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Abstract

Due to the large number of parameters and high com-
putational complexity, Vision Transformer (ViT) is not suit-
able for deployment on mobile devices. As a result, the
design of efficient vision transformer models has become
the focus of many studies. In this paper, we introduce
a novel technique called Spatial and Channel Enhanced
Self-Attention (SCSA) for lightweight vision transformers.
Specially, we utilize multi-head self-attention and convo-
lutional attention in parallel to extract global spatial fea-
tures and local spatial features, respectively. Subsequently,
a fusion module based on channel attention effectively com-
bines the extracted features from both global and local con-
texts. Based on SCSA, we introduce the Spatial and Channel
enhanced Attention Transformer (SCAT). On the ImageNet-
1k dataset, SCAT achieves a top-1 accuracy of 76.6% with
approximately 4.9M parameters and 0.7G FLOPs, outper-
forming state-of-the-art Vision Transformer architectures
when the number of parameters and FLOPs are similar.

1. Introduction
Recently, ViT [3] has achieved remarkable results on ma-

jor computer vision tasks with the assistance of long-range

spatial feature relations captured through Multi-Head Self-

Attention (MHSA). However, the secondary complexity of

MHSA demands substantial computational resources, lead-

ing to efforts to reduce its computational complexity. To

reduce computational overhead, PVT [16, 17] uses down-

sampling of key and value to decrease the complexity of

MHSA, while Swin-Transformer [5] reduces complexity by

dividing multiple windows and performing MHSA compu-

tation within the windows.

However, the performance of these models drops dra-
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Figure 1: Top-1 accuracy v.s. FLOPs on ImageNet-1k of

efficient models.

matically when reduced to a size and computation suit-

able for the mobile devices. Therefore, there are many

works devoted to designing a lightweight and efficient vi-

sion transformers [7, 8, 6, 11, 9, 1, 20, 13, 12]. Some

works refer to the perception of the human visual system to

study the extraction and fusion of local and global informa-

tion [7, 8, 6]. MobileViT [7] combines MobileNetv2 [10]

with transformer blocks to enhance the global representa-

tion capability of the network. EdgeViT [8] proposes a

local-global-local block for local and global information ag-

gregation. EdgeNeXt [6] adopts split depth-wise convolu-

tion and transposes attention to implicitly increase the re-

ceptive field and encode multi-scale features. They both

use a serial structure to stack the convolutional and self-

attention layers, which model one structure (local or global)

at a time and might destroy previous local features when ex-

tracting global features, and vice versa. Therefore, we have

adopted a parallel structure approach to extract both local

and global features simultaneously.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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Figure 2: Architecture of our SCAT.

Before ViT [3] was proposed, there have been many

attention-related works [4, 18, 15, 21]. SENet [4] intro-

duces a channel attention module to highlight the important

channels. It first compresses the feature map in the spatial

dimension and then learns the importance of each channel

in the channel dimension. The spatial attention module in

CBAM [18] performs different pooling operations on the

feature map in the channel dimension and then mixes the

weights obtained from pooling to learn the importance of

spatial locations. These works can be summarized as us-

ing the feature map to generate weights that act back on the

feature map itself.

Based on the above analysis, we introduced the Spa-

tial and Channel enhanced Self-Attention Block (SCSA).

To be specific, we utilize MHSA to capture global long-

range spatial features and employ convolutional attention to

model local spatial features in parallel. Moreover, a channel

attention-based fusion module is applied on top of the par-

allel global and local spatial attention block to learn their

relationship and enhance the fusion of local and global fea-

tures after concatenation. Furthermore, we propose a Con-

volutional Tokens Reduction (CTR) block to decrease the

computational costs of MHSA by reducing the token length.

Based on SCSA and CTR, following the common principles

of lightweight transformer architecture design [8, 16], we

propose the Spatial and Channel enhanced Attention Trans-

former (SCAT). Our main contributions are summarized as

follows:

• We propose a Spatial and Channel enhanced Self-

Attention (SCSA) mechanism that employs a two-

branch architecture to efficiently extract local and

global features and balances local and global features

using channel attention.

• Our SCAT-XXS achieves a top-1 accuracy of 76.6%
on ImageNet-1K with only 4.8M parameters and 0.7G

FLOPs.

2. Method
2.1. Overview

The architecture of Spatial and Channel enhanced Atten-

tion Transformer (SCAT) is shown in Figure 2. We follow

the same pyramid architecture as [16, 17], decreasing the

resolution of the feature maps while increasing the number

of channels of the feature maps during the forward propaga-

tion. First, we use the convolutional stem proposed in [19]

to generate feature maps with a resolution of H/4 ×W/4,

the convolutional stem consists of four 3 × 3 convolutions

and one 1× 1 convolution, where the stride of the first two

3×3 convolutions is 2 and the remaining is 1. Then we fol-

low the 4-stage architecture adopted in [8, 6], where each

stage consists of n SCAT blocks. Except for the first stage,

the resolution of the feature map is reduced using non-

overlapping large-step convolution before the other stages.

As shown in Figure 3a, the SCAT block is mainly com-

posed of three parts: Conditional Position Encoding (CPE),

Spatial and Channel enhanced Self-Attention (SCSA), and

Feed-Forward Network (FFN). Our SCAT block can be for-

mulated as:

X = CPE(Xin) +Xin,

Y = SCSA(Norm(X)) +X,

Xout = FFN(Norm(Y )) + Y.

(1)

At first, the input tensor X ∈ RH×W×C is embedded

with the position information of tokens through CPE, which

uses DWConv. Then SCSA extracts the fused and enhanced

multi-scale features from both local and global branches,

and finally the features are redistributed among channels by

a classical feed-forward neural network.

2.2. Spatial and Channel enhanced Self-Attention

As shown in Figure 3b, Spatial and Channel enhanced

Self-Attention (SCSA) consists of three parts: local branch,

global branch and fusion module. The local branch extracts

and reinforces local features, the global branch learns the

global representation, and the fusion module further learns

and fuses local and global features.

2.2.1 Global Branch

Inspired by PVT [16, 17], we use MHSA with resolution re-

duction of key and value, which can significantly reduce the

computational complexity while still retaining the global re-

ceptive field. We propose the Convolutional Tokens Reduc-

tion (CTR) module to scale down the resolution of the fea-
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Figure 3: (a) Model architecture of our SCAT block.

The SCAT block consists of Conditional Position Encod-

ing (CPE), Spatial and Channel enhanced Self-Attention

(SCSA) and Feed-Forward Network (FFN). (b) SCSA con-

sists of three parts: local branch, global branch and fusion

module.

ture map. CTR leverages a DWConv with a kernel size of

2k × 2k and a stride of k, where the k is the reduction rate.

The process can be formulated as:

X ′ = CTR(X),

Q = WQX,

K ′, V ′ = WKX ′,WV X ′,
Xglobal = MHSA(Q,K ′, V ′),

(2)

where the X ′ ∈ RH
k ×W

k ×C is the resolution reduced fea-

ture map, k is reduction rate. WQ,WK ,WV are linear pro-

jection parameters.

2.2.2 Local Branch

Inspired by CBAM [18], we employ depth-wise convolution

and local spatial attention to extract local features in local

branch. Convolution with inductive bias can effectively ex-

tract local features, we further introduce local spatial atten-

tion to strengthen local features in spatial dimension. The

details of local branching can be formulated as follows:

Q′ = DWConv(Q),

Wspatial = σ(Conv([AvgPool(Q′),MaxPool(Q′)]),
Xlocal = Q′ �Wspatial,

(3)

where the σ denotes the sigmoid function and Conv repre-

sents a convolution operation with the kernel size of 7 × 7,

the � donates element-wise multiplication.

2.2.3 Fusion Module

In the fusion module, we concatenate the local and global

features; then, we employ the channel attention to further

learn the relationship between local and global features in

the channel dimension. We use the SE module in [4] as a

channel attention operation. We follow SENet and set the

reduction rate in the SE module to 4. The fusion module

can be formulated as follows:

Wchanal = SE([Xlocal, Xglobal]),

Y = FC([Xlocal, Xglobal]�Wchanal),
(4)

where the � donates element-wise multiplication. [·] is a

concat operation.

3. Experiments
3.1. Data Set

We conduct the experiment on the ImageNet-1K dataset.

ImageNet-1K [2] provides 1.28 million training images and

50, 000 validation images from 1000 categories. We report

top-1 accuracy on the validation set for all experiments.

3.2. Implementation Details

We follow the training strategy in DeiT [14]. We use the

AdamW optimizer to train the network, setting the batch

size, initial learning rate, weight decay and momentum to

1024, 0.01, 0.05, and 0.9. Different from DeiT, we use a lin-

ear warm-up of 20 epochs. The maximum rates of increas-

ing stochastic depth are set to 0.05/0.05/0.15 for SCAT-

XXS/XS/S. We used the same data augmentation in Swin-

Transformer [5], including RandAugment, Mixup, CutMix,

and Random Erasing.

In table 1, we present the specific parameter details of

the three variants of SCAT. In order to save FLOPs, we used

small convolutional kernels to capture low-level features in

the early stages and large convolutional kernels to capture

high-level features in the later stages.

3.3. Ablation Study

3.3.1 Local Spatial Attention

To verify the role of local spatial attention for local feature

extraction and enhancement, we evaluated the performance

of SCAT without local spatial attention. As shown in Table

2, the local spatial attention module [18] improved the accu-

racy of SCAT by 0.23% with almost no additional parame-

ters and FLOPs. The results show that local spatial attention

plays an important role in enhancing local features.

3.3.2 Convolutional Tokens Reduction

To comprehensively assess the CTR performance, we con-

duct a comparative analysis with three downsampling meth-
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Model Channals Blocks Heads Kernel size FLOPs(G) Param(M)

SCAT-XXS [32,80,160,256] [2,2,5,2] [2,5,10,16] [3,5,7,9] 0.7 4.9

SCAT-XS [48,96,192,384] [2,2,5,2] [3,6,12,24] [3,5,7,9] 1.2 8.7

SCAT-S [64,128,256,512] [4,4,12,4] [2,4,8,16] [3,5,7,9] 4.1 31.0

Table 1: Configuration of three SCAT variants.

Model
Params

(M)

FLOPs

(G)

Top-1

(%)

SCAT w/o lsa 4.9 0.71 76.38

SCAT w/ lsa 4.9 0.71 76.61

Table 2: Ablation study of local spatial attention.

Model
Params

(M)

FLOPs

(G)

Top-1

(%)

sampling 4.8 0.70 76.08

mean pooling 4.8 0.70 76.54

conv w/o overlap 4.8 0.70 76.27

CTR 4.9 0.71 76.61

Table 3: Ablation study of CTR.

Model
Params

(M)

FLOPs

(G)

Top-1

(%)

SCAT-G w/o SE 4.3 0.70 75.68

SCAT-G w/ SE 4.4 0.70 75.95

SCAT w/o SE 4.3 0.70 75.82

SCAT w/ SE 4.9 0.71 76.61

Table 4: Ablation study of channel attention.

ods: sampling, mean pooling, and non-overlapping large-

step convolution. As shown in Table 3, with minor differ-

ences in parameters and FLOPs, our CTR method outper-

forms the other three downsampling methods. This result

suggests that our method might better preserve the integrity

of information when downsampling tokens.

3.3.3 Fusion Module

To evaluate the effectiveness of the proposed fusion module,

we carried out experiments on both full SCAT and SCAT

without the local branch. The results of the experiment

are shown in Table 4, SCAT-G denotes SCAT with only

a global branch. In order to maintain SCAT-G and SCAT at

the same FLOPs size thus reflecting the role of channel at-

tention on feature fusion, we adjusted the model depth from

[2, 2, 5, 2] to [2, 2, 6, 2]. In SCAT-G, the addition of the SE

module [4] only increased the accuracy by 0.27%, while in

SCAT, the SE module increased the accuracy of the model

by 0.79%. The experiments indicate that the SE module

plays a great role in learning the relationship between local

and global features.

3.4. Compare with State-Of-The-Art

We compare our SCAT against many state-of-the-art

models in Table 5. The comparison results show that our

Model Input
Params

(M)

FLOPs

(G)

Top-1

(%)

MobileViT-XXS [7] 2562 1.3 0.4 69.0

EdgeViT-XXS [8] 2242 4.1 0.6 74.4

LVT [20] 2242 5.5 0.9 74.8

EdgeNeXt-XS [6] 2562 2.3 0.5 75.0

PVT-T [16] 2242 13.2 1.6 75.1

ViT-C [19] 2242 4.6 1.1 75.3

SCAT-XXS 2242 4.9 0.7 76.6

ResT-lite [22] 2242 10.5 1.4 77.2

EdgeViT-XS [8] 2242 6.7 1.1 77.5

MobileViT-S [7] 2562 5.6 2.0 78.4

PVTv2-B1 [17] 2242 13.1 2.1 78.7

EdgeNext-S [6] 2242 5.6 1.0 78.8

SCAT-XS 2242 8.7 1.2 79.2

Swin-T [5] 2242 29.0 4.5 81.3

ResT-Base [22] 2242 30.3 4.3 81.6

PVTv2-B2 [17] 2242 25.4 4.0 82.0

SCAT-S 2242 31.0 4.1 83.1

Table 5: Comparison with the state-of-the-art on ImageNet-

1k classification.

SCAT consistently outperforms SOTA vision transformer

architectures when the parameters and FLOPs are close. our

SCAT-XXS achieves 76.6% Top1-accuracy with only 4.9M

parameters and 0.7G FLOPs. SCAT-XS achieves a better

trade-off between FLOPs and top-1 accuracy than Mobile-

ViT and EdgeViT.

Furthermore, we evaluate the scaling capacity of our

SCAT model by introducing a scaled-up SCAT-S, which in-

corporates 31M parameters and 4.1G FLOPs. As shown

in the third part of Table 5, our SCAT-S model still demon-

strates excellent competitiveness, outperforming Swin-T [5]

and PVTv2-B2 [17] at similar parameters and FLOPs.

4. Conclusion

In this paper, we proposed SCAT, an efficient vision

transformer. The core of our network is Spatial and Channel

enhanced Self-Attention, which combines local spatial at-

tention, global spatial attention, and channel attention. Lo-

cal spatial attention and global spatial attention extract and

reinforce local and global features, respectively. The chan-

nel attention further learns the relationship between local

and global features. The experimental results demonstrate

the efficiency of the SCAT model in the image classification

task. In the future, we plan to evaluate our SCAT model on

more vision tasks, such as object detection and image seg-

mentation.
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