
Accelerating Deep Neural Networks via Semi-Structured Activation Sparsity
Supplemental Material

Matteo Grimaldi Darshan C. Ganji Ivan Lazarevich Sudhakar Sah
Deeplite

matteo.grimaldi@deeplite.ai

A. Inference Engine Modification

In the context of runtime modifications for activation
sparsity inference, we used XNNPACK [6] as our inference
engine and made minor adaptations to ensure robust sup-
port for inference. Algorithm 1 illustrates a simplified pseu-
docode representation of these crucial modifications. Addi-
tional information about these referenced functions is readily
available within the code repository [6]. The implementa-
tion comprises three stages: (i) a custom indirection-based
im2col, (ii) a standard dense GEMM, and (iii) custom
post-processing components.

At first, the xnn indirection init conv2d sparse

(lines 1-11) function illustrates our custom approach for effi-
ciently skipping rows within an indirection matrix. Within
the indirection-based im2col function, we deviate from
memory-intensive transformations and instead, store in-
put value pointers in the indirection buffer. This strat-
egy adheres to the loop structure commonly employed
in the standard im2col transformation. Diverging from
the original procedure, our implementation skips convert-
ing the entire convolution patch into a single row when
mask values equate to 0 (line 5). To accurately allocate
the appropriate input value pointer to a designated posi-
tion (index) within the indirection buffer, we em-
ployed the base address and offset variables. These
variables are computed according to the conv2d parame-
ters. Upon completing this initial step, the computation range
of the GEMM is reduced to output size − (sparsity ×
output size). The GEMM function operates as a subrou-
tine that efficiently conducts dense matrix multiplication
between weight and activation values. This function remains
unaltered, with no modifications made to the underlying
kernel.

Lastly, the post process conv2d sparse func-
tion (lines 12-26) manages the output for the subsequent
layer, incorporating a transformation that involves the inser-
tion of zeros based on the corresponding mask value. When
the mask value is 0 (lines 16-18), the function inserts zeros.
Alternatively, when the mask value is 1 (lines 19-21), data

Algorithm 1: Inference Engine Modification

1 Function xnn indirection init conv2d sparse:
2 indirection buffer← empty list;
3 for out y to output height do
4 for out x to output width do
5 if mask[out x][out y] == 1 then
6 indirection buffer[index]← (const void*)

((uintptr t) input + base address +
offset);

7 end
8 end
9 end

10 return indirection buffer;
11 end

12 Function post process conv2d sparse:
13 outch size = output channels * sizeof(float);
14 for out y→ output height - 1 to 0 do
15 for out x→ output width - 1 to 0 do
16 if mask[out x][out y] == 0 then
17 memset(op→ output[out y * op→

output height + out x], 0, outch size);
18 end
19 else
20 memcpy(output[out y * out-

put height + out x], output[id],
outch size);

21 id← id - 1;
22 end
23 end
24 end
25 return output;
26 end

is copied from one position to another within the same out-
put channel size, denoted as outch size in the algorithm.
This customized procedure is tailored for post-processing
the output subsequent to low-rank GEMM operations, and it
is invoked within the xnn run operator method [6].

1



B. Additional Details on Experiments
B.1. Datasets

CIFAR-100 [8] : It comprises 60, 000 RGB images, each
measuring 32× 32 pixels, and annotated with 100 distinct
labels with 45, 000 training, 5, 000 validation, and 10, 000
testing samples.

Flowers102 [9]: This dataset is a collection of 102 cat-
egories of flower species, with each category containing
a variable number of RGB images. Each image is of arbi-
trary size and comes with appropriate labels indicating the
corresponding flower species. We used 224 × 224 image
resolution.

Food101 [1]: It comprises a diverse set of food images
spanning 101 distinct classes, the dataset offers a valuable
resource for food recognition tasks. Each RGB image in the
dataset is associated with a specific food category. We used
224× 224 image resolution.

ImageNet [3]: This dataset comprises 1M of RGB im-
ages belonging to a vast array of classes, enabling in-depth
evaluation of image classification capabilities. The pipeline
leveraged subsets of the ImageNet dataset, ensuring a repre-
sentative and diverse range of images for training, validation,
and testing purposes.

PASCAL VOC [4]: The PASCAL VOC dataset, derived
from the PASCAL Visual Object Classes Challenge, encom-
passes 15, 870 RGB images with 37,813 object annotations
for 20 different categories. The pipeline adhered to the rec-
ommended approach outlined in, utilizing the VOC07 and
VOC12 trainval data for training, while the VOC07 dataset
was employed for testing purposes. We used 480×480 image
resolution.

Global Wheat [2]: The Global Wheat Head Dataset is a
collection of images designed to support the development
of accurate wheat head detection models for applications in
wheat phenotyping and crop management. The dataset con-
tains over 3000 images in the training set, and approximately
1000 images for validation taken in different regions. We
train and evaluate with 480 × 480 image resolution in our
experiments.

B.2. Training

Figures 1 and 2 report an example of the training curves
to offer comprehensive insights into the proposed method’s
learning behavior, providing a deeper understanding of the
training dynamics and overall training performance.

References
[1] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-

101–mining discriminative components with random forests.
In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
VI 13, pages 446–461. Springer, 2014. 2

[2] Etienne David, Simon Madec, Pouria Sadeghi-Tehran, Helge
Aasen, Bangyou Zheng, Shouyang Liu, Norbert Kirchgessner,
Goro Ishikawa, Koichi Nagasawa, Minhajul A Badhon, et al.
Global wheat head detection (gwhd) dataset: a large and diverse
dataset of high-resolution rgb-labelled images to develop and
benchmark wheat head detection methods. Plant Phenomics,
2020. 2

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern recog-
nition, pages 248–255. Ieee, 2009. 2

[4] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of
Computer Vision, 111(1):98–136, Jan. 2015. 2

[5] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning. In
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 16091–16101, 2023. 4

[6] Google. Xnnpack. https://github.com/google/
XNNPACK, 2023. 1

[7] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by
Ultralytics, Jan. 2023. 4

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 2

[9] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian conference on computer vision, graphics & image
processing, pages 722–729. IEEE, 2008. 2



62.5

65.0

67.5

70.0

To
p-

1 
[%

] 10%
30%

0 50 100 150 200 250 300 350 400
Epochs

0.0

10.0

20.0

30.0

Sp
ar

sit
y 

[%
] 10%

30%

Figure 1. Training curves for ResNet18 on the ImageNet dataset for two different sparsity levels. The two vertical lines split the training
curve according to the three different stages. From epoch 0 to epoch 40 (green line) the dense pretraining steps, from epoch 40 to epoch 360
(purple line) the sparse training steps with variable random masking, and, at last, from epoch 360 to the end the mask freezing stage.

62.5

65.0

67.5

70.0

To
p-

1 
[%

] 10%
30%

260 280 300 320 340 360 380 400
Epochs

0.0

10.0

20.0

30.0

Sp
ar

sit
y 

[%
] 10%

30%

Figure 2. Training curves for ResNet18 on the ImageNet dataset for two different sparsity levels. The same training curves of Fig. 1, here
zoomed in on the last epochs to better show the effects of the mask freezing stage (from epoch 360 to 400).



Structured Weight Pruning Structured Weight Pruning + Activation Sparsity
Depgraph [5] Fine-tuned [7] 5% 10% 20% 30%

S A S A OS A OS A OS A OS A
1.0 / 1.0 92.02 1.07 91.8 1.11 90.06 1.25 89.50 1.41 88.60
2.0 89.46 1.8 89.58 1.90 89.07 1.96 88.88 2.24 87.53 2.51 86.45
3.0 86.27 2.6 87.17 2.74 86.31 2.83 86.34 3.21 84.86 3.58 82.88
4.0 85.18 3.4 86.23 3.55 85.58 3.71 84.99 4.18 83.67 4.68 82.03
5.0 81.93 3.9 82.92 4.04 82.31 4.25 82.19 4.77 80.24 5.33 78.29
6.0 79.87 4.7 81.12 5.01 80.94 5.22 80.22 5.83 78.47 6.51 77.01
7.0 79.44 5.3 79.80 5.51 79.23 5.76 78.84 6.51 77.05 7.16 73.78
8.0 78.27 5.6 79.26 5.83 79.15 6.11 78.52 6.77 76.17 7.59 74.37
9.0 76.01 6.0 77.15 6.42 76.29 6.68 75.52 7.48 73.34 8.35 70.69

10.0 74.65 6.3 75.77 6.68 75.52 6.77 74.50 7.26 72.44 7.59 69.90

Table 1. Latency-accuracy results for structured pruning without (first four columns) and with activation sparsity (last eight columns) for
ResNet18 on the Flowers102 dataset. For each pair of structured pruning columns, we report speedup (S, ×) and top-1 accuracy (A, %). The
first group shows the results obtained using the original training code of Depgraph [5] with the estimated speedups, while the second one the
results obtained with further fine-tuning using Ultralytics training code [7] with the real speedups measured on the device. For each pair of
columns of structured pruning with activation sparsity, we report overall speedup (OS, ×) and top-1 accuracy (A, %) at different levels of
sparsity, trained using the same Ultralytics training code [7].


