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Abstract

Most high-level computer vision tasks rely on low-level
image operations as their initial processes. Operations
such as edge detection, image enhancement, and super-
resolution, provide the foundations for higher level image
analysis. In this work we address the edge detection con-
sidering three main objectives: simplicity, efficiency, and
generalization since current state-of-the-art (SOTA) edge
detection models are increased in complexity for better ac-
curacy. To achieve this, we present Tiny and Efficient Edge
Detector (TEED), a light convolutional neural network with
only 58K parameters, less than 0.2% of the state-of-the-art
models. Training on the BIPED dataset takes less than 30
minutes, with each epoch requiring less than 5 minutes.
Our proposed model is easy to train and it quickly converges
within very first few epochs, while the predicted edge-maps
are crisp and of high quality. Additionally, we propose a
new dataset to test the generalization of edge detection,
which comprises samples from popular images used in edge
detection and image segmentation. The source code is
available in https://github.com/xavysp/TEED.

1. Introduction
Large scale Deep Learning (DL) models are frequently

used in many computer vision applications, as documented

in [53, 22]. However, for low level tasks such as image en-

hancement, super-resolution [51] and edge detection [50],

more efficient and lightweight models are necessary as these

steps are preliminary to higher level image analysis. There-

fore, edge detection models should come with low compu-

tational cost and latency. For these reasons, classical edge

detectors like Sobel [37] or Canny [3] are still widely used

in many applications. However, recent deep learning ar-

chitectures with over 10 million parameters have been pro-

posed to outperform state-of-the-art approaches in various

benchmarks [48, 33]. While these models are powerful,

they come with a significant computational expense.

In order to reduce the computational cost, new proce-

dures for training the DL models have emerged, allow-

ing the utilization of lightweight models through careful

dataset selection. According to [16, 24, 40], the standard

datasets for edge detection, like BSDS [1], are originally in-

troduced for image segmentation; although they have edge

level annotations some of their ground truth comes with

wrong annotations [16, 41]. Having this problem in mind,

the new DL training procedure uses BIPED dataset instead

of BSDS, which avoids tedious setting for transfer learn-

ing, and also reduces the training and testing time; we refer

to this procedure as Training from the Scratch (TFS). The

edge-maps generated from these different training proce-

dures are compared in Fig. 1, where the results from TEED

use the TFS procedure. Note that BSDS dataset was not

used in training of TEED but our model is capable of gener-

alize the edge detection. In this manuscript the edge detec-

tion generalization is the capacity of the learning algorithm

to predict most edges from an arbitrary image—any image

even gray-scale that comes from a visible wavelength band.

The proposal, named Tiny and Efficient Edge Detector

(TEED) is capable of predicting thinner and clearer edge-

maps. Compared to the SOTA models [14], [42], and [33]

TEED stands out due to being remarkably simple, elimi-

nating the need for transfer learning or exhaustive hyper-

parameter tuning. Additionally, TEED is highly efficient,
demonstrating rapid convergence and producing superior

results both quantitatively and qualitatively. Our model gen-

erates robust results while it can handle various scenes and

different input types, whether in color or grayscale. To as-

sess the TEED’s generalization ability, we have prepared a

new test dataset by selecting images based on a frequency
criteria from commonly used datasets in edge detection,
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Figure 1: Edges from our proposal (TEED) and the state-of-the-art models. EDTER [33] and PiDiNet [42] have been trained

in BSDS500[1] following the standard training procedure. TEED has been trained from the scratch with BIPED [41] with

a reduced hyper-parameters tuning.

segmentation, and other low-level processing tasks. We

named this collection of images the Unified Dataset for

Edge Detection (UDED).

Overall, we present five main contributions: (i) TEED:

a simple but robust CNN model with only 58K parameters;

(ii) dfuse: a new, efficient fusion module inspired from Co-

Fusion in CATS [17] (while coFusion has around 40K pa-

rameters, dfuse has less than 1K parameters); (iii) a dloss

function for efficient and rapid training convergence; (iv)

UDED: a new dataset to test edge detection generalization,

which includes the ground truths annotated through human

perceptual edges; and finally, (v) a fair quantitative and

qualitative comparison with SOTA models that have less

than 1M parameters in UDED. To evaluate the robustness in

UDED dataset, a downstream task (sketch image retrieval)

is used, this validation also compare the standard and new

DL based approaches.

The remainder of this paper is organized as follows: Sec-

tion 2 reviews related work and discusses the parameter re-

quirements of each approach. Section 3 elaborates on the

proposed architecture. Section 4 describes the dataset and

the evaluation procedure. Section 5 presents experimental

results; and finally, conclusions are given in Section 6.

2. Literature Review
Edge detection is widely used from the low to high level

image analysis, including medical image segmentation [8]

and sketch-based image retrieval [38]. For a more compre-

hensive review, we refer readers to [55, 2, 28], and [50].

In recent years different deep learning based approaches

have been proposed for tackling the edge detection problem.

They can be classified into two main categories. The first

category includes approaches that train their models mainly

with BSDS500 [1], NYUD [13], and PASCAL-Context [31]

databases, without applying a validation process on the

given annotations. This leads to tedious additional steps

before and during training. The second category includes

approaches that split the problem up into edge, contour,

and boundary detection, as also outlined in BSDS300 [29]

and thoroughly explained in [16] and [30]. Subsequently,

BIPED [40] and BRIND [32] showed that a model trained

from scratch on a curated dataset for edge detection could

accurately predict over 80% of edges in a given scene. Our

approach is aligned with this latter methodology. Addi-

tionally, we suggest that an efficient yet lightweight model,

upon completion of training, can predict over 80% of edges

in any image dataset considered for evaluation.

With recent developments in datasets proposed for DL

model training, such as those in [41, 32], the next step is

to find a dataset that encompasses images from various sce-

narios for comprehensive evaluation. To this end, our paper

introduces a small yet diverse dataset for edge evaluation.

In addition, various metrics are considered to ensure a fair

comparison, as presented in Section 5.

2.1. Edge Fusion Methods

The fusion of multi-scale features to generate edges is as

crucial as feature extraction itself in edge detection tasks.

The earliest methods involve reshaping the multi-scale fea-

ture matrix to match the size of the final output and then

computing a weighted sum to obtain the final result. Despite

its simplicity, this fusion method proves highly effective and

has been widely adopted by various works, including HED

[48], RCF [26], BDCN [14]. However, this fusion approach

exhibits two primary drawbacks: firstly, the fine branches

lack global semantic information, and secondly, features in

the same channel share the same weight and have equal im-

portance in channel fusion.

In order to address the aforementioned drawbacks, Deng

et al. ([7, 6]) used the decoder structure of U-Net [34] to

gradually incorporate global information into the shallow

features. However, recent research [49] suggests that se-
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mantic information gradually decays as it is fused down-

ward in U-Net structures, diminishing its guiding effect. To

simultaneously preserve multi-scale features and generate

pixel-level weight matrices, recent works such as FCL [49]

generate a pixel-level weight matrix for each scale feature

during the process of multi-scale feature generation. CATS

[17], on the other hand, splices multi-scale features and

combines spatial and channel information to alleviate edge

localization ambiguity. While generating crisp edges with

the contribution of tracing loss and a context-aware fusion

block (coFusion), it can lead to suppress the nearest neigh-

bor edges. To overcome this limitation, the Double Fusion

module is proposed in the current work, which improve ef-

ficiently the procedure of coFusion with fewer parameters.

2.2. Loss Functions

To improve the performance of edge detection, re-

searchers have proposed various loss functions to optimize

the learning process. HED [48] is a seminal work in this

field that introduced Weighted Cross-Entropy (WCE) as a

loss function for the end-to-end supervised learning. How-

ever, it is well known that WCE suffers from multiple an-

notation inconsistencies in the BSDS500 dataset [26]. In

order to address this problem, subsequent studies (e.g.,

[26, 14, 42]) propose the WCE+ loss function by ignoring

the disputed pixels while measuring WCE.

In recent years, researchers have gradually identified is-

sues with the WCE+ loss function. Due to the significant

disparity between the number of edge and non-edge pixels,

backpropagation gradients tend to assign larger weights to

edge pixels, leading to blurry edges. The problem of imbal-

anced positive and negative samples is further aggravated

by WCE+ where controversial edges are ignored. There-

fore, several alternative approaches have been proposed to

achieve crisper edge detection by refining the loss function.

For instance, [7] uses a combination of Dice coefficient and

Cross-Entropy. [6] goes a step further by incorporating the

structural differences between the output and the ground

truth using SSIM [46]. Lastly, [17] optimizes the loss func-

tion by dividing the image into three categories: edge, con-

fusing, and non-edge pixels.

Although the use of these loss functions has significantly

improved edge detection, a crucial issue is ignored: the edge

fusion module pays different levels of attention to edge-

maps predicted in the preliminary stages. In the current

work we address this problem by employing different loss

functions to monitor the main architecture and the fusion

module (dfuse for TEED) separately, enabling them to cap-

ture information at various levels.

3. Proposed Model
In this section, we present the proposed Tiny and Effi-

cient Edge Detector (TEED) architecture in detail. We be-

gin by introducing the backbone architecture, followed by

USNet from DexiNed [41]. Then, we present the Edge fu-

sion module, termed Double Fusion (dfuse), as well as a

proposed loss function, named Double Loss (dloss). All

components united in TEED provide simplicity, efficiency,

and edge detection generalization, making this new ap-

proach an effective and efficient edge detection model that

reduces training and testing time as well as computational

cost.

3.1. TEED Backbone Architecture

Since the inception of ResNet [15], Xception [4], Effi-

cientNet [43] architectures powered by dense and skip con-

nections have achieved impressive results improving for-

ward and backward operations from the shallower to the

deeper CNN layers. These advantages are plausible in many

computer vision tasks. Following these successes, DexiNed

[40] and LDC [39] use similar architectures for edge de-

tection. The result is a model trained from scratch that

still achieves state-of-the-art accuracy. The TEED back-

bone architecture presented in Fig. 2 is based on LDC [39].

It consists of three green blocks (i.e., Block: x2 in Fig.

2), each has two standard CNN layers. We did not con-

sider the VGG16 architecture [36] due to its lack of skip-

connections, which can reduce the efficacy of edge detec-

tion in deeper layers. In TEED we only use 58K parame-

ters, which is far lower than DexiNed and LDC, 35M and

674K parameters respectively. We reached this compact

network by reducing the number of convolutional layers

and skipping Batch Normalisation (BN). With this reduc-

tion also falls the accuracy, to overcome this drawbacks, we

consider a new activation function, which is proposed in

[45], ζ(h) = smish(h) = h · tanh[ln(1 + sigmoid(h))],
where h is the feature map of the respective layer in TEED.

The smish is capable of reducing the lack of efficient train-

ing optimization effect without BN. Besides, according to

our empirical observations, this non-linearity function im-

prove the RELU function used in the SOTA models.

Overall, every block of TEED has 2 convolutional layers

followed by ζ—[conv1 + smish + conv2 + smish]. The

three backbone blocks have 16, 32, and 48 layers, respec-

tively. Then, the output of the first block h1 and the second

block h2 are combined by skip connection skip1 through

the summation operation (h1+h2). This skip-connection is

applied immediately after the max-pooling operation. An-

other skip connection, skip2, is used to fuse h2 and the sub-

outputs of block 3 as follow (Block3.1+h2)/2; this is sim-

ilar to the skip connection in [40] and [39]. The outputs of

these three blocks feed USNet, as indicated by gray arrows

pointing downwards in Fig. 2. The convolutional layers

used for skip-connections have 1× 1 kernel size.
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Figure 2: TEED architecture.

3.2. USNet

The USNet module of TEED is similar to DexiNed [40],

with a slight modification: i) we use Xavier initialization in

all of USNet layers, ii) we use the same activation function

of the backbone (ζ). The outputs of USNet are the edge-

map predictions, ŷi, with the same width and height of the

input image x, where x ∈ R
W×H×3. As illustrated in Fig.

2, USNet is composed of 1 convolutional layer (Conv) fol-

lowed by activation ζ and 1 deconvolutional layer (Deconv).

The kernel size and number of filters can be seen in the bot-

tom left of Fig. 2; for instance, ”Deconv 2× 2− 1 S2” is a

deconvolutional layer with a kernel size of 2×2, 1 filter, and

the upscale process ×2. The USNet-2 has the same archi-

tecture as the USNet-1. The size of the output from block

3-2 is ×4 down-sampled; hence, USNet-3 has two Conv and

2 Deconv layers as shown in the bottom left of Fig. 2. Fi-

nally, the edge-map predictions from the respective USNet

modules is ŷi = σ(USNet(hi)).

3.3. Double Fusion

The edge fusion module in an end-to-end edge detection

learning model is typically a CNN or a set of layers that

merges edge-maps generated in different scale levels of the

backbone network. This module in TEED is named dfuse
as illustrated in Fig. 2; the predicted edge-map from this

module is denoted by ŷdfuse. This module is inspired from

CATS [17]. In terms of efficiency, TEED+dfuse comes

with just 58K parameters, much less than 99K parameters

in TEED+coFusion.

The dfuse is composed of two Depth-wise convolutional

layers (DWConv), since this approach applies a single con-

volutional filter to each input channel [11], which incre-

ments the receptive field but reduce the cost of computation.

This module does not use Softmax activation nor group nor-

malization; instead, it employs the Smish activation func-

tion [45] (ζ) to regularize the weight maps during training.

The kernel size of the DWConv is 3 × 3 − 24, which re-

duces the spatial dimensions of dfuse. Note that the activa-

tion function ζ is applied before the DWConv layers. The

output from the DWConv layers is fused twice:

hdfuse = ζ(ewa(DWc1(Ŷ ) +DWc2(Ĥdfuse))),

where, ŷdfuse = σ(hdfuse),
(1)

and σ is the sigmoid function. The output of USNet is de-

noted as Ŷ = [ŷ1, ŷ3, ŷ3] and the feature map of DWConv

is Ĥdfuse ∈ R
W×H×24. As indicated in eq. (1) two fusions

are applied in dfuse: the first one is the sum of DWConv1

and DWConv2, where the second fusion is applied through

element-wise addition (ewa) of the first fusion, followed by

the activation function ζ. At this stage, ŷdfuse has the same

size as the respective y.

3.4. Double Loss

We introduce an approach to measure the error on the

training dataset of pairs (x, y), where y is the ground truth

edge map of image x. The loss function considered for our

end to end training on edge detection is the weighted cross

entropy Lwce, which was originally proposed by HED [48]

and slightly modified later in BDCN [14]. Lwce helps in de-

tecting as many edges as possible. However, if the detected

edges are absent in the ground truth, the resulting conflict

is reflected in the form of artifacts or noise in the detected

edge space. If a model is trained using a ground truth that
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is visually annotated by humans, Lwce may show this draw-

back; see PiDiNet [42] result in Fig. 1.

In order to overcome this problem, CATS [17] proposes

a new loss function called tracing loss Ltrcg , which is a

combination of Lwce, boundary tracing fusion and texture

suppression function. This loss function leads to faster

convergence of the model during training, compared to

Lwce, while the predicted edge-maps are clearer and thin-

ner. However, since the ground truth is generated through

human visual judgment, some edges may be omitted in the

predicted edge-map. As Ltrcg is relying more on a given

ground truth (compared to Lwce) some true edges may be

excluded. In addition, deploying a tiny model such as

TEED could result in losing the generalization ability.

To address these drawbacks, TEED employs Lwce for

comparing the ground-truth y with the outputs of USNets

{ŷi}31 as well as Ltrcg for ŷdfuse. Therefore, in the one

hand, dfuse module is fed with more detected edges thanks

to Lwce, on the other hand Ltrcg controls the prediction in

the dfuse module, ŷdfuse. Moreover, the structure of dfuse

is developed to reduce the drawbacks of Ltrcg and leverage

the benefits of Lwce. The global loss (dloss) can be summa-

rized as follow:

Ldloss =
3∑

i=1

Lwce(ŷi, y) + Ltrcg(ŷdfuse, y). (2)

4. Edge Detection Datasets and Evaluation
This section presents the datasets used for training and

assessing the models discussed in Sec. 5 together with a

brief overview of the metrics employed for evaluation.

4.1. Datasets for Training TEED

Due to the impressive results of the recently released

dataset for edge detection, Barcelona Images for Perceptual

Edge Detection (BIPEDv2) [40, 41] referred to as BIPED

in this manuscript, we trained all models with this dataset.

BIPED was firstly introduced in [40]. It contains 250 im-

ages in high definition (720 × 1280): 50 images of which

were selected by the authors for testing and the rest for train-

ing and validation. The data augmentation procedure used

in LDC [39] is implemented for TEED.

4.2. Dataset for Testing Edge Generalization

The well known datasets BSDS500 [1], PASCAL-

Context [31], and NYUD [13] are usually considered for

training and evaluating edge detection methods. However,

based on our understanding and analysis of the literature

[24, 16, 41], this assumption is wrong, as these datasets are

not intended for edge detection. The ground truths in these

datasets are prepared for boundary detection and/or image

segmentation [25]. Only BIPED [41] and BRIND [32] have

been proposed to tackle the edge detection problem.

Hence, in order to test whether a trained model can

generalize by detecting edges on images from different

scenes, a new dataset is proposed: Unified Dataset for

Edge Detection (UDED). This UDED is created with the

purpose of reducing the evaluation procedure by select-

ing images from datasets focused on low- and mid-level

tasks, and carefully annotating perceptual edges. The pro-

posed UDED contains 30 images selected from: BIPED

[40], BSDS500 [1], BSDS300 [29], DIV2K [20], WIRE-

FRAME [19], CID [10], CITYSCAPES [5], ADE20K [54],

MDBD [30], NYUD [13], THANGKA [27], PASCAL-

Context [31], SET14 and URBAN100 [18], and the camera-

man image. The image selection process consists on com-

puting the Inter-Quartile Range (IQR) intensity value on all

the images, images larger than 720 × 720 pixels were not

considered. Then, the images are sorted by this IQR value

and 30 of them uniformly selected from that sorted list—

around 2 images per dataset have been selected.

Finally, since edge detection is a low-level process, re-

quired for other tasks (e.g., image super-resolution guidance

[12] and sketch-based image retrieval [52]), we propose to

conduct an application-oriented evaluation that validates the

generalization of UDED.

4.3. Metrics for Quantitative Evaluation

In the current work, we focus on the most commonly

used metrics for quantitatively evaluating edge detection

methods: Optimal Dataset Scale (ODS) and Optimal Image

Scale (OIS) [29]. Additionally, Peak Signal to Noise Ratio

(PSNR), Mean Square Error (MSE), and Mean Absolute Er-

ror (MAE) are also considered for the quantitative compar-

ison as they have recently been suggested in [35, 9, 44, 21].

5. Experiments
In general, an edge detector based on CNN is vali-

dated through training and testing in different dataset (e.g.,

BSDS [1], NYUDv2 [13]). Our manuscript proposes a new

methodology for the edge detection model evaluation. We

suggest evaluating it only in a dataset especially prepared

for edge detection. This dataset should be designed in a way

that is efficient and gives results in a short period of time,

which is not possible in the test set of the state of the art,

nowadays. Therefore, we propose evaluating on the UDED

dataset, presented in Sec. 4. To validate the effectiveness

of UDED, a downstream task for sketch image retrieval is

considered [52, 38]. Implementation details are given be-

low, followed by an ablation study. Later, we present both

quantitative and qualitative results using the UDED dataset.

Finally, TEED is validated in sketch image retrieval.

5.1. Implementation Details

TEED is implemented in PyTorch and trained on an

NVIDIA 3090 GPU. TEED training is based on Adam opti-
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mizer [23], a batch size of 8, an initial learning rate of 8e−4
changed to 8e−5 at epoch 5, a weight decay of 2e−4. Val-

idation results at epoch 6 are reported. Despite the fact that

BIPED provides binary annotations, due to the interpola-

tions when edge maps are built floating point values appear;

hence we apply a transformation to edge annotations y by

adding 0.2 to values greater than 0.1, and then clipping the

results to [0,1], similar to LDC [39]. A Lenovo Yoga C740-

15IML laptop with an Intel i5-10210U processor is used to

report the FPS values.

5.2. Ablation Study

In this section various components of the TEED model

are analyzed, using BIPED [41] as training data. Table 1

shows the different configurations of TEED, starting in the

first column with B2, as showing in Fig. 2, TEED is com-

posed of three blocks, and B2 represents just 2 blocks of the

proposal and B3 corresponds to the results when all blocks

are considered. The table presents information about the

number of parameters (#P ), loss functions used in train-

ing (Ltrcg proposed for CAST [17] and Lwce the weighted

cross entropy loss), fusion modules (coF ), activation func-

tions (including Relu, Tanh, and Smish). Column Conv
corresponds to the standard convolution layer used in the

dfuse, and the column DWConv corresponds to the Depth

Wise Convolution used on the fusion module. The last two

columns correspond to the standard metrics used for the

edge detection quantitative evaluation.

Table 1 is divided into two sections. The top section

shows results of TEED using the first configuration. For

instance, the first row in the top section shows the results

of TEED using only the loss function from CATS with the

same fusion module (coFusion), and the Smish activation

function in the TEED backbone. The resulting ODS is

0.810, and this version of TEED has 99K parameters. Start-

ing from the third row in the top section of Table 1, we

begin using the dfuse module, which reduces the number

of parameters by 40K; by using DWConv, we reduce the

number of parameters from 60K to 58K for TEED. Overall,

we can see that using dloss, dfuse, and the Smish activation

function in the TEED model contribute to both efficiency

and accuracy.

5.3. Quantitative Results

Based on the quantitative results from DexiNed [41] and

LDC [39], we trained all models with BIPED. Table 2

presents results from TEED and the state-of-the-art models

with less than 1M parameters; all these models are trained

with BIPED and evaluated with UDED. The approaches

considered in the comparison are as follow: the block

2 of BDCN [14]—BDCN-B2; three versions of PiDiNet

[42]—the standard PiDiNet, PidiNed-Small, and PiDiNet-

tiny-L; TIN [47]; LDC [39]; Canny edge detector [3] and

TEEDup—we up-scale the input image (x), to 1.5 before

feeding the model. Results from DexiNed edge detection

model [41] are provided just for reference. This table shows

ODS and OIS, the last epoch used for evaluation, number of

parameters (#P), time of training till reaching the last epoch

(Train-time), Frames Per Second (FPS), Mean Square Error

(MSE), Mean Absolute Error (MAE), and Peak-Signal-to-

Noise-Ratio (PSNR). The results in ODS and OIS are from

edge-maps after applying NMS. Results from MSE, MAE,

and PSNR are before applying NMS, this process also let

us know which edge-map has less artifacts or noises.

As shown in the table, TEED and TEEDup achieve the

best results in all evaluation criteria with only 6 epochs and

a training time of less than 30 minutes. In contrast, all other

approaches require between 10 and 53 hours of training to

achieve similar performance. It should be noted that TEED

is the architecture with less number of parameters. The sec-

ond smaller architecture (PiDiNet-tiny-L [42]) requires 30

hours of training, while TEED needs only 30 minutes.

5.4. Qualitative Results

Figure 3 presents six images from UDED dataset for the

perceptual judgement. The images used in UDED come

from different datasets and the selection procedure is de-

tailed in Sec 4. We can see that from the third column,

the images used in the comparison are challenging; for in-

stance, the image from the last column has a large number

of edges annotated in the ground truth, and most of the mod-

els used for comparison predict edge-maps with noise. In

conclusion, it can be said that the compact TEED architec-

ture excels at detecting as many edges as possible. TEED

is able to obtain superior edge-maps compared to state-of-

the-art approaches in all the images shown in Fig. 3; actu-

ally, not only more edges are detected but also thinner and

cleaner edge-maps are obtained.

5.5. Discussion

Since the 1980s, the edge detection evaluation on a set

of images with corresponding ground truths, has been chal-

lenging [55, 50]. This is because edge maps are not the ulti-

mate goal, but rather they are used for higher level tasks [41]

of computer vision and image processing. For addressing

this issue, we propose the UDED dataset, which includes a

small yet diverse set of images with different intensities to

evaluate the performance under various scenarios.

In order to validate our dataset, we consider a subsequent

use of the edge-maps generated from TEED. Testing pre-

dicted edge-maps in some application is an effective way to

validate an edge detector. Hence, we consider sketch based

image retrieval [52, 38] to compare the edge-map contri-

bution in the first and last versions of QMUL-chair and

QMUL-shoe datasets; results are depicted in Table 3 and

4. These results show that reaching the best performance in
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B2 B3 #P Train-data Lwce Ltrcg coF DF Conv DWConv Relu Tanh Smish ODS OIS

� 99K BIPED � � � � .810 .842

� 99K BIPED � � � � � .821 .854
� 58K BIPED � � Hap � � .814 .84

� 60K BIPED � � EWA � � .825 .851

� 58K BIPED � � EWA � � .816 .827

� 58K BIPED � � EWA � � .815 .837

� 17K BIPED � � EWA � � .796 .823

� 58K BIPED � � EWA � � .828 .842

Table 1: Detailed ablation study of TEED backbone, Double-Loss and Double-Fusion.

Method ↓Epoch ↓#P ↓Train-time ↑FPS ↑ODS ↑OIS ↓MSE ↓MAE ↑PSNR

Canny [3] – – – 392.5 .742 .743 — — —

DexiNed [41] 11 35M ∼20 hours .34 .815 .826 .095 .149 10.799
PiDiNet [42] 20 710K ∼53 hours .67 .812 .824 .126 .194 9.49

LDC [39] 16 674K ∼10 hours 2.57 .817 .838 .084 .134 11.268

BDCN-B2 [14] 20 268K – 1.97 .821 .839 .136 .205 9.229

TIN [47] 1.6M 244K ∼14 Hours 1.2 .803 .827 .094 .16 10.734

PiDiNet-small [42] 20 184K ∼40 hours — .821 .834 .133 .202 9.174

PiDiNet-tiny-L [42] 20 73K ∼30 hours 1.59 .821 .834 .136 .21 9.182

TEED (Ours) 6 58K ∼30 min 2.6 .828 .842 .073 .107 11.965

TEEDup (Ours) 6 58K ∼30 min 1.94 .834 .847 .071 .107 12.05

Table 2: Results when models are trained with BIPED [41] but evaluated with the proposed UDED dataset.

QMUL-Shoe [52] QMUL-Chair [52]
Method #P Top1 Top10 Top1 Top10

TripletSN [52] — .3913 .8783 .6907 .9794
BDCN-BSDS 16.3M .3913 .8348 .6391 .9896
BDCN-BIPED 16.3M .513 .8869 .8144 .9896
PiDiNet-BIPED 710K .5043 .8347 .8041 1
TEED-BIPED 58K .5217 .8957 .835 1

Table 3: Sketch image retrieval results in QMUL Shoe and

Chair datasets [52]. BDCN-BSDS is the model trained with

BSDS [16], BDCN-BIPED stands for the model trained

with BIPED [41].

QMUL-ShoeV2 [38] QMUL-ChairV2 [38]
Method #P Top1 Top10 Top1 Top10

HOLEF [38] — .6174 .9478 .8144 .9588
BDCN-BSDS 16.3M .3826 .8869 .6804 .9896
BDCN-BIPED 16.3M .5565 .8956 .8969 .9896
PiDiNet-BIPED 710K .5304 .8869 .8762 1
TEED-BIPED 58K .5565 .9565 .8865 1

Table 4: Sketch image retrieval results in the updated

QMUL shoe and chair datasets reported in HOLEF [38].

the most widely used datasets does not guarantee its effec-

tiveness in the subsequent tasks. TEED achieves the best

results in sketch image retrieval task using only 58K pa-

rameters, which is less than 9% of PiDNet’s [42] parame-

ters and less than 0.3% of BDCN’s parameters. The results

suggest that TEED has a strong generalization capability,

as it performs well on new datasets like QMUL-chair and

QMUL-shoe, even though it was only trained on BIPED.

6. Conclusions
This paper presents TEED, a deep learning-based edge

detector that produces edge-maps that mimics human visual

perception. The performance of TEED is evaluated using

various metrics and a subsequent task, sketch-based image

retrieval, and compared with SOTA edge detectors. Our re-

sults demonstrate that TEED outperforms other edge detec-

tors in terms of accuracy, while requiring significantly fewer

parameters and being easy to train within few epochs. Ad-

ditionally, our experiments show that the proposed UDED

dataset is a useful tool for validating edge detectors across

different scenarios. Overall, the results suggest that TEED

is a highly effective and efficient edge detector that could be

used in a wide range of computer vision applications.
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Figure 3: Edge-maps predicted with the lightweight SOTA models and TEED—images from UDED dataset.
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Qi Tian, Matti Pietikäinen, and Li Liu. Pixel difference net-

works for efficient edge detection. In International Confer-
ence on Computer Vision (ICCV), pages 5097–5107, 2021.

1, 2, 3, 5, 6, 7

[43] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,

2019. 3

[44] Nazish Tariq, Rostam Affendi Hamzah, Theam Foo Ng,

Shir Li Wang, and Haidi Ibrahim. Quality assessment meth-

ods to evaluate the performance of edge detection algorithms

for digital image: A systematic literature review. IEEE Ac-
cess, 9:87763–87776, 2021. 5

[45] Xueliang Wang, Honge Ren, and Achuan Wang. Smish: A

novel activation function for deep learning methods. Elec-
tronics, 11(4):540, 2022. 3, 4

[46] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli.

Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004. 3

[47] Jan Kristanto Wibisono and Hsueh-Ming Hang. Traditional

method inspired deep neural network for edge detection. In

IEEE International Conference on Image Processing (ICIP),
pages 678–682, 2020. 6, 7

[48] Saining Xie and Zhuowen Tu. Holistically-nested edge de-

tection. In Proceedings of the IEEE international conference
on computer vision, pages 1395–1403, 2015. 1, 2, 3, 4

[49] Wenjie Xuan, Shaoli Huang, Juhua Liu, and Bo Du. Fcl-

net: Towards accurate edge detection via fine-scale correc-

tive learning. Neural Networks, 145:248–259, 2022. 2, 3

[50] Daipeng Yang, Bo Peng, Zaid Al-Huda, Asad Malik, and

Donghai Zhai. An overview of edge and object contour de-

tection. Neurocomputing, 2022. 1, 2, 6

[51] Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang,

Jing-Hao Xue, and Qingmin Liao. Deep learning for single

image super-resolution: A brief review. IEEE Transactions
on Multimedia, 21(12):3106–3121, 2019. 1

[52] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M

Hospedales, and Chen-Change Loy. Sketch me that shoe.

In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 799–807, 2016. 5, 6, 7

[53] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-

cas Beyer. Scaling vision transformers. In CVPR, pages

12104–12113, 2022. 1

[54] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic under-

standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127:302–321, 2019. 5

[55] Djemel Ziou, Salvatore Tabbone, et al. Edge detection

techniques-an overview. Pattern Recognition and Image
Analysis C/C of Raspoznavaniye Obrazov I Analiz Izo-
brazhenii, 8, 1998. 2, 6

1373


