M × C × C:

K
′
N [m,n, c, c′] =

No∑

i=1

KN [m, i, c, c′] ·KD[i, n, 1, 1] (4)

∀m ∈ [1, N
′
o], n ∈ [1,M ], (c, c′) ∈ [1, C]2.

3.3. Training and testing

We introduce projection layers into a Resnet18 and

Efficientnet-lite architectures. This choice serves a twofold

purpose - not only to exhibit the effectiveness of our ap-

proach on a wide range of CNNs, but also to underscore

its capacity to deliver substantial compression results even

on highly efficient networks. Efficientnet was chosen in its

lite version because the absence of the squeeze-and-excite

layers made it more friendly to our technique.
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Compression (Resnet18) Compression rate Top 1

Original 1× 69.7%

Tai & Al. [9] 2.14× 69.3%

Price & Tanner [7] 2.3× 68.2%

ProChan ×4 (ours) 2.3× 69.0%

ProChan ×8 (ours) 4.2× 67.2%

Table 1: Results of Top 1 accuracies on ImageNet with

Resnet18 on ImageNet for state of the art activation com-

pression techniques. The compression rate is the ratio of

the total number of activation elements with compression to

the total without. The compression rate can not exceed the

ceiling as the ceiling represents the maximum compression

applied on a layer.

Figure 2: Different training regimes when inserting

ProChan ×4 on Resnet18.

3.3.1 Study on training procedures

Every training mentioned in this paper is done on Ima-

geNet [2]. We use Hinton distillation [3] after noting that it

slightly accelerates convergence, because it is the simplest

and yet most effective one to add to the loss. We perform a

study on the usual training methods when adding compres-

sion modules for activations. Figure 2 illustrates the differ-

ences in training. Since we are also looking for a technique

that would not add a significant training overhead, the num-

ber of epochs it would take to converge is also taken into

account. We limit ourselves to only 2 epochs per module

on the first phase (frozen phase) and the same amount of

epochs on the second phase (unfrozen phase). We test dif-

ferent hyperparameters and use Adam, with 0.001 learning

rate and divide it by 10 during the second phase.

We initially tried to incorporate all projections at once,

but this proved unstable due to complexities from concur-

rent projection layers during training. We began by freezing

the entire model except for progressively added projections,

Model Original ProChan ×4, PACT 2 bits

Effnet-lite0 75.1% 73.0% (-2.1%)

Effnet-lite1 76.7% 74.1% (-2.6%)

Effnet-lite2 77.6% 74.0% (-3.6%)

Effnet-lite4 81.5% 75.1% (-6.4%)

Table 2: Results of Top 1 accuracies on ImageNet with

Efficientnet-lite compressed with ProChan ×4 modules.

establishing this as our baseline. Next, we attempted selec-

tive freezing, targeting only layers deeper than the deep-

est projection. This method, aiming for both stability and

adaptability, yielded results similar to full freezing. Lastly,

an entirely unfrozen strategy showed comparable perfor-

mance, even with the model’s increased adaptability.

Across these varying strategies, the key insight is that

the freezing regime does not significantly impact the final

performance, as long as the projections are introduced pro-

gressively. This finding suggests a level of robustness in

models with projections against different freezing regimes.

3.3.2 The compatibility of our technique with quanti-
zation

We evaluate our method’s robustness against weights and

activations quantization using state-of-the-art PTQ tech-

niques like FDDA [12], replicating realistic edge inference

conditions. Our method maintains accuracy with up to 8-bit

quantization but suffers significant loss beyond.

For this reason we opt for a comprehensive approach

where we combine our projection-based technique with

PACT (Parameterized Clipping Activation) [1] to quan-

tize the activations during the ReLU operation inside our

ProChan module. We experiment with reducing precision

to 8 bits, 4 bits, and 2 bits. We use our technique combined

with PACT and FDDA for weights and remaining activa-

tions quantization to 8 bits. As shown in figure 4, training

with PACT allows us to compress beyond 8 bits with more

accuracy than with a PTQ technique alone. This integrated

strategy aims to leverage the strengths of each method.

4. Results
As shown in table 1, our method gets better accuracy

than [7] for exactly the same compression rate, and extends

the study to 8× compression. Figure 4 shows how our tech-

nique can be leveraged in a real low-precision setup, while

also showing its limits. Indeed it highlights that PACT can

help quantize further (up to 2 bits) where usual quantiza-

tion methods force a drop in accuracy for 4 bits quantiza-

tion. For example, our Resnet18 compressed with ProChan

×4 will lose only 0.8% in Top1 accuracy after being com-
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(a) ProChan ×4 (b) ProChan ×4 + PACT 2 bits (c) ProChan ×8 + PACT 2 bits

Figure 3: The euclidean difference between inputs and outputs of every ProChan module, for three different training setups,

averaged on all the ImageNet validation set. The y-axes were set to highlight the difference in magnitude.

pressed in 8 bits (weights and activations), but in a mixed

precision setup, further reducing memory costs by adding

PACT 2 bits on already compressed activations will only

cost a 1% drop in Top1. However for bigger ProChan com-

pression like ×8, the damages from PACT are amplified.

We analyze Efficientnet-lite to demonstrate our tech-

nique’s effectiveness on better optimized networks. As

detailed in table 2, applying a ProChan ×4 compression,

we observe a larger drop in performance, albeit analo-

gous to those encountered with the Resnet18 architecture.

While our technique manifests commendable resilience for

smaller configurations like Efficientnet-lite0 - a 2.1% drop,

it seems to reach a bottleneck with larger models such as

the Efficientnet-lite4, suggesting that room exists for further

optimizations.

5. Discussions
5.1. Theoretical investigations : The stretching hy-

pothesis

We propose the ’Stretching Hypothesis’ to explain the

functioning of our module with quantization. We theorize

that our module, which includes compression and decom-

pression stages, manipulates the feature space to enable ef-

ficient learning. The stretch in the feature space assists in

disentangling feature representations, simplifying the learn-

ing and decision-making processes of coming layers.

Support for our hypothesis comes from our investiga-

tion of the Euclidean and Cosine distances between the in-

puts and outputs of our modules. We observe an increase

in the Euclidean distance during training, which stabilizes

upon convergence, indicating a ’stretching’ operation (fig-

ure 3). Meanwhile, the cosine distance remains high and

constant, implying the preservation of relative orientation of

features by the projections. As shown in figure 3, the more

aggressive the compression or quantization, the greater the

’stretching’ of the feature space. Indeed, a comparison be-

tween (a) and (b) highlights that adding PACT drastically

Figure 4: Training of different configurations of ProChan

with PACT and FDDA on Resnet18. To show the impact of

the different parts of our compression scheme : plain lines

are only compressed with ProChan, dashed lines also have

2 or 4 bits activation quantization, and stars are the results

of 8 bits quantization of weights and activations on the last

checkpoints of the dashed lines with a PTQ algorithm.

increases the stretching, and between (b) and (c) indicates

that lowering the ceiling also increases it. These observa-

tions are also verified in Efficientnet-lite.

6. Conclusions and future works

We present a novel method for compressing activations

that’s foldable and pairs effectively with techniques like

PACT activation quantization and PTQ for weights. This

method can be effortlessly integrated into hardware. Future

efforts will focus on optimizing the balance between com-

pression and quantization for each layer during training. We

also aim to utilize our insights from this module to develop

improved initializations for faster convergence.
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