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Abstract

Despite the rapid evolution of video resolutions and

progress on object detection algorithms, processing high

resolution videos has had three main challenges so far.

Firstly, it is non-trivial to use existing tracking algorithms

to extend an object detection framework for efficient pro-

cessing of high resolution videos. In theory, fully convo-

lutional CNN architectures in most existing deep learning

models allow any input resolution to be processed. How-

ever, in practice, inferencing on high resolution images de-

coded from a video incurs significant computational costs,

making it impractical for real-time applications. Secondly,

most tracking approaches typically require the entire frame

to be decoded. Relatively little work has gone into object

detection directly on compressed data, which include rich

temporal cues that can be exploited to reduce the compu-

tational cost at inference time. Thirdly, most of these ap-

proaches require labeled data for training models, thereby

limiting their adoption.

We tackle all the three challenges in our framework by

incorporating forward and backward motion cues from the

compressed video to dramatically increase the processing

speed of a pretrained baseline object detector, without any

loss of accuracy. Our training is based on knowledge trans-

fer from the baseline detector as a teacher network, thereby

forgoing the need for any labeled data. Finally, the mod-

els are agnostic to teacher network architecture, and can be

used to improve efficiency of any object detector. Our re-

sults show a speed gain of 3x to 20x compared to a frame-

by-frame detector, depending upon input data resolution.

1. Introduction

The proliferation of smartphones and security cameras

has resulted in a significant increase in the number of high

resolution videos. With the advent of deep learning algo-

rithms, object detection methods have become considerably

more accurate and robust in their ability to learn and identify

complex spatial patterns in videos. Most existing live cam-

era processing and alerting frameworks process data at low

resolutions (typically 512 × 512) even though fully convo-

Figure 1: Processing input images at high resolutions has

clear benefits of enabling user to detect small objects. (top)

Processing a 6000 × 4000 image at 512 resolution, detects

significantly fewer faces(222) compared to detector at 2048

resolution shown on the right(894). (bottom) Average Pre-

cision(AP) accuracy of an SSD[15] face detector on a set of

ultra high resolution images (6000 × 4000) progressively

improves with the detector resolution, although it comes

with a cost of higher power and resource requirements.

lutional networks allow inputs to be processed at any reso-

lution. This results in the loss of the ability to detect smaller

sized objects, which may be critical for many applications.

Object detectors trained for variable input resolutions (e.g.

up to 1024 × 1024) have the ability to process inputs at

much high resolutions, allowing smaller sized objects to

be detected. However their use as-is requires higher com-

putational cost, continuous decoding of large images, and

demands significantly high throughput from the hardware.

Classical approaches of splitting video streams into parallel

low-resolution streams[23] or pyramidal processing also do

not scale well due to significantly higher processing costs.

A natural solution therefore is to process a high resolution

video sparsely, and apply fast tracking algorithms to propa-

gate detections in the intermediate frames.

In the past, researchers have attempted to incorporate

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2: Overview of the entire system for processing high resolution videos in compressed domain. Videos are encoded

as series of interleaved I-frames and P-frames. Only I-frames are processed using the baseline detector. Motion vectors

and the residuals associated with the GOP P-frames are accumulated in forward and backward directions to enable parallel

processing. The Shift network uses accumulated motion vectors from the preceding and succeeding I-frames to predict shifts

in the bounding boxes. The Refine network refines both the set of bounding boxes from the localized reconstructed patches.

temporal context for tracking detections, although stan-

dard sequence modeling approaches like recursive nets and

LSTMs have not been widely applied, mainly due to their

high computational costs and memory requirement. While

a majority of approaches require the frames to be decoded,

some have attempted to run inference directly in the com-

pressed domain. Video compression algorithms are fairly

mature and highly optimized for storage and bandwidth.

Decoding the entire video frame and processing each frame

individually is redundant and wasteful of computing re-

sources, especially if the changes are limited to small lo-

calized regions in the scene.

In this paper, we introduce a novel framework that uses

a generic full-frame object detector (referred to as the base-

line detector) that detects one or more object classes in

an image, and two customized lightweight neural networks

called the Shift network and the Refine network. The base-

line detector may be optimized for high resolution frames

such as HD or 4k-UHD. The Shift and Refine networks

on the other hand are much faster than the baseline net-

work, and do not require the entire image to be decoded.

Our framework speeds up video processing by depoying the

computationally expensive baseline detector on a sparse set

of frames, and propagating the detections to obtain refined

detections on the intermediate frames using the Shift and

Refine networks. While the Refine network is critical to

overcoming the lack of rich motion information in the com-

pressed video (see figure 3), the Shift network ensures that

decoding a frame patch is only needed in a localized region,

which amplifies speed gains. The video decoding process is

therefore tightly coupled with the baseline detector, requir-

ing only sparse and localized reconstructions in the majority

of frames. The framework thus facilitates processing very

high resolution videos without the need to decode the en-

tire frame, while maintaining the detection accuracy of the

baseline detector. The Shift and Refine networks are trained

on the output distribution of the baseline detector. The train-

ing happens seamlessly on unlabeled representative data in

a fully unsupervised fashion, using teacher-student knowl-

edge distillation. Figure 2 shows the overview of the sys-

tem. To summarize, our work demonstrates that (1) spa-

tially localized processing of high resolution videos using

tight coupling of video decoding and processing can yield

significant performance gains without any loss of accuracy,

(2) knowledge distillation based learning can be effectively

used to train the lightweight Shift and Refine networks from

mature object detectors, thus eliminating the need for la-

beled data, and (3) a generic, detector agnostic pipeline can

be used for fast processing of high resolution videos.

2. Related Work

Methods seeking to speed up computer vision tasks in

video typically run a more expensive model on a sparse

set of frames, and fill in the rest of the frames by tempo-
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rally propagating results using changes in the feature maps

or motion and optical flows. The task of action recogni-

tion in compressed domain has been somewhat success-

ful,(e.g. [33][24][35][29][25]). Wu et al [33] was one of

the early works incorporating accumulated motion vectors

and residuals in a loosely coupled framework for fast infer-

ence on videos. They independently trained separate mod-

els for I-frames, motion-vector frames and residual frames.

The action recognition scores from individual models were

aggregated by simply summing individual model scores.

DMC-net [24] is a lightweight generator network to re-

construct flow-like signals from low resolution, imprecise

motion vector signals in compressed videos. Its authors

demonstrated significant speed gains at the same level of

accuracy, compared to frameworks that used optical flow.

Two-stream convolution networks[25] have found success

in action recognition but are inherently slow due to opti-

cal flow computation. Zhang et al [35] improved it 27×
by replacing optical flows with the motion vectors from

the compressed videos which tend to be much coarser and

noisy. Context and motion decoupling [10] advocates use

of motion vector cues in the videos for embedding high-

level motion representations in their learning framework us-

ing self-supervision. While methods for action recognition

on compressed data may inspire ideas for object detection,

they cannot be used directly for object detection, which re-

quires spatially finer grained propagation.

Object detection in video has also seen some success

[14][36][16][8][4][5][6]. Information from the previous

frames can be incorporated as either multi-level feature

maps from different stages of the deep network inference

pipeline or detections (of which, tracking is an example).

Liu et al [14] have proposed a tracking based detector that

employs CNN to perform appearance based data associa-

tion in non-key frames that is 6x faster than the detector.

Their framework is jointly trained with the detector and crit-

ically relies on existence of labeled training data in videos.

It is infeasible to extend it to new objects without retraining

with the detector. A large number of works (e.g. [36],[4])

employ pixel tracking (flows or MHI) to propagate features

maps to non-key frames. These frameworks are orthogonal

to our approach which uses existing video encoding to prop-

agate detections. Luo et al [16] built a scheduling Siamese

network to adaptively switch between detection or track-

ing depending on the contents. Wang et al [30] building

upon [31] design a light-weight memory network (LSTM)

to propagate features across multiple scales. They use atten-

tion to extract relevant regions in the feature map for prop-

agation. In [32] the authors train a network to propagate

features from motion vectors and residuals in the P-frames.

They propagate features across P-frames (short term) and

use optical flow across I-frames (long term). All of these

methods require labeled data for training. DeltaCNN [20] is

Figure 3: Comparison of optical flow(second row)[11] and

forward motion vectors(third row) extracted from P-frame

for three frames. Fourth row illustrates backward motion

vectors from the successive I-frame. Evidently flow pro-

vides far more precise information to accurately track tar-

gets compared to motion vectors from the video compres-

sion algorithms. Motion vector patterns are noisy, discon-

tinuous and overlapping in the presence of multiple objects.

The Shift network is trained to estimate motion patterns of

a target by amplifying the motion cues and overcoming the

noise embedded in these signals.

a framework for processing changes in the inputs sparsely.

It extends deep network operations to support incremental

changes (delta) as input to produce changes in the output.

Linear operations can handle deltas while non-linear oper-

ations need dense-accumulated inputs to generate deltas in

the output. DeltaCNN can only work with static cameras

and not moving cameras. Followup work [19] extended

DeltaCNN for panning camera motion.

Our work, though not tracking, falls in the category

of propagating detections using motion vectors encoded in

videos. We employ both forward and backward motion vec-

tor cues to propagate detections. This minimizes the risk of

missing out targets appearing in the non-key(I) frames of

the video. One of the earliest methods methods [34] at-

tempted to use motion vectors embedded in MPEG com-

pressed videos to track a moving object and developed an

algorithm to continue tracking it even when the object has

stopped moving. Motion vector interpolation and prediction

based methods [28][12][27][1] essentially employ simple

approaches to use noisy motion cues from the video com-

pression and are not robust to objects moving in a crowd

or with complex patterns. These frameworks do not sup-

port moving camera and cannot handle changes in the size

of the target due to camera motion. Knowledge transfer us-

ing teacher-student training has been widely applied in var-
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ious domains of vision (a good survey is [7]). We employ

teacher-student learning to train lightweight models from a

pre-trained object detector. To our knowledge, ours is the

first approach to use teacher-student learning for propagat-

ing object detections. Processing high resolution videos has

been challenge for deep learning and only a few works exist

addressing it [23]. Our work makes processing very high

resolution practically feasible for a broad category of detec-

tion frameworks.

3. Parallelized Video Processing

Video compression: We work with the H.264 encod-

ing format which is representative of efficient compres-

sion algorithms used in modern video encoders [18]. In

a typical video, frames are encoded as series of inter-

leaved I-frames, P-frames and B-frames. An I-frame (intra-

coded) is a compressed image which is independent of the

rest of the frames in the video. The compression in I-

frame exploits spatial redundancy in the pixels to encode

blocks of image in the frequency domain (DCT), similar

to JPEG level compressions. P-frames (predictive) and B-

frames (bi-predictive) are motion compensated, differen-

tial frames from the nearby P/B/I-frame. Group of P/B-

frames (Group Of Pictures or GOP) between consecutive

I-frames, NG, is a critical parameter to balance accuracy

and speed gains feasible in our framework. An H.264 video

has variable GOP size depending on the content and mo-

tion magnitude captured by the P-frames between a pair

of I-frames, {I0, P 0

0
, P 0

1
, . . . , I1, P

1

0
, P 1

1
, . . .}1 A P-frame

P0 is composed of a motion vector frame M0 (encoded as

macro blocks) and entropy-encoded residual frame R0. Bi-

directional predictive B-frames use backward motion com-

pensation in addition to forward motion compensation mod-

eled by the P-frame. We omit further analysis of B-frames,

without loss of generality, as they can be handled in the

same way in reverse temporal direction.

Motion vectors are extracted as a 2d matrix [26][2] of

variable sized macro blocks in M0. We maintain both for-

ward and backward sets of motions vectors using previous

and next I-frame respectively. The missing motion vector

information from the last P-frame to the next I-frame is

approximated as zeros without any effect on the accuracy.

For each macro block, we maintain the source frame (pre-

vious and next I/P-frame), the center of a macro block in

both the source and destination frame, as well as the width

and height of the macro block. Temporal dependency be-

tween consecutive P-frames is removed by accumulating

the changes for each consecutive P-frame and using only

the corresponding I-frame as the reference source frame.

This requires a fast pass across NG P-frames to accumu-

late the motion vectors and the residuals. For each P-frame,

1We will drop superscript from the P-frame in future as it always refers

to the previous I-frame.

Figure 4: Motion vector accumulation, both in forward and

backward directions, happens by passing an empty buffer

for each macro block from I-frame across consecutive P-

frames, and adding motion vectors for every pair of source

and destination frame. Unlike accumulation proposed in

the [33] that moves the motion vector tail for every pair of

frames, our implementation fixes the tail and only strength-

ens the vector during accumulation.

we maintain a 2-channel image of motion vectors, denoting

how far the corresponding pixel-coordinate in the I-frame

has shifted along the x and y axes. Accumulated shift at

each pixel co-ordinate is computed by summing up the x/y

motion vectors of all the macro blocks covering that coordi-

nate. Macro blocks are not guaranteed to be discrete in the

source frame. This means that our accumulation algorithm

can copy an I-frame coordinate to multiple destination loca-

tions which results in more than one macro block trying to

increment the accumulated shift for an I-frame coordinate.

This happens for less than 5% of the total pixels, and can

be safely ignored when using multiple threads for accumu-

lation.Figure 4 illustrates the accumulation process.

4. Shift Network

The Shift network is by design, a motion prediction func-

tion FS to infer target motion using accumulated motion

vector patterns in the P-frames. This lightweight model

takes as input, the list of RoI (region of interest) from

the current frame, for each bounding box detected in the

referenced I-frame. The motion vector patterns in the

RoI capture the trajectory of the target in a video. For

each bounding box B=[cx, cy, w, h], the Shift network

uses RoIAlign[22] to predict a three dimensional vector

ΔB=[Δcx, Δcy, Δs] as the shift vector along the x and y

axes, and the scale space s. As the motion vectors in the

P-frames are defined over macro blocks of pixels 8 × 8,

the resolution of the motion vector image is much lower

than that of the input frame. We take advantage of this by

pooling the pixels into 8 × 8 buckets during the accumula-

tion pass. This vastly cuts down on the computational cost

while having minimal effect on detection accuracy. Target

translation in an image is a composite of target motion and
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camera motion, which is only approximately captured by

motion vector patterns in the P-frame. Figure 3 illustrates

the lack of precision in the motion vectors when compared

to the optical flows[11] in the same frame.

Learning using Knowledge Distillation: FS is learned as

a two-layer shallow network using a teacher student frame-

work. Specifically, supervisory soft tracking labels from the

targeted detector are used to steer the training of the Shift

network. The input motion vectors are globally normalized

for the entire frame. This enables better discrimination be-

tween motion patterns due to target motion and the camera

ego-motion. Labels for the Shift network are relative off-

sets ΔBP of the detection bounding box BP in the current

P-frame, that corresponds to the bounding box BI in the

source I-frame. Offsets of centers and scale in the corre-

sponding I and P-frames of size [Ih, Iw] are modeled as

Δcx = (cxP − cxI)/Iw,Δcy = (cyP − cyI)/Ih

Δs = log

(√
wP hP√
wIhI

)
(1)

Soft labels from the teacher network in the current

frame are obtained by tracking the bounding box BI in

the reference I-frame. For training, we use single object

tracking[13] based on a pretrained Siamese-RPN frame-

work to independently track each of the bounding boxes,

followed by matching using the Hungarian algorithm with

IoU (Intersection over Union) as the metric. For each pair of

boxes that share the same tracklet ID such that the first box

is in the I-frame BI and the second is in the P-frame BP ,

we use ΔBP = BP - BI as the target label with an associ-

ated weight M(BI , BP ). The weight denotes the matching

score

(PD(BP ) + PT (BI , BI,P ) + αPIoU (BI,P , BP ))

(2.0 + α)
(2)

where BI,P is the intermediate tracked box from the I-

frame, PD is the teacher network detection confidence, PT

is the accumulated tracking confidence normalized to 1.0,

and PIoU is the box overlapping score with α < 1.0. We

give high weights to detection and tracking score compared

to the degree of overlap when assessing validity of a label.

This is to filter out cases where the observed target may be

getting occluded or losing track. Also, more importantly,

motion vector cues are imprecise and cannot be expected to

track bounding boxes with high overlapping ratio. Training

loss for the student network FS is modeled as

M(BI , BP ) * smoothL1(ΔB, ΔBP ).

5. Refine Network

Coarse motion cues from the P-frames result in the Shift

network producing imprecise target localizations. Addition-

ally, targets may also get occluded or move out of the scene.

The Refine network utilizes patches reconstructed from ac-

cumulated residuals and motion vectors to further refine the

shifted bounding boxes. It has both classification and re-

gression heads. The classification head attempts to infer

possible disappearance of the object due to occlusion or its

leaving the scene. The regression head predicts a refined

bounding box relative to the shifted bounding box BS using

the reconstructed (decoded) patch. For a shifted bounding

box BS obtained from the Shift network, we use decoded

image patch Fexpand(BS ;W ) as inputs to the refine model.

More context around the bounding box BS by rescaling its

size by W improves the refinement accuracy. Patch recon-

struction uses RoIAlign to extract variable sized patches

from accumulated residuals, motion vectors and the refer-

ence I-frame, and resizes them to fixed sized inputs for pro-

cessing using the Refine network. Additionally, the confi-

dence scores of the detections predicted by the baseline de-

tector in the I-frame are used as informative features in the

refinement model training. These scores are concatenated

with the patch feature in the input.

Learning using Knowledge Distillation: Detections from

the teacher network with scores greater than 0.01 are used

as soft labels for training the Refine network. These labels

are matched to the shifted detections BS of the referenced

I-frame using a custom overlapping metric that emphasizes

the fraction of the pseudo-label area covered by the shifted

bounding box.

OP =
BS ∩BP

Area(BP )
· BS ∩BP

BS ∪BP

(3)

This metric intentionally down weighs the need for BS to

have similar size as BP , but favors enclosing larger context

for refinement by the Refine network. Note that BS could

be large and enclose multiple labels. In those cases we pre-

fer closest labels as discussed later in this section. Associa-

tions with OP < 0.25 are treated as negative examples. We

allow any BP to match to multiple BS .

The classification head is trained to detect occlusion or

disappearance of shifted box. We use teacher detection

score PD to create soft labels for the knowledge transfer.

The classification loss function is formulated as:

Lconf (B,BP ) = −
∑

kεClasses

Pk
Dlog

(
exp(ck)∑

iεClasses exp(ci)

)

(4)

where ck are the classification scores for the examples from

the Refine network. Negative training labels are also gener-

ated by randomly sampling boxes of variable sizes around a

valid target or as hard negatives during the training process.

The regression head is trained to output offsets relative

to the center of the shifted bounding box Fexpand(BS ;W )
with the pseudo labels as ΔBP = BP - BS . The regression

loss is defined only for positive samples and is re-weighted
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Figure 5: Center prior is used to train models that favor re-

fined boxes that are close to the center of the input patch.

Here we illustrate an example of ambiguity due to pres-

ence of multiple target objects (faces) in the input patch.

Amongst the three possible targets, the prior favors target

two as ΔC2 < ΔC1 < ΔC3

by PD:

Lloc(B,BP ) = PDsmoothL1(ΔB,ΔBP ) (5)

Where ΔB is the offset relative to BS as outputted from the

refine model. An appropriately rescaled image patch from

Fexpand(BS ;W ) is critical to disambiguate cases when the

patch contains multiple possible targets in the patch. In

those cases we add a prior term to favor bounding boxes

closer to the center of the patch:

Lcenter(B) = β‖(Δcx,Δcy)‖2 (6)

β is given a low weight of 0.05 and W = 1.5 in our train-

ing. In addition to the shifted predictions from the Shift

network BS , we sample random locations around BP , and

use those to train the Refine model. This is part of the data

augmentation process.

6. Experiments

The experiments were designed to assess the ability of

the shift/refine pipeline to boost the processing speed of an

object detector, while maintaining accuracy. We ran our

experiments on two classes of objects: faces and persons.

Inference Pipeline: Our highly parallelized inference

pipeline, shown in figure 6, incrementally propagates lo-

calized changes relative to the detections in the I-frame ob-

tained from the baseline detector. Video decoding is a criti-

cal bottleneck, and is therefore run as a separate process. P-

frames processing has referential dependencies on the pre-

ceding and succeeding I-frames, and are executed concur-

rently after the accumulation step. Process 2 runs accumula-

tion of motion vectors and residuals on the P-frames, while

Figure 6: Overview of the multiprocess inference pipeline.

Arrows indicate synchronization and blocking calls to re-

trieve data. Process 3 occasionally gets blocked on process

1 due to the slower baseline detector.

Detector Training data HD Test data 4K Test data

(unlabeled) 1920× 1080 3840× 2160

Face(static) 156,592 36,344 7,576

Face(moving) 416,432 1,800 9,106

Person(static) 122,235 11,106 −

Person(moving) 315,962 3,141 −

Table 1: Datasets used for evaluating our framework. We

experimented with both stationary and moving camera, and

show the number of frames in each set and different resolu-

tions. We used entire labeled data for testing.

process 1 runs the baseline detector on the I-frames. Pro-

cess 3 runs the Shift and Refine networks on the P-frames

and has a blocking dependency on both process 1 and pro-

cess 2.

Network Implementation Details For baseline detectors,

we used a standard SSD[15] with resnet 50-layers feature

extractor for the faces and YOLOv3[21] for the persons. We

vary the GOP size NG in our experiments to study its effect

on speed and accuracy. The original video does not need

to be encoded with a particular GOP size. Rather, when

processing a video with a large GOP size, we reconstruct

a source I-frame after the NG P-frames, and run the mo-

tion vector accumulation relative to it. The Shift network

is trained as a two-layer network with 256 channels. In-

puts to the Shift network are variable sized bounding boxes,

resized to a fixed patch size. The patch is normalized to

preserve magnitude and orientation of the motion vectors,
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Res. 512 × 512 1920 × 1080 3840 × 2160

Detector Detect Refine Detect Refine Detect Refine Detect Refine Detect Refine Detect Refine

(Batch) (infer) (infer) (e2e) (e2e) (infer) (infer) (e2e) (e2e) (infer) (infer) (e2e) (e2e)

Face(1) 56 54(1.0x) 56 60(1.0x) 12 52(4.1x) 12 41(3.4x) 3.3 52(15.3x) 3.4 20(6.2x)

Face(8) 99 70(0.7x) 65 56(0.8x) 13 68(5.0x) 13 42(3.2x) 3.4 68(19.7x) 3.4 22(6.2x)

Person(1) 35 90(2.5x) 37 88(2.4x) 16 78(5.1x) 15 64(4.3x) 4.4 52(11.9x) 4.3 28(6.5x)

Person(8) 54 130(2.4x) 56 87(1.5x) 17 122(7.3x) 17 63(3.8x) 4.7 66(14.3x) 4.6 29(6.3x)

Table 2: e2e = End-to-end, infer = inference. Speed gains (number in parenthesis) achieved by our framework relative to

the baseline detector. We compare the face and person detector and refinement pipeline speed for inference and end-to-end

processing. End-to-end processing includes video decoding in addition to neural network inference.

and its size is determined from the mean aspect ratio of the

object. For faces the fixed input patch size for the Shift net-

work is 24 × 16 while for persons, we used 44 × 16. Both

forward and backward motion vectors are used in the same

Shift network to make multiple predictions. The Refine net-

work is single feature map with the backbone feature extrac-

tor as Mobilenet0.25 [9]. Inputs to the Refine network

are the fixed size cropped patches of the decoded P-frame.

Decoding of localized patches happens in the GPU using

RoIAlign to extract regions from the source I-frame, mo-

tion vector and residual components of the P-frame. Patches

are all resized to fixed size (128 × 128) and processed in

batches of 128 for training. The top most layer emits a

1 × 1 feature map of depth 256. The training in the Re-

fine network used extensive data augmentation to overcome

variations due to JPG artifacts, color changes, lighting and

brightness changes. In addition, small translation pertur-

bations were added in the input patches for robustness to

noisy predictions from the Shift network. Both networks

were trained independently using SGD with learning rate

set to 0.001, learning rate decay to 0.1, and weight decay

to 0.0005. We train the models for 100 epochs. We used

a small validation set to determine optimal values for these

parameters, and fixed them thereafter. Also, we used detec-

tion confidences as soft pseudo-labels for knowledge trans-

fer. Both forward and backward detections from the Shift

network are concatenated and refined by the Refine net-

work. The final set of detections are obtained by applying

NMS, that filters out the duplicate detections.

Evaluation Dataset: Our baseline detectors are fully con-

volutional (Single Shot Detector[15]) and have been trained

at varying resolutions. In our experiments the detectors

were used to process high resolution imagery with input res-

olution ranging from 512×512 to 3840×2160. For persons,

we used a combination of both MOT17Det and MOT20Det

[17] dataset that provided rich set of HD 1920×1080 videos

with labeled persons for evaluation. For faces, we used

WILDTRACK [3] dataset that included multiple HD res-

olution videos with labeled faces. For UltraHD videos, we

labeled faces in various Youtube videos. A summary of to-

tal frames and videos used in our framework is listed in the

table 1. For motion vector and residuals extraction we used

ffmpeg[26][2]. We developed our custom implementation

for running motion vector and residual accumulation on P-

frames.

Algorithm No Shift Mean Learn Shift Detect

Video +Refine Shift Shift +Refine per frame

Static

512 0.257 0.446 0.451 0.592 0.495

HD 0.374 0.640 0.658 0.736 0.714

4K 0.404 0.668 0.682 0.789 0.770

Moving

512 0.125 0.363 0.369 0.703 0.650

HD 0.175 0.533 0.534 0.828 0.902

4K 0.154 0.512 0.523 0.767 0.849

All 0.397 0.670 0.683 0.791 0.772

Table 3: Comparison of face detection accuracy (AP) for

different stages of the inference pipeline. Mean shift refers

to shifting bounding boxes using average motion vector in

the contextual patch. Learn shift column does not refine the

detections using Refine network.

Speed and accuracy comparison: Table 2 shows the speed

gains achieved using our framework for different video res-

olutions. In this experiment, we used the same detector to

process the videos of different resolutions. Notice that the

gain factors are dramatically higher for higher resolution

videos, thus demonstrating the framework as a powerful

enabling technology for processing high resolution videos.

Detector accuracy is measured as area under the precision-

recall curve or average precision(AP). We conducted sev-

eral ablation studies to assess effects of various components

of our inference pipeline. Table 3 shows the AP obtained

by different stages of our processing pipeline on test videos

of varying resolutions. The first column shows accuracy

when no shift and refinement processing is performed. The

bounding boxes stay in the same location as detected in

the I-frames. The last column shows face detector accu-

racy when applied for every frame of the video. Notice that

for stationary camera videos, temporal motion cues could

cause shift and refinement to outperform the original detec-

tor’s accuracy. This is not unusual for static cameras where
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Figure 7: (left) Accuracy of the detectors improves as the number of unlabeled training examples increases. Backward motion

cues are critical for achieving better accuracy compared to the baseline models. The observed non-monotonic increase in

the accuracy of the face refinement plot is due to noisy labels from the baseline model. (center) Increasing the GOP size

increases the processing speed for both detectors due to better parallelization, (right) although at the cost of reduced accuracy.

Algorithm No Shift Learn Shift Shift Detect

Video +Refine Shift +Refine +Refine per

(forward) (both) frame

Static

512 0.517 0.577 0.575 0.645 0.563

832 0.528 0.610 0.580 0.654 0.637

1K 0.534 0.582 0.581 0.655 0.642

Moving

512 0.393 0.503 0.639 0.649 0.657

832 0.418 0.526 0.649 0.696 0.720

1K 0.415 0.493 0.650 0.703 0.724

All 0.526 0.573 0.580 0.653 0.642

Table 4: Comparison of person detection accuracy (AP) for

different stages of our inference pipeline. We compare the

effect of forward and backward motion cues on the infer-

ence. Fourth and fifth columns show the accuracy without

and with backward motion cues respectively.

Detector Refine Detector Refine

Memory(Mb) Memory(Mb) Power(Watts) Power(Watts)

1065.0 81.0 191.7 92.0

Table 5: Comparison of per frame GPU memory and power

usage for inference (batch size 1) with baseline detector vs.

refinement network.

tracking is more accurate than occasionally inconsistent,

frame-by-frame object detection when used to process high

resolution imagery. We observed somewhat poor accuracy

for high resolution moving camera videos for faces. This

is primarily attributed to lot of small faces, at far distance,

undergoing significant shift due to rotational motion of the

camera. This issue is less evident for persons as shown in

table 4. For persons, we only show accuracy of the infer-

ence pipeline when the I-frames are processed at 512, 832

and 1024 resolutions. Figure 7(left) illustrates a key result

and contribution of our framework. We conducted end-to-

end experiments for training shift and refinement models

for the face and person detector with increasing amounts

of unlabeled data. As the plots show there is a clear trend

of improving accuracy when more unlabeled data is used

in the teacher-student training framework. The dotted plot

shows per-frame detection accuracy of the baseline face and

person detector. The GOP size is a critical parameter in our

framework and determines the tradeoff between speed and

accuracy. Large GOP size allows greater parallelization at

the cost of accuracy. Figure 7(center) and (right) illustrates

how the performance varies with increasing GOP size for

face and person detector. Dotted plots denote the perfor-

mances of the baseline detector. The decrease in AP for

large GOP size is due to the need for better models that

could handle larger magnitude of motion flows from farther

I-frames.

7. Conclusion and Future Work

This work demonstrates a novel approach for increasing

processing speeds of object detection models for high reso-

lution videos, without sacrificing accuracy, using a generic

framework of Shift and Refine networks. The work em-

ploys motion cues encoded in the compressed videos to in-

terpolate detections between sparsely processed I-frames.

Speed gains are achieved by processing localized patches

as opposed to the entire frame, and parallel processing

of the P-frames after removing their sequential dependen-

cies and making them reference only the nearest I-frames.

The framework has widespread applicability due to lack of

the need for labeled data for training the Shift and Refine

networks. They are trained using unlabeled, representa-

tive videos, using a novel teacher-student based knowledge

transfer learning. Finally, we demonstrated that the frame-

work works with any generic object detector. Future work

includes narrowing down the accuracy gap for moving cam-

era videos containing fast motions by enhancing the accu-

racy of the Shift network.
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