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1. Perturbation k for computing layers’ sensi-
tivity of the model

The magnitude of perturbation, k has a significant effect
on computing expected average gradient norm of different
blocks in the model. We performed extensive experiments
for different values of k (perturbation) to compute the ex-
pected average gradient norm of all blocks in Resnet18 us-
ing the Algorithm 1 (please refer manuscript). For illus-
tration, please refer Figure 1 which shows layers’ sensitiv-
ity plot of all blocks in ResNet18 for two different values
of k. Furthermore, to see the impact of k on accuracy of
quantized model, we apply our methodology to quantize the
ResNet18 for these two different values of k. Results shows
that we get better accuracy of the quantized model when the
perturbation is very close to the point of convergence of the
pretrained model as shown in Table 1. For all the results in
this work, we set k equals to 0.001 for computing expected
average gradient norm.

Table 1: Quantization results of ResNet18 on ImageNet for differ-
ent values of k (perturbation). The original model (FP32) accuracy
of ResNet18 is 69.76. ‘W Bits’ and ‘A Bits’ stands for quantiza-
tion bits used for weights and activations, respectively. The ‘W
CR’ and ‘A CR’ stands for weight and activation compression ra-
tio, respectively. The ‘MP’ refers to mixed-precision quantization,
where we report the lowest bits used for weights and activations.

k W A W A Top-1 Top-1
Bit CR CR Quant Drop

10 2MP 8 8 × 4 × 68.27 -1.49
0.001 2MP 8 8 × 4 × 69.11 -0.65

*These authors contributed equally to this work.
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Figure 1: Expected Average Gradient Norm of different blocks in
ResNet18 on ImageNet for different values of perturbation k. It
should be noted that the plot varies a lot for two different values
of k. We provide the results for these two different settings on
ResNet18 in Table 1.



Table 2: Comparison with state-of-the-art methods on ImageNet. ‘RT’ refers whether retraining of network is required or not . ‘W Bits’ and
‘A Bits’ stands for quantization bits used for weights and activations, respectively. The ‘W CR’ and ‘A CR’ stands for weight and activation
compression ratio, respectively. The ‘MP’ refers to mixed-precision quantization, where we report the lowest bits used for weights and
activations.

Network Method RT Top-1 W A W A Top-1 Top-1
Full Bit Bit CR CR Quant Drop

ResNet-18

LQ-Nets⋆ [7] ✓ 70.30 3 32 6.10 × 1.00 × 69.30 -1.00
ABC-Net [5] ✓ 69.30 5 5 6.40 × 6.40 × 65.00 -4.30
DoReFa⋆ [8] ✓ 70.40 5 5 5.16 × 6.39 × 68.40 -2.00
PACT⋆ [4] ✓ 70.40 4 4 6.10 × 7.98 × 69.20 -1.20
MPQNNCO [2] ✓ 69.76 2MP 8 10.66 × 4.00 × 69.39 -0.37
DFQ [6] ✗ 71.47 8 8 4 × 4 × 69.70 -1.77
ZEROQ [1] ✗ 71.47 8 8 4 × 4 × 71.43 -0.04
DFPNMQ [3] ✗ 69.76 MP 32 6.61 × 1 × 69.13 -0.63
Ours ✗ 69.76 2MP 8 4 × 4 × 69.45 -0.31
Ours ✗ 69.76 2MP 8 8 × 4 × 69.11 -0.65

⋆ do not quantize the first and last layer

2. Sensitivity plots of different models under
study

We use the Algorithm 1 (please refer manuscript) to
compute the expected average gradient norm of different
layers of MobileNet-V2 and Inception-V3 as shown in Fig-
ure 2. For ResNet18, please refer Figure 1b. We can clearly
observe the comparable difference between the expected av-
erage gradient norm for different layers of the models.

3. Quantization results on ResNet18
For ResNet18, we compare the results with methods

which do not require retraining (RT) after quantization and
show that our method attains a smaller accuracy drop (-
0.65%) with larger compression ratio (CR). We also achieve
better performance with larger compression ratio in com-
parison to the methods which require retraining except
MPQNNCO [2]. We achieve almost the original accuracy
with 8× compression of weights with no training and re-
quire approximately 0.002% data which is a noticeable im-
provement against state of the art methods.
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Figure 2: Expected Average Gradient Norm of different blocks in
MobileNet-V2 (top) and Inception-V3 (bottom) on ImageNet.
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