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Abstract

This supplementary material provides additional details
on the specific design of ESFormer architectures.

1. ESFormer Architectures

Figure 1 shows the detailed architectures of ESFormer
model family: S0 (left), S1 (center), S2 (right).

It is possible to notice how IBN [4] constitutes the main
building block, especially in the first stages. ConvNeXt [2]
is instead preferred in the last stages, with stage 4 usually
dominated by this kind of block.

Similarly, another interesting pattern can be seen in the
configuration choice for the FNN in Transformer Encoder
layers, with Inverted Bottlenecks usually preferred in stage
3 and ConvNeXt blocks in stage 4.

With regard to kernel sizes, there is a tendency in the
adoption of larger kernels as the depth of the network in-
creases, especially in S0 and S1. This is the same arrange-
ment explicitly devised by the authors of EdgeNeXt [3],
where the kernel size is maintained small in the first stages
to capture low-level features and it is gradually increased to
deal with more high-level features.

Finally, we can appreciate how the QKV-dimension is
always consistenly lower than the embedding dimension,
except for S2 stage 3. Indeed, it is shown that adopting a
smaller QKV-dimension enables a decrease in model com-
plexity without affecting the performance [1].

Notably, while these behaviours are manually encoded
in state-of-the-art architectures, they spontaneously emerge
in our models during the search thanks to Entropic Score.
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Figure 1: Detailed architectures for ESFormer-S0 (left), S1 (center), S2 (right).


