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1. Experimental setup

We implemented our networks in PyTorch framework
and trained them on an Nvidia RTX 2080Ti. For our
DAE trained on the MNIST dataset, we used a simple 3-
layered fully connected architecture for the encoder and
its mirrored architecture for the decoder. We considered a
128-dimensional latent space. Additionally we used Leaky
ReLU activation functions with the slope of the negative
part of the activations to be learnable by the network with a
non-negativity constraint. We also used Adam as our solver
with a learning rate of 1073,

There are two variations of the proposed architecture in
the experiments. The first one is a DAE which has no con-
straints on the weights of the network. The second one,
and the best performing based on our experiments, has tied-
weights between the encoder and the decoder, meaning that
the encoder’s weights are used (in their transposed version)
as the decoder’s.

We used a separate Adam solver for the Lagrangian mul-
tipliers of the orthogonality constraint terms of the loss
function (to maximize the parameters, based on the objec-
tive, instead of minimizing them), with a learning rate of
1077,

For the DAEs trained on the fashion-MNIST dataset we
expanded our architecture by adding convolutional layers
before our encoder and additional transposed convolutional
layers after our decoder. The details for the two architec-
tures are shown in Tables | & 5.

1.1. Evaluating the denoising capabilities of the
DAEs

In this experiment we train our DAEs in the task of de-
noising. During the training phase, the networks take as
input data with added samples from various noise distribu-
tions. The samples in this phase come from Normal, Uni-
form, or the combination of both distributions with random-
ized mean and standard deviation values each time. This
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Table 1. Architecture of our DAEs for the MNIST dataset.
DAE
Dense(456)
LeakyReLU()
Dense(292)
LeakyReLU()
Dense(128)
Dense(292)
LeakyReLU()
Dense(456)
LeakyReLU()
Dense(784)

way we can avoid the pitfall of our network learning to han-
dle well on one type of noise with specific statistics. Our
goal is to produce a network that can perform well on de-
noising, independently of the statistics of the noise distribu-
tion. In each batch:

* first we sample the mean and standard deviation values
from a uniform prior, and

* then we randomly make a selection between normal
or uniform noise distribution and inherit the selected
statistics

* finally we sample from this generated distribution and
add the noise samples to our train data.

For the classifiers, we used a convolutional architec-
ture similar to the one in [1]. With this architecture we
achieved a classification accuracy of 99.1% . For the substi-
tute model, following [3] & [2], we utilized the architecture
A from [3].

To evaluate our denoising results, we performed the clas-
sification task on the reconstructed data for various mean
and standard deviation values and we obtained the results
depicted on the box plot of Figure 2.



Figure 1. Denoising results of the proposed network with tied-weights ((a),(b),(c)) and full weights ((d),(e),(f)) when applying ((a),(d))
uniform noise, ((b),(e)) gaussian noise and ((c),(f)) a mixture of the two noises, from the combinations of mean = (0.2, 0.4) (rows) and std

=(0.5,1) (columns)
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Figure 2. Boxplot depicting the classification accuracies of the classifier, when fed with the DAE reconstructions of data with added noise,
sampled from uniform (top curves) and normal (bottom curves) distributions, for the tied-weights (green) and full DAE (red) networks.

Table 2. Classification accuracies under various black-box attacks of the proposed DAEs on Fashion-MNIST

] Attack | FGSM [ R-FGSM | PGD |
Full DAE 78.19 80.53 80.03
Full DAE with Constraints 78.53 80.93 80.21
Tied-weights DAE 76.99 79.92 81.82
Tied-weights DAE with Constraints | 78.06 80.49 82.23

Clearly, the classification accuracy is high, even in the
cases when the added noise is strong.

To test our trained networks, we sample mean and stan-
dard deviation values in a similar way and produce noise
samples which are then added to the test data. We first pass
the noisy test data through the trained DAEs and perform
our classification task on the reconstructed outputs. As we
can see from Figure 1, our networks both perform well on
the denoising task, since they are able to produce high fi-
delity images even when the added noise is a mixture of

the two distributions where our DAEs have not seen dur-
ing training (Figure 1.(c) -1.(f) for the tied-weights and full
networks respectively).

1.2. Evaluating the DAEs against adversarial at-
tacks on the fashion-MNIST dataset

To test our proposed constraints, we evaluated our setups
on different scenarios of adversarial attacks, namely white,
semi-white (gray) as well as black box attacks. In this setup
we utilized the architecture in Table 6 as our classifica-



Table 3. Classification accuracies under various gray-box attacks of the proposed DAEs on Fashion-MNIST

Attack FGSM | R-FGSM | PGD |
Full DAE 78.7 79.2 79.63
Full DAE with Constraints 79.62 80.36 80.42
Tied-weights DAE 77.12 78.09 81.35
Tied-weights DAE with Constraints | 78.85 79.86 82.21

Table 4. Classification accuracies under various white-box attacks of the proposed DAEs on Fashion-MNIST

Attack FGSM [ R-FGSM | PGD |
Full DAE 56.06 34.78 35.94
Full DAE with Constraints 57.02 36.83 38.78
Tied-weights DAE 53.06 3242 50.42
Tied-weights DAE with Constraints | 53.85 32.82 51.51

Table 5. Architecture of our DAEs for the fashion-MNIST dataset.

DAE

Conv2d(16,(3,3))
ReLU()
Conv2d(32,(3,3))
ReLU()
Conv2d(64,(5,5))
Dense(352)
LeakyReLU()
Dense(240)
LeakyReLU()
Dense(128)
Dense(240)
LeakyReLU()
Dense(352)
LeakyReLU()
Dense(576)
Conv2dTranspose(32,(5,5))
ReLU()
Conv2dTranspose(16,(3,3))
ReLU()
Conv2dTranspose(1,(3,3))

tion model. Our results can be found in Tables 2, 3 & 4.
Our results suggest that the constraints enforced during the
training phase do in fact optimize our defence capabilities.
On the other hand although our full weights architecture
slightly outperforms the tied-weights counter part in some
cases, we can justify the tied-weights preference by the fact
that the results are pretty close to each other. Also a more
fair comparison would utilize the same number of parame-
ters for the two architectures, with more layers for the tied-
weights counterpart. The trade-off of the slightly smaller
accuracies compared to the significantly smaller number of
parameters seems minor.

Table 6. Architecture of our CNN classifier for the fashion-MNIST
dataset.

CNN Classifier
Conv2d(32,(3,3))
ReLU()
MaxPool()
Conv2d(64,(3,3))
ReLU()
MaxPool()
Conv2d(128,(3,3))
ReLU()
MaxPool()
Dense(10)
Softmax()
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