Shapley Deep Learning: A Consensus for General-Purpose Vision Systems [Supplementary Materials]

Youcef Djenouri
University of South-Eastern Norway, Norway
NORCE Norwegian Research Centre, Norway
youcef.djenouri@usn.no, yodj@norceresearch.no

Ahmed Nabil Belbachir
NORCE Norwegian Research Centre
Norway
nabe@norceresearch.no

Tomasz Michalak
IDEAS NCBR, Warsaw, Poland
tomasz.michalak@ideas-ncbr.pl

Anis Yazidi
OsloMet University, Oslo, Norway
anisy@oslomet.no

Optimized Shapley Learning

In this section we sketch the changes that need to be made the Shapely algorithm more efficient for computing the contribution of each model in \mathcal{M}. We use intermediate values $\phi(\cdot, \cdot, \cdot)$ analogous to the values $\beta(\cdot, \cdot)$ that constituted the base of the Banzhaf algorithm. For any vertex $v \in T$, set $G \subseteq U$ and integer $k=0, \ldots,|G|$, let

$$
\begin{equation*}
\phi(v, G, k):=\frac{1}{|G|+1} \sum_{\substack{S \subseteq G \\|S|=k}}\binom{|G|}{k}^{-1} \times P[v, S] . \tag{1}
\end{equation*}
$$

Let us also consider $\phi(v, G)$ as a vector containing all of the values $\phi(v, G, \cdot)$:

$$
\begin{equation*}
\phi(v, G)=(\phi(v, G, k))_{k=0}^{|G|} . \tag{2}
\end{equation*}
$$

For the sake of clarity, let us interpret $\phi(v, G, k)=0$ for $k<0$ or $k>|G|$. Let $v \in T, G \subseteq U$ and $k \in\{0, \ldots,|G|\}$. Let $y \in U \backslash G$. we get:

$$
\begin{aligned}
& \quad \phi(v, G \cup\{y\}, k)=\frac{|G|+1-k}{|G|+2} \times \phi(v, G, k)+\frac{k}{|G|+2} \times \\
& \Delta_{v, y} \times \phi(v, G, k-1)
\end{aligned}
$$

proof Let $m=|G|+1$, we have:

$$
\begin{aligned}
& \phi(v, G \cup\{y\}, k)=\sum_{S \subseteq G \cup\{y\}}^{|S|=k} \\
&=\left(\sum_{\substack{S \subseteq G \\
|S|=k}} \frac{1}{m+1}\binom{m}{k}^{-1} P[v, S]\right) \\
&\left(\sum_{\substack{m \in S \subseteq G \cup\{y\} \\
|S|=k}} \frac{1}{m+1}\binom{m}{k}^{-1} P[v, S]\right) \\
&=\left(\sum_{\substack{S \subseteq G \\
|S|=k}} \frac{m-k}{m+1} \cdot \frac{1}{m}\binom{m-1}{k}^{-1} P[v, S]\right)
\end{aligned}+
$$

$\left(\sum_{\substack{S \subseteq G \\|S|=k-1}} \frac{k}{m+1} \cdot \Delta_{v, y} \cdot \frac{1}{m}\binom{m-1}{k-1}^{-1} P[v, S]\right)$
$=\frac{m-k}{m+1} \cdot \phi(v, G, k)+\frac{k}{m+1} \cdot \Delta_{v, y} \cdot \phi(v, G, k-1)$.
Shapely value recursive equation designed to demonstrate that the complexity of computing each $\phi\left(v, F_{v}\right)$ is in $O\left(\left|F_{v}\right|\right)=O(D)$ time. This overhead is a result of the fact that the vectors $\phi(\cdot, \cdot)$ used have coordinates up to D. Keep in mind that similar values had only one coordinate when computing Banzhaf value explanations, so a similar transition could be conducted in constant time. As a result, the basic algorithm of Lunderg revised the calculation of the vectors $\phi\left(v, F_{v}\right)$ where it tends to take $O\left(L D^{2}\right)$ time. We need to create a Shapley formula to get an asymptotically accelerated $O(L D)$ time algorithm for calculating Shapley interpretations using our approach. Consider the following funding to that end:

$$
\begin{equation*}
\Psi(v, k)=\sum_{l \in L_{v}} f(l) \cdot \phi\left(l, F_{l}, k\right) \tag{3}
\end{equation*}
$$

A bottom-up computation may be employed to calculate all the values $\Psi(v, k)$ for $v \in T$ in $O(L D)$ time by proceeding player similarly.

We also have:

$$
\begin{equation*}
\gamma(v, k)=\sum_{l \in L_{v}} f(l) \cdot \phi\left(l, F_{l} \backslash\left\{d_{p_{v}}\right\}, k\right) \tag{4}
\end{equation*}
$$

As a result, we can reformulate Shapely as follows:

$$
\begin{aligned}
\phi_{i} & =\sum_{\substack{l \in L(T) \\
i \in F_{l}}} f(l) \cdot\left(\Delta_{l, i}-1\right) \cdot \Phi\left(l, F_{l} \backslash\{i\}\right) \\
& =\sum_{\substack{v \in T \\
d_{p_{v}}=i}} \sum_{l \in L_{v}} f(l) \cdot\left(\Delta_{l, i}-1\right) \cdot \Phi\left(l, F_{l} \backslash\{i\}\right) \\
& =\sum_{\substack{v \in T \\
d_{p_{v}}=i}}\left(\Delta_{v, i}-1\right) \sum_{l \in L_{v}} f(l) \cdot \Phi\left(l, F_{l} \backslash\{i\}\right) \\
& =\sum_{\substack{v \in T \\
d_{p_{v}}=i}}\left(\Delta_{v, i}-1\right) \cdot \Gamma(v) .
\end{aligned}
$$

It is worth noting that the preceding derivation provides a $O(L)$ time reduction from computing all ϕ_{i} to determining all $\Gamma(v)$ values. Once we possess the entire values $\gamma(v, k)$, we can clearly obtain them by addition operation performed in $O(L D)$ time. The following lemma establishes a connection between the values $\Psi(\cdot, \cdot)$ and $\gamma(\cdot, \cdot)$.
lemma. Let $v \in T, v \neq \rho$. Suppose the sets F_{l} have equal sizes s for all $l \in L_{v}$. Then, for any $k=0, \ldots, s$, we have:

$$
\Psi(v, k)=\frac{s-k}{s+1} \cdot \gamma(v, k)+\frac{k}{s+1} \cdot \Delta_{v, d_{p_{v}}} \cdot \gamma(v, k-1)
$$

proof. For any $l \in L_{v}$ we have:
$\phi\left(l, F_{l}, k\right)=\frac{\left|F_{l}\right|-k}{\left|F_{l}\right|+1} \phi\left(l, F_{l} \backslash\left\{d_{p_{v}}\right\}, k\right)-\frac{k}{\left|F_{l}\right|+1} \cdot \Delta_{l, d_{p_{v}}} \cdot \phi\left(l, F_{l} \backslash\left\{d_{p_{v}}\right\}, k-1\right)$
$\phi\left(l, F_{l}, k\right)=\frac{s-k}{s+1} \phi\left(l, F_{l} \backslash\left\{d_{p_{v}}\right\}, k\right)-\frac{k}{s+1} \cdot \Delta_{l, d_{p_{v}}} \cdot \phi\left(l, F_{l} \backslash\left\{d_{p_{v}}\right\}, k-1\right)$.
We get the preferred equality by adding the above to all $l \in L_{v}$ and then using the followin equality:

$$
\Delta_{l, d_{p_{v}}}=\Delta_{v, d_{p_{v}}}
$$

