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Abstract

Minimizing the energy consumption of deep learning
models is becoming essential due to the increasing per-
vasiveness of connected and mobile devices. Real-time
video frame classification is a perfect example of energy-
intensive task that could present battery consumption and
overheating issues on embedded devices. In this paper
we propose a novel architecture to tackle this problem effi-
ciently, exploiting temporal redundancies between consec-
utive frames. The model consists of two convolutional neu-
ral network streams with different parameter sizes and in-
put resolutions. Each frame is processed by only one of the
streams, and the stream with the lowest input resolution and
parameter size uses saliency maps generated by the other
stream on a previous frame. The energy consumption can
be manually controlled by choosing a proper schedule of
the two streams. We show the effectiveness of our proposed
architecture in a task that involves recognizing the state of
the relevant traffic lights in images from on-board cameras.

1. Introduction

Nowadays, the inference phase of deep networks in

resource-constrained devices represents a major challenge

in a lot of applications. The research has focused on differ-

ent approaches to achieve a good trade-off between energy

consumption and model quality [1, 4]. Real-time video pro-

cessing on embedded devices is an example of application

that benefits from these studies, as it involves processing a

continuous stream of images, with a computational cost that

grows linearly with the frame rate of the video.

In this paper, we propose a novel neural network archi-

tecture to address the problem of energy-efficient real-time

video frame classification, which aims at classifying images

captured by a video camera in an efficient manner. Our pri-

mary objective is to reduce the energy cost during the infer-

Figure 1. A wider model Φ with higher-resolution input is used at

time t to predict ŷt and to produce saliency maps that are used to

improve the quality of the prediction of the smaller Φ′ at t+ k.

ence phase. To achieve this goal, we draw inspiration from

the concept of dynamic networks, which adapt their struc-

ture or parameters based on the input during inference [6].

In particular, we focus on temporal-wise dynamic adap-

tation, where neighboring frames’ correlation is leveraged

to reduce computational load. One common solution is to

share features from the past so they can be re-used with min-

imal cost for adaptation for augment the current representa-

tion [9]. Another solution is to squeeze the inference phase

when low or no semantic variation from previous frames is

detected [14, 12, 5].

We propose a model consisting of two convolutional

neural network streams that differ in terms of the number

of parameters and input resolution (Fig. 1). Each video

frame is processed by only one of the two streams following

a predefined schedule, and the smaller stream is trained to

make predictions using not only the current frame, but also

saliency maps [16] generated by the wider stream on a pre-

vious frame. This idea of utilizing saliency maps between

video frames has already been explored in [13, 8] mainly

with the goal of improving model quality. On the contrary,

our method is primarily oriented towards reducing energy

consumption. We validate the effectiveness of our proposed

architecture on road scenes, by addressing the recognition
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of the state of relevant traffic lights in each frame. In this

scenario neighboring frames are very correlated, but the

state of the object of interest can change abruptly. There-

fore, the model must be able to leverage information from

the past, but also be prepared to adjust predictions when the

state of the traffic lights change.

The main contributions of this work is a novel approach

to address the problem of energy-efficient video frame clas-

sification exploiting cooperation across time between two

models of different size, and provide an experimental study

on a real-world problem that shows how the method is

promising and worth further investigation.

2. Method
The proposed architecture consists of two convolutional

neural network streams with identical backbone architec-

ture and depth, but that differ in terms of input resolution

and backbone width. The main concept is to use the larger

stream, denoted as Φ, at regular intervals every T frames.

This stream is responsible for generating high-quality pre-

dictions and saliency maps. These saliency maps are then

used to help the smaller and more efficient stream, denoted

as Φ′, in processing the subsequent T -1 frames. The tempo-

ral redundancies are exploited by mean of the saliency maps

coming from the larger stream that are used to augment

the intermediate representation of the smaller stream. The

choice of the scheduling policy plays a pivotal role in deter-

mining the balance between quality and efficiency. Higher

values of T enhance the efficiency of the overall model but

might result in a decrease in prediction quality.

Before providing some additional details on the pro-

posed architecture, let us introduce some notation. Let us

define the two backbones as a sequence of convolutional

blocks Φ = [C1, . . . , CN ], Φ′ = [C ′
1, . . . , C

′
N ]. The output

of each block Ci or C ′
i is a feature map fi ∈ R

ci×hi×wi or

f ′
i ∈ R

c′i×h′
i×w′

i . Φ has a larger resolution and is wider

than Φ′, i.e., ci ≥ c′i, hi ≥ h′
i and wi ≥ w′

i ∀i =
1, . . . , N . Finally, to establish cooperation between con-

volutional blocks Ci and C ′
i, we introduce saliency gates

denoted as Gi and saliency propagation modules denoted

as G′
i. These components enable the exchange of infor-

mation and foster collaborative processing between the two

streams. Further details about their architecture will be dis-

cussed in the following paragraphs.

2.1. Φ and saliency gates

The saliency gates, that are responsible for computing

saliency maps starting from a given hidden representations

in Φ, were introduced for the first time in [10] and further

developed in [15]. The original purpose of these gates was

to encourage the network to identify salient image regions

earlier along the backbone to improve accuracy on image

classification or semantic segmentation. In this work we

Figure 2. Architecture of Φ with a saliency gate Gi after the i-th
convolutional block.

Figure 3. Architecture of Φ′ with a saliency propagation module

G′
i in correspondence of the i-th convolutional block.

leverage this mechanism in a novel way, namely to share

spatial priors from Φ to the smaller backbone Φ′ through

time.

The saliency gates can be attached along Φ after any of

the convolutional blocks. Figure 2 illustrates the architec-

ture of model Φ. The saliency gate Gi consist in a convolu-

tional encoder that takes the current and the last representa-

tions, fi and fN , and generates the saliency map si. To train

the gate parameters along with the backbone, the saliency

map is applied to the feature map fi. The resulting fea-

ture map is properly resized by means of a spatial pooling,

concatenated with fN and used as input to the classification

head. The output of the classification head is then used in a

standard cross-entropy loss function.

2.2. Φ′ and saliency propagation module

The saliency propagation modules are responsible for

propagating the prior knowledge about the scene, captured

by Φ in the form of saliency maps, into Φ′. Each saliency

propagation module corresponds to a saliency gate, estab-

lishing a one-to-one relationship.

Figure 3 illustrates the architecture of model Φ′. To take

into account the temporal dynamics between frames, the

saliency propagation module G′
i applies an exponential de-

cay operation to decrease the intensity of the saliency map.

This decay is performed using the equation s̃i = si · e− k
τ ,

where τ represents the decay ratio, and k is the tempo-
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ral distance between frames. Once s̃i is computed and re-

shaped, it is applied element-wise to f ′
i . The resulting ten-

sor is then processed by three convolutional layers, each fol-

lowed by batch normalization and a ReLU activation. These

layers are responsible for adjusting the features, using the

information encoded in s̃i, and generating a tensor with the

same shape as f ′
i . The kernels of the convolutional layers

ensure a sufficiently large receptive field, allowing the mod-

ule to consider neighboring features to correct the spatial

misalignment. The adjusted representation coming from G′
i

is added as a residual to the original representation f ′
i . The

resulting tensor is then used as input for the subsequent con-

volutional block C ′
i+1, continuing the processing flow.

2.3. Training procedure

The whole architecture is trained in three steps. First,

we train Φ to generate the saliency maps and perform the

classification task. Then, we pre-train Φ′ to perform the

classification without saliency propagation modules, aiming

to achieve better alignment between the two convolutional

streams before enabling cooperation. Finally, we attach the

propagation modules G′
i to the backbone of Φ′, which is

trained to take into account the saliency maps si generated

by Φ. During this phase of training, we use frames with

a random temporal delay k between Φ and Φ′ to simulate

what happens at inference time.

3. Experiments
The method we propose is well-suited for applications

that require the sequential processing of video frames in

energy-constrained environments. One such application is

the relevant traffic light state recognition in driving scenes,

which relies on images captured and processed by an on-

board camera. The computational limitations of the cam-

era and thermal considerations pose challenges during in-

ference in terms of quality of the prediction and energy con-

sumption. Furthermore, the task itself presents interesting

challenges: on the one hand, the geometry of the scene,

such as the existence and position of traffic lights relative to

vehicles, is similar across time and is quite predictable. On

the other hand, the state of the traffic light may change sud-

denly, making it infeasible to rely too much on occasional

predictions. This task can be formulated as a ternary clas-

sification problem, in which for each frame one wants to

predict if 1) there are relevant red lights, therefore the ve-

hicle has to stop; 2) all relevant traffic lights are green; or

3) there are no relevant traffic lights. Note that in case of

multiple traffic lights, that is very frequent at intersections,

the model needs to identify which traffic signals should be

considered not relevant.

In our experiments we combined two public datasets

containing videos recorded from cameras or mobile phones

mounted on a vehicle windshield: the DriveU Traffic Light

Model k = 0 k = 1 k = 2 k = 3

L 0.957 0.907 0.859 0.807

Ours 0.954 0.940 0.931 0.920

Table 1. Results on test, averaged over 3 runs, measuring perfor-

mance on a frame with a temporal delay k.

Dataset (DTLD) [2] and the BDD100K [17] dataset. While

both datasets have traffic light state annotations at the frame

level, only DTLD includes information about which traffic

lights are relevant to the ego-vehicle. Therefore, we manu-

ally annotated the relevance of each traffic light in the MOT

subset of BDD. The final dataset includes 3,710 videos and

about 50,000 frames extracted at 1Hz from video sequences

captured as vehicles approach intersections.

For all the experiments, we use images with resolutions

of 1024×512 for Φ and 512×256 for Φ′. The backbones are

MobileNetV3-Large [7] where we set the width multiplier
parameter at 1.0 for Φ and 0.1 for Φ′ to lower the number of

channels per layer. The number of parameters of Φ is over

3 millions, while Φ′ has less than 50,000 parameters. For

our application we found the optimal number of saliency

gates is 2. We employ them after the 6-th and 10-th convo-

lutional blocks, corresponding to approximately one third

and half of the backbone depth. The exponential decay rate

in the propagation modules is set to τ = 10. We use frames

with a random delay k ∈ {1, 2, 3} during the training of the

saliency propagation modules.

3.1. Results

We compare our method against two standard image

classifiers based on MobileNetV3-Large: we denote with L
the model with a width multiplier w = 1.0 and input shape

1024 × 512 (analogous to Φ), and with S the model with

w = 0.1 and input shape 512 × 256 (analogous to Φ′). We

run experiments for k ∈ {0, 1, 2, 3}, that, with the frame

rate of 1Hz in our data, means reusing information coming

from up to 3 seconds in the past.

A first static comparison is reported in Table 1, where

we show the performance of the large baseline L and our

proposed approach with different temporal delays. We use

Average Precision (AP) on the relevant red class as our pri-

mary metric. For L, the results are computed predicting at

time k = 0 and holding the predictions for k > 0, while for

Ours we use Φ at k = 0 and Φ′ for k > 0. As expected

our method and the baseline have similarly good results for

k = 0 since they use almost identical backbones. As k
grows, the results for L naturally deteriorate. On the other

hand, with our approach, leveraging the saliency maps from

time t allows the smaller Φ′ to achieve much better perfor-

mance for k > 0 with minimal additional compute.

Let us now focus on the dynamic setting, where we

would like to assess the average prediction quality and
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Figure 4. AP vs MACs (averaged over time).

the energy consumption of the methods when processing

a stream of images. We denote with L@ν and S@ν the base-

lines obtained running L and S every 1
ν frames, holding

the prediction until the next inference. Similarly we denote

with Ours@ν our proposed approach in which Φ is run ev-

ery 1
ν frame, making the computed saliency maps available

for the following frames to be used by Φ′.
We evaluate both the performance and the efficiency of

the models averaging over time the AP and the number of

Multiply-and-accumulate (MAC) operations, respectively.

Counting the MAC operations is a coarse, but common,

proxy for evaluating the energy consumption in CNNs [3].

The results are shown in Figure 4. Notably, our approach

leads to a significant decrease of the average MACs per

frame at the expense of a small drop in terms of AP with re-

spect to L@1.0. On the other end of the spectrum, S@1.0 has

significantly worse quality, even if inference is performed

on every frame, because of the lower input resolution and

the smaller width of the network. This shows that our ap-

proach is able to effectively exploit the information from Φ.

It is worth noting that running L at lower frequency is not

enough. Indeed, analyzing the errors of L@0.25, we verified

that they are often caused by the sudden changes of traf-

fic light states that happen in the meanwhile; whereas our

proposed approach corrects the majority of these mistakes

using Φ′ to reverse the decision from Φ, when necessary.

3.2. Architecture design

In this section, we provide a rationale for the architec-

tural choices we made. The positions where we employed

the gates correspond to the depths where the backbone

scales down the resolution, allowing us to collect spatial pri-

ors at multiple scales. For this specific task, we experimen-

tally notice that employing more than two gates proved to

be ineffective. For example, attaching an additional gate ap-

proximately at two-thirds of the backbone depth and study-

ing the gradients of the output with respect to the features

extracted by this gate revealed that the variations in those

Figure 5. To assess whether additional saliency gates bring an im-

provement, we consider an architecture with 3 gates and compute

the gradient of the model output with respect to the features gen-

erated by each gate. The output is sensitive to variations in the

features generated by the 1st and 2nd gate, and their saliency maps

identify good spatial priors to propagate to φ′. On the contrary, the

3rd gate has a smaller impact on the output, and the corresponding

saliency map fails to identify the important regions in the image.

Saliency fusion k = 1 k = 2 k = 3

Extra channel 0.931 0.925 0.916

Element-wise 0.940 0.931 0.920

Table 2. Ablation study on saliency map fusion.

features had minimal impact on the output. Consequently,

the corresponding saliency maps failed to identify important

regions in the images, as showed in the Figure 5.

In the proposed architecture, the saliency maps collected

by Φ are applied element-wise to the features computed by

Φ′ before being processed by the propagation gates. We

also conducted experiments by incorporating the saliency

maps as additional channels to the existing features. The

results in Table 2 show that element-wise fusion of saliency

maps is slightly superior in accuracy, and with a slightly

smaller number of MAC operations.

4. Conclusion

In this paper, we presented a method to achieve energy-

efficient video frame classification by leveraging tempo-

ral redundancies using saliency maps. The experiments

showed the effectiveness of this approach in real-world

applications, such as traffic light state recognition. Our

method can easily be generalized to any convolutional neu-

ral network in tasks that can benefit from temporal aware-

ness. Future work will involve testing with various base-

lines, architectures, and tasks, as well as experiments con-

sidering latency in a streaming setting [11].
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