
YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems
Supplemental Material

Ivan Lazarevich Matteo Grimaldi Ravish Kumar Saptarshi Mitra
Shahrukh Khan Sudhakar Sah

Deeplite
ivan.lazarevich@deeplite.ai

A. Latency measurements.

Details regarding hardware platforms used to collect la-
tency measurements are outlined in Table S1. Figures S1 and
S2 show the difference of latency value distributions between
devices computed for the full initial YOLOBench architecture
space consisting of ∼1000 models. While generally good
correlation is observed between model inference latencies on
different devices (see also Figure S3), notably latency values
measured on Khadas VIM3 NPU differ significantly from
latency values on other devices. That is, for models with
roughly the same latency on Jetson Nano GPU or Raspi4
ARM CPU, the difference in VIM3 NPU latency could be
up to several times. This difference between NPU values
from other common GPU/CPU-based platforms highlights
the necessity to develop hardware-aware architecture design
and search methods. The difference in the NPU benchmark
is also reflected in the structure of model Pareto frontiers
(Figs. 1, S6, S4) and the performance of zero-cost predictors
in identifying Pareto-optimal models (Figs. 4, S18).

B. YOLOBench Pareto frontiers for different
datasets.

YOLOBench Pareto frontiers for SKU-110k, WIDER
FACE, and COCO datasets are shown in Figs. S4, S5, S6,
correspondingly. Note that while mAP50−95 values for VOC,
SKU-110k, and WIDER FACE datasets are obtained by fine-
tuning COCO pre-trained weights (all trained at 640x640
image resolution) on multiple image resolutions considered
in YOLOBench (11 values from 160 to 480 with a step of 32),
the mAP50−95 values on the COCO dataset are obtained by
directly evaluating pre-trained COCO weights, without fine-
tuning on the corresponding target image resolutions. This
corresponds to the situation of deployment of pre-trained
COCO weights without any additional training.

Table S2 shows the identified Pareto-optimal YOLO mod-
els on 3 different datasets and 4 hardware platforms under
several latency thresholds. It can be noted that under the

same latency threshold on a given hardware platform, the
optimal YOLO model family and input image resolution are
typically dataset-dependent.

Figures S7 and S8 show the statistics of architecture scal-
ing parameters (width factor, depth factor, image resolution)
in Pareto-optimal models on Raspberry Pi4 CPU and VIM3
NPU, respectively. Although some differences are observed
between devices and datasets (in particular depth factor dis-
tributions), there is a general trend in all computed Pareto
fronts where a variation in depth/width factors is observed
at higher resolutions, and resolution is reduced when the
depth/width factors (especially the width factor) already have
low values.

C. Performance of zero-cost accuracy predic-
tors on YOLOBench.

The performance of zero-cost accuracy predictors used
in neural architecture search [3] is empirically evaluated
on YOLOBench models on VOC and SKU-110k. Table S3
shows the Kendall-Tau scores and Pareto-optimal model
prediction recall values obtained by a variety of zero-cost
predictors. The zero-cost predictor values are computed us-
ing a randomly sampled batch of test set data with batch
size = 16 (the used batch was the same for all ZC metrics).
MAC count and the number of parameters are computed for
models in evaluation mode, with normalization layers fused
into preceding convolutions (if possible), and RepVGG-style
blocks [4] also fused, if present in the model. Hence, the
performance of MAC and parameter counts might slightly
differ if computed for models in training mode. Most pre-
dictors perform poorly and are outperformed by the MAC
count baseline, except for the NWOT score (in particular
the pre-activation version of it). The good performance of
NWOT can be also observed in Fig. S10, where scatter plots
of fine-tuned model mAP50−95 vs. zero-cost predictor value
are shown for a few predictors. Some predictors (notably
parameter count, ZiCo, and Zen-score) can be observed to
produce very close values for subsets of models with signif-

1



Table S1. Details on hardware platforms and corresponding runtimes used for benchmarking.

Raspberry Pi 4 Model B Jetson Nano (NVIDIA) Khadas VIM3 Lambda tensorbook

CPU Quad Core Cortex-A72,
64-bit SoC @1.8GHz

Quad Core Cortex-A57 MPCore,
64-bit SoC @1.43GHz

Quad Core Cortex-A73 @2.2Ghz,
Dual Core Cortex-A53 @1.8Ghz

Intel® Core™i7-10875H CPU
@ 2.30GHz

Memory 4GB LPDDR4-3200 SDRAM 4 GB 64-bit LPDDR4,
1600MHz 25.6 GB/s

4GB LPDDR4/4X 64GB DDR4 SDRAM

AI-chip - NVIDIA Maxwell GPU,
128 NVIDIA CUDA® cores

Custom NPU
INT8 inference up to 1536 MAC

NVIDIA RTX 2080 Super Max-Q

Ops - 472 GFLOPs 5.0 TOPS -

Framework/runtime TensorFlow Lite (FP32, XNNPACK backend) ONNX Runtime (FP32, GPU) AML NPU SDK (INT16) OpenVINO (CPU, FP32)

icantly different accuracy. This is an indication of the fact
that these predictors perform poorly in estimating accuracy
differences in models when the underlying architecture is
fixed, but the input image resolution is varied.

We also test the performance of a training-based predictor
on YOLOBench which is the mAP50−95 values of models
trained on a representative dataset (VOC) from scratch for
100 epochs. This predictor sets a strong baseline to be outper-
formed by training-free predictors, as it is generally found to
perform well on a variety of datasets (see Fig. S9), including
datasets from different visual domains (e.g. SKU-110k).

We further look into the robustness of the results obtained
with the pre-activation NWOT estimator. Since this zero-cost
estimator does not require computing the loss function, the
main parameters that could influence its performance are the
exact batch of data sampled, the batch size, and the dataset
split (training or test data) used to sample the batch. Figure
S11 shows the global Kendall-Tau scores achieved with pre-
activation NWOT on VOC YOLOBench models with differ-
ent batches sampled, different batch sizes and different data
splits used. There is an observed variance in performance
depending on the sampled batch, which is higher when the
test set data are used (with an absolute difference of up to
0.05 in global Kendall-Tau score). Notably, scores computed
on training set data (with augmentations) performed better
on average compared to test set data, and performance is ob-
served to decrease with increasing batch size. Furthermore,
Table S4 shows the mean and standard deviation of Kendall-
Tau scores for the standard and pre-activation versions of
NWOT on VOC YOLOBench models computed on 5 differ-
ent batches of size 16. We also estimate the performance
of the mean predictor values averaged over the 5 sampled
batches, which is expectedly found to outperform predic-
tors computed on single batches. Moreover, we compute the
pre-activation NWOT scores for all layers in YOLO models
except the ones contained in detection heads. This is mo-
tivated by the fact that the larger distances between binary
activation codes in NWOT are meant to correlate with better
performance for the feature extraction layers (e.g. layers in
the backbone and neck of YOLO), not the last layers used to
compute model predictions. We find an overall performance

boost in terms of Kendall-Tau scores for the case when the
NWOT score is computed only for the layers in the backbone
and neck (Table S4).

D. Pareto-optimal model prediction using
training-free proxies.

We evaluate the training-free accuracy predictors (and the
training-based one, VOC training from scratch) for the task
of predicting Pareto-optimal models. That is, if one computes
the ZC values for each model and determines the Pareto set
of models in the ZC value-real latency two-dimensional
space, we want to estimate how many models in that Pareto
set are going to also be present in the actual Pareto frontier
(computed in the two-dimensional mAP50−95-latency space).
Two metrics are of importance here: recall (how many of
actual mAP-latency Pareto-optimal models are captured by a
ZC-based Pareto set) and precision (how many of ZC-based
Pareto set models are actually Pareto optimal in the real
mAP-latency space). Additionally, one could consider the
first N (N = 1, 2, 3, ...) ZC-based Pareto sets to expand the
set of potential model candidates. We look at how precision
and recall values change with N for a few well-performing
predictors (NWOT, pre-activation NWOT, MAC count, and
VOC training from scratch) with latency values taken from
different target devices.

Recall values for several zero-cost predictors for Pareto
models on Jetson Nano GPU and VOC dataset are shown in
Fig. S12. Corresponding precision values for a few well-
performing predictors on 3 different HW platforms are
shown in Fig. S13. Recall values for these best-performing
predictors on the SKU-110k dataset are shown in Fig. S18.

A different way to evaluate the predictors on YOLOBench
is to treat models with the same architectures but different
input image resolutions as identical data points. That is, if a
certain architecture is predicted by ZC-based Pareto front to
be optimal on a certain resolution, we count that as a correct
prediction if that same architecture on a different resolution
is found to be really Pareto-optimal. Such a way to evaluate
ZC performance stems from the fact that in practice one
typically wishes to predict the most promising architectures,
not necessarily the particular optimal image resolution (since



that architecture would be pre-trained with a certain fixed
resolution, e.g. 640x640 on a dataset like COCO for further
fine-tuning on the target dataset). Recall and precision values
for such an evaluation protocol for the VOC dataset are
shown in Figs. S14, S15.

We also evaluate the performance of the best training-
free predictor (pre-activation NWOT) in predicting Pareto-
optimal models, when the latency values used are different
from actual latency measurements, but either are computed
via a latency proxy like MAC count or measurement on an-
other device. Note that in the case of MAC count as a latency
predictor, the whole Pareto-frontier computation process is
zero-cost: the approximation for mAP is given by the pre-
activation NWOT score, the approximation for latency by
MAC count. One might wonder how such a fully zero-cost
approach performs in practice. Figures S16 and S17 show
the recall and precision values when accuracy predictor is
taken to be pre-activation NWOT and latency predictors
are varied from MAC count to latencies from other (proxy)
devices. Interestingly, MAC count is found to perform rela-
tively well in terms of recall, specifically for Raspberry Pi
4 CPU. Notably, none of the latency proxies work well to
predict Pareto-optimal models on VIM3 NPU. Also, per-
haps not surprisingly, using Intel CPU latency measurements
works well to predict Pareto-optimal models on Raspberry
Pi 4 CPU, but does not significantly outperform MAC count.

Finally, we test the pre-activation NWOT accuracy esti-
mator to predict potentially well-performing models out of
a set of YOLO models we generated with different CNN
backbones from the timm package [6]. We have computed
the NWOT-latency Pareto set for YOLO-PAN-C3 models
with timm backbones on input images of 480x480 resolu-
tion, with latency measured on Raspberry Pi 4 ARM CPU
(TFLite, FP32). The neck structure (PAN-C3) for each of
the candidate models was taken to be that of YOLOv5s and
the detection head to be that of YOLOv8 (same as for all
YOLOBench models), with Hardswish activations in the neck
and head, and activation function(s) in the backbone kept the
same as originally implemented in timm. Table S5 shows
examples of predicted Pareto-optimal models (a subset of the
full NWOT-latency Pareto set). Based on these observations,
we have selected FBNetV3-D as a potential backbone of a
YOLO model to be trained on the COCO dataset and com-
pared it to a reference YOLOv8 model in a similar latency
range (YOLOv8s).

Table S7 shows COCO minival mAP50−95 and inference
latency results for a YOLO-FBNetV3-D-PAN-C3 model
trained on the COCO dataset for 300 epochs and profiled on
640x640 input resolution on Raspi4 CPU with TFLite. We
observe that the choice of activation function significantly
affects TFLite model inference latency, so for a more fair
comparison we also train and profile a Hardswish-based
version of YOLOv8s in addition to its default SiLU-based

version. While we observe a significant reduction in in-
ference latency with a negligible mAP drop shifting from
SiLU to Hardswish, the FBNetV3-based model still outper-
forms YOLOv8s-HSwish. Furthermore, we train and pro-
file a ReLU-based version of YOLO-FBNetV3-D-PAN-C3
(with activation functions in the backbone kept to be those
of the original backbone, i.e. Hardswish, but neck and de-
tection head activations replaced with ReLU) and observe
further latency improvements at the cost of ∼ 0.56% drop
in mAP50−95. However, this model is still found to out-
perform YOLOv8s in terms of both accuracy and latency
(see Table S7). Furthermore, we train the same models for
500 epochs with a batch size of 256, which is found to
achieve better results on COCO minival and test (Table 4).
Although we could not exactly reproduce COCO minival
mAP results for YOLOv8s reported by Ultralytics [5], we
find that the FBNetV3-based model outperforms both our
YOLOv8s mAP results as well as those of Ultralytics, with
lower latency on Raspberry Pi 4 CPU. The COCO minival
mAP50−95 values reported in Table 4 were obtained using
pycocotools [2] (with IoU threshold for NMS = 0.6
and object confidence threshold for detection = 0.001), and
mAP values on test-dev were obtained using the same evalu-
ation parameters by submitting to the competition server [1].
More details on the performance comparison of models on
COCO test-dev are shown in Table S6.

References
[1] Coco detection challenge. https://codalab.lisn.

upsaclay.fr/competitions/7384. 3
[2] Pycocotools pypi package. https://pypi.org/

project/pycocotools/. 3
[3] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak,

and Nicholas D Lane. Zero-cost proxies for lightweight nas.
arXiv preprint arXiv:2101.08134, 2021. 1

[4] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
13733–13742, 2021. 1

[5] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by
Ultralytics, Jan. 2023. 3

[6] Ross Wightman. Pytorch image models. https://github.
com/rwightman/pytorch-image-models, 2019. 3



Table S2. Pareto-optimal YOLOBench models on 3 datasets and 4 hardware platforms. Shown are the best models in terms of mAP50−95

under a given latency threshold (max. latency). For each model, the scaling parameters are given (d33w25 means depth factor = 0.33 and
width factor = 0.25), corresponding input resolution of the models is indicated in brackets.

HW/max. VOC VOC SKU-110k SKU-110k WIDERFACE WIDERFACE
latency model mAP50−95 model mAP50−95 model mAP50−95

Nano/0.5 sec YOLOv8 0.726 YOLOv7 0.593 YOLOv7 0.382
d67w1 (448) d1w75 (480) d1w75 (480)

Nano/0.3 sec YOLOv7 0.701 YOLOv7 0.589 YOLOv7 0.369
d1w5 (480) d1w5 (480) d1w5 (480)

Nano/0.1 sec YOLOv7 0.657 YOLOv8 0.567 YOLOv7 0.336
d1w5 (288) d1w25 (480) d1w25 (480)

VIM3/0.3 sec YOLOv8 0.726 YOLOv7 0.593 YOLOv7 0.382
d67w1 (448) d1w75 (480) d1w75 (480)

VIM3/0.1 sec YOLOv6l 0.669 YOLOv8 0.567 YOLOv6m 0.350
d67w5 (384) d1w25 (480) d33w5 (480)

VIM3/0.05 sec YOLOv6l 0.620 YOLOv6s 0.556 YOLOv6m 0.318
d67w25 (416) d33w25 (480) d67w25 (480)

Intel/0.08 sec YOLOv8 0.719 YOLOv7 0.593 YOLOv7 0.382
d1w75 (416) d1w75 (480) d1w75 (480)

Intel/0.04 sec YOLOv7 0.701 YOLOv7 0.589 YOLOv7 0.369
d1w5 (480) d1w5 (480) d1w5 (480)

Intel/0.02 sec YOLOv6l 0.682 YOLOv6l 0.576 YOLOv6l 0.346
d6w5 (448) d33w5 (480) d33w5 (480)

Raspi4/3 sec YOLOv8 0.719 YOLOv7 0.593 YOLOv7 0.382
d1w75 (416) d1w75 (480) d1w75 (480)

Raspi4/1 sec YOLOv7 0.701 YOLOv7 0.589 YOLOv7 0.369
d1w5 (480) d1w5 (480) d1w5 (480)

Raspi4/0.5 sec YOLOv6l 0.669 YOLOv4 0.569 YOLOv7 0.336
d67w5 (384) d1w25 (480) d1w25 (480)

0.0 0.5 1.0
Jetson Nano GPU

latency, sec

0.0

0.1

0.2

In
te

l C
PU

 O
pe

nV
IN

O
la

te
nc

y,
 s

ec

0.0 0.5 1.0
Jetson Nano GPU

latency, sec

0.0

0.2

0.4

V
IM

3 
la

te
nc

y,
 s

ec

0.0 0.5 1.0
Jetson Nano GPU

latency, sec

0

5

R
as

pi
4 

TF
Li

te
la

te
nc

y,
 s

ec

Figure S1. Scatter plots of latency values measured for YOLOBench models on the Jetson Nano GPU (ORT, FP32 precision) vs. latency
values on other hardware platforms.



Table S3. Performance of training-free accuracy predictors on YOLOBench models and two datasets (VOC and SKU-110k, from COCO-
pretrained weights) compared to using mAP50−95 of models trained from scratch on the VOC dataset as a predictor.

VOC, mAP50−95 SKU-110k, mAP50−95

Predictor metric global τ top-15% τ %Pareto pred.
(GPU)

global τ top-15% τ %Pareto pred.
(GPU)

GraSP -0.011 -0.068 0.062 0.040 0.032 0.025
Plain 0.029 0.069 0.015 -0.388 -0.176 0.025
JacobCov 0.095 -0.078 0.015 0.541 0.136 0.025
ZiCo 0.195 0.016 0.015 0.115 0.081 0.025
Zen 0.255 0.092 0.062 0.146 0.121 0.050
GradNorm 0.262 0.173 0.015 -0.331 -0.072 0.025
Fisher 0.280 0.156 0.015 -0.380 -0.096 0.025
L2 norm 0.326 0.090 0.015 0.189 0.118 0.025
SNIP 0.336 0.217 0.015 -0.290 -0.059 0.025
#params 0.399 0.372 0.031 0.256 0.119 0.050
SynFlow 0.558 0.227 0.062 0.512 0.254 0.100
MACs 0.739 0.520 0.123 0.604 0.314 0.125
NWOT 0.756 0.622 0.262 0.703 0.321 0.200
NWOT (pre-act) 0.827 0.623 0.292 0.765 0.406 0.200

VOC training 0.847 0.665 0.369 0.739 0.374 0.425
from scratch (mAP50−95)

0 10
Raspi4 TFLite
latency, sec

0.0

0.1

0.2

In
te

l C
PU

 O
pe

nV
IN

O
la

te
nc

y,
 s

ec

0 10
Raspi4 TFLite
latency, sec

0.0

0.2

0.4

V
IM

3 
la

te
nc

y,
 s

ec

0 10
Raspi4 TFLite
latency, sec

0.0

0.5

1.0
Je

ts
on

 N
an

o 
G

PU
la

te
nc

y,
 s

ec

Figure S2. Scatter plots of latency values measured for YOLOBench models on the Raspberry Pi 4 CPU (TFLite with XNNPACK, FP32
precision) vs. latency values on other hardware platforms.

Table S4. Mean and standard deviation of the global Kendall-Tau scores for NWOT metrics computed for 5 different randomly sampled
batches of size 16 on VOC YOLOBench models. The metric denoted as ”no head” was computed only for the layers contained in the neck
and backbone of YOLO models, not in the detection head. The second column shows Kendall-Tau scores for prediction with the mean ZC
metric values averaged over the 5 batches.

ZC metric global τ global τ (prediction with mean ZC value)
NWOT 0.7839 (0.0159) 0.7895
NWOT (pre-act) 0.8402 (0.0191) 0.8486
NWOT (pre-act, no head) 0.8472 (0.0194) 0.8570



Intel
CPU

Nano
GPU

VIM3
NPU

ARM
CPU

CPU (Intel, OpenVINO)

GPU (Jetson Nano, onnxRT)

NPU (Khadas VIM3)

ARM (RasPi4, TFLite FP32)

1 0.92 0.72 0.94

0.92 1 0.77 0.9

0.72 0.77 1 0.71

0.94 0.9 0.71 1

0.8

0.9

1.0

Figure S3. Correlation matrix (Kendall-Tau scores are shown) for latency values on 4 hardware platforms/runtimes considered in YOLOBench.

Table S5. Example YOLO-PAN-C3 models with timm backbones identified in the NWOT-latency Pareto frontier, with pre-activation
NWOT score computed on the VOC dataset. Latency values are measured on Raspberry Pi 4 ARM CPU with TFLite (FP32), batch size 1.

Model name Input resolution Raspi4 CPU la-
tency, sec

NWOT (pre-act)

yolo pan efficientnet b4 480 1.72 511.84
yolo pan tf efficientnet b4 ap 480 1.71 511.77
yolo pan gc efficientnetv2 rw t 480 1.41 508.73
yolo pan tf efficientnet lite4 480 1.08 506.67
yolo pan fbnetv3 d 480 0.71 502.71
yolo pan tf efficientnet lite1 480 0.61 493.48
yolo pan efficientnet lite1 480 0.61 493.32
yolo pan mobilenetv2 110d 480 0.54 480.92
yolo pan mobilenetv2 075 480 0.45 480.14
yolo pan tf mobilenetv3 large 075 480 0.45 468.85
yolo pan mobilenetv2 035 480 0.37 457.41
yolo pan tf mobilenetv3 small minimal 100 480 0.36 451.10

Table S6. COCO test mAP values and inference latency on Raspberry Pi 4 CPU (TFLite with XNNPACK backend, FP32) for YOLOv8s vs.
a model identified from the NWOT-latency Pareto frontier (YOLO-FBNetV3-D-PAN). For mAP values, the mean and standard deviation
over three random seeds are shown. For inference time, mean and standard deviation of inference time over 5 runs (each one 100 iterations)
are shown.

Model APtest
50−95 APtest

50 APtest
75 APtest

S APtest
M APtest

L Latency, ms
YOLOv8s 43.17%

(0.12%)
60.53%
(0.09%)

46.5%
(0.08%)

22.7%
(0.14%)

47.13%
(0.17%)

57.0%
(0.22%)

1476.09
(1.49)

YOLOv8s-
HSwish

42.90%
(0.0%)

60.3% (0.0%) 46.30%
(0.0%)

22.46%
(0.09%)

47.0%
(0.08%)

56.39%
(0.08%)

1381.62
(7.34)

YOLO-
FBNetV3-D-
PAN

43.87%
(0.05%)

61.53%
(0.09%)

47.23%
(0.05%)

22.67%
(0.19%)

47.87%
(0.05%)

58.36%
(0.12%)

1355.21
(9.93)



10−1
0.30

0.35

0.40

0.45

0.50

0.55

0.60

SK
U

-1
10

k 
m

A
P 5

0
−

95

NVIDIA Jetson Nano (GPU, ORT FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Khadas VIM3 (NPU, INT16)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

Latency, sec (BS=1)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

SK
U

-1
10

k 
m

A
P 5

0
−

95

Intel CPU (OpenVINO, FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−1 100

Latency, sec (BS=1)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Raspberry Pi 4 (ARM CPU, TFLite FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

Figure S4. Pareto frontiers of YOLOBench models fine-tuned on the SKU-110k dataset (on several target resolutions) from COCO-pretrained
weights on 4 different hardware platforms. Each point represents a single model in the mAP-latency space, with the model family coded
with color and marker size (all YOLOv6-3.0 models are represented by the same color).



10−1

0.15

0.20

0.25

0.30

0.35

0.40

W
ID

ER
 F

A
C
E 

m
A
P 5

0
−

95

NVIDIA Jetson Nano (GPU, ORT FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

0.15

0.20

0.25

0.30

0.35

0.40
Khadas VIM3 (NPU, INT16)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

Latency, sec (BS=1)

0.15

0.20

0.25

0.30

0.35

0.40

W
ID

ER
 F

A
C
E 

m
A
P 5

0
−

95

Intel CPU (OpenVINO, FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−1 100

Latency, sec (BS=1)

0.15

0.20

0.25

0.30

0.35

0.40
Raspberry Pi 4 (ARM CPU, TFLite FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

Figure S5. Pareto frontiers of YOLOBench models fine-tuned on the WIDER FACE dataset (on several target resolutions) from COCO-
pretrained weights on 4 different hardware platforms. Each point represents a single model in the mAP-latency space, with the model family
coded with color and marker size (all YOLOv6-3.0 models are represented by the same color).



10−1

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
O

C
O

 m
A
Pv 5a 0l −

95

NVIDIA Jetson Nano (GPU, ORT FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Khadas VIM3 (NPU, INT16)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−2 10−1

Latency, sec (BS=1)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
O

C
O

 m
A
Pv 5a 0l −

95

Intel CPU (OpenVINO, FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

10−1 100

Latency, sec (BS=1)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Raspberry Pi 4 (ARM CPU, TFLite FP32)

v3 models

v4 models

v5 models

v6 models

v7 models

v8 models

Figure S6. Pareto frontiers of YOLOBench models trained on the COCO dataset (640x640 image resolution) and validated on several target
image resolutions on COCO minival (without additional fine-tuning) on 4 different hardware platforms. Each point represents a single model
in the mAP-latency space, with the model family coded with color and marker size (all YOLOv6-3.0 models are represented by the same
color).



0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

VOC dataset, Raspi4 CPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

SKU-110k dataset, Raspi4 CPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0
D

ep
th

 fa
ct

or

COCO dataset, Raspi4 CPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

WIDER FACE dataset, Raspi4 CPU

Figure S7. Statistics of model scaling parameters (depth factor, width factor, input resolutions) in Pareto-optimal models on 4 different
datasets with latency measured on the Raspberry Pi 4 ARM CPU (TFLite, FP32). The size of each point (circle) is proportional to the
number of models for that parameter combination.



0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

COCO dataset, Khadas VIM3 NPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

SKU-110k dataset, Khadas VIM3 NPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0
D

ep
th

 fa
ct

or

VOC dataset, Khadas VIM3 NPU

0.33 0.67 1.0
Depth factor

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.25

0.5

0.75

1.0

W
id

th
 fa

ct
or

160 224 288 352 416 480
Input resolution (px)

0.33

0.67

1.0

D
ep

th
 fa

ct
or

WIDER FACE dataset, Khadas VIM3 NPU

Figure S8. Statistics of model scaling parameters (depth factor, width factor, input resolutions) in Pareto-optimal models on 4 different
datasets with latency measured on Khadas VIM3 NPU (INT16). The size of each point (circle) is proportional to the number of models for
that parameter combination.



0.3 0.4 0.5 0.6
VOC mAP50− 95

(trained from scratch for 100 epochs)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
O

C
O

 m
A
P 5

0
−

95
(n

o 
fin

e-
tu

ni
ng

)
Pearson score: 0.971, Kendall-Tau score: 0.858

0.3 0.4 0.5 0.6
VOC mAP50− 95

(trained from scratch for 100 epochs)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

V
O

C
 m

A
P 5

0
−

95

Pearson score: 0.969, Kendall-Tau score: 0.847

0.3 0.4 0.5 0.6
VOC mAP50− 95

(trained from scratch for 100 epochs)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

SK
U

-1
10

k 
m

A
P 5

0
−

95

Pearson score: 0.893, Kendall-Tau score: 0.742

0.3 0.4 0.5 0.6
VOC mAP50− 95

(trained from scratch for 100 epochs)

0.10

0.15

0.20

0.25

0.30

0.35

0.40
W

ID
ER

 F
A
C
E 

m
A
P 5

0
−

95

Pearson score: 0.902, Kendall-Tau score: 0.721

Figure S9. Scatter plots of mAP50−95 values obtained on 4 YOLOBench datasets for models fine-tuned from COCO-pretrained weights (for
all datasets except COCO) vs. mAP50−95 of models trained on the VOC dataset from scratch for 100 epochs. High correlation of target
metric and mAP of VOC training from scratch is observed for several datasets.

Table S7. COCO minival mAP and inference latency on Raspberry Pi 4 CPU (TFLite with XNNPACK backend, FP32) for YOLOv8s vs. a
model identified from the NWOT-latency Pareto frontier (YOLO-FBNetV3-D-PAN). Mean and standard deviation of inference time over 5
runs (each one 100 iterations) are shown. The input image resolution used was 640x640, batch size = 1 for latency measurements. Models
were trained for 300 epochs, with batch size = 64.

Model COCO mAPval
50−95 Raspberry Pi 4 ARM CPU latency, ms

YOLOv8s 43.64% 1476.09 (1.49)
YOLOv8s-HSwish 43.55% 1381.62 (7.34)
YOLO-FBNetV3-D-PAN 44.63% 1355.21 (9.93)
YOLO-FBNetV3-D-PAN-ReLU 44.07% 1344.50 (8.06)



0 5000 10000 15000

GradNorm

0.4

0.5

0.6

0.7

V
O

C
 m

A
P 5

0
−

95

−32.4 −32.2 −32.0

JacobCov

0.4

0.5

0.6

0.7

0 1 2

SynFlow 1e7

0.4

0.5

0.6

0.7

1000 2000

ZiCo

0.4

0.5

0.6

0.7

0 2 4

#params 1e7

0.4

0.5

0.6

0.7

V
O

C
 m

A
P 5

0
−

95

0 2 4

MACs 1e11

0.40

0.45

0.50

0.55

0.60

0.65

0.70

100 200 300

Zen

0.4

0.5

0.6

0.7

350 400 450

NWOT (pre-act)

0.4

0.5

0.6

0.7

Figure S10. Scatter plots of zero-cost predictor values computed on randomly initialized YOLOBench models vs. mAP50−95 of these models
fine-tuned on VOC from COCO-pretrained weights.

8 16 32
Batch size

0.81

0.82

0.83

0.84

0.85

0.86

0.87

G
lo

ba
l K

e
nd

al
l-

Ta
u 

co
ef

fic
ie

nt
co

m
pu

te
d

 o
n 

V
O

C
 m

od
e

ls

data split
train

test

Figure S11. Robustness of pre-activation NWOT estimator in predicting mAP50−95 values of VOC models in YOLOBench. Shown is
Kendall-Tau score dependence on the batch size, as well as the data, split used to sample the batch (training (augmented) data vs. testing data
(no augmentations)). The dotted vertical line corresponds to the performance of mAP50−95 VOC in training from scratch used as a predictor.



0.0 0.1 0.2 0.3 0.4 0.5
Candidate pool size (% of the dataset)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e 

of
 P

ar
et

o 
m

od
el

s 
fo

un
d 

(r
e

ca
ll)

VOC dataset, NVIDIA Jetson Nano GPU

Fisher

GradNorm

JacobCov

Plain

SNIP

SynFlow

ZiCo

GraSP

L2 norm

#params

MACs

NWOT

NWOT (pre-act)

Zen

VOC training
from scratch

Figure S12. Percentage of all actual Pareto models (recall) found in the candidate pools consisting of first N (N from 1 to 5) ZC-based
Pareto sets on the VOC dataset with latency measured on the Jetson Nano GPU (ORT, FP32). Data shown for all zero-cost estimators
considered in this study, in addition to mAP50−95 values of VOC training from scratch used as a performance predictor.

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
in

 th
e 

po
ol

 (
p

re
ci

si
o

n)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

Khadas VIM3 NPU

0.2 0.4 0.6 0.8
Candidate pool size
(% of the dataset)

0.2

0.3

0.4
Raspi4 ARM CPU

VOC training
from scratch

NWOT

NWOT (pre-act)

MACs

Figure S13. Percentage of Pareto models out of all models found in the candidate pools (precision) consisting of first N (N from 1 to 5)
ZC-based Pareto sets on the VOC dataset depending on the hardware platform and performance predictor used.



0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
in

 th
e 

po
ol

 (
p

re
ci

si
o

n)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

1.0

Khadas VIM3 NPU

0.2 0.4 0.6 0.8
Candidate pool size
(% of the dataset)

0.6

0.8

1.0

Raspi4 ARM CPU

VOC training
from scratch

NWOT

NWOT (pre-act)

MACs

Figure S14. Percentage of all actual Pareto models (recall) found in the candidate pools consisting of first N (N from 1 to 5) ZC-based
Pareto sets on the VOC dataset depending on the hardware platform and performance predictor used. Models with different input resolutions
but the same architecture as treated as a single model.

0.2 0.4
Candidate pool size
(% of the dataset)

0.4

0.6

0.8

1.0

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
in

 th
e 

po
ol

 (
p

re
ci

si
o

n)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

1.0

Khadas VIM3 NPU

0.2 0.4 0.6 0.8
Candidate pool size
(% of the dataset)

0.3

0.4

0.5

0.6

0.7
Raspi4 ARM CPU

VOC training
from scratch

NWOT

NWOT (pre-act)

MACs

Figure S15. Percentage of Pareto models out of all models found in the candidate pools (precision) consisting of first N (N from 1 to 5)
ZC-based Pareto sets on the VOC dataset depending on the hardware platform and performance predictor used. Models with different input
resolutions but the same architecture as treated as a single model.

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
fo

un
d 

(r
e

ca
ll)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.00

0.25

0.50

0.75

Khadas VIM3 NPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.0

0.2

0.4

0.6

Raspi4 ARM CPU

MACs

Intel CPU latency

Nano GPU latency

VIM3 NPU latency

Raspi4 CPU latency

Figure S16. Percentage of all actual Pareto models (recall) found in the candidate pools consisting of first N (N from 1 to 5) ZC-based
Pareto sets on the VOC dataset with pre-activation NWOT score as accuracy estimator depending on the hardware platform and latency
proxy used. Aside from the actual on-device latency, other latency proxies considered are MAC count and latency on other devices.



0.2 0.4
Candidate pool size
(% of the dataset)

0.1

0.2

0.3

0.4

0.5

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
in

 th
e 

po
ol

 (
p

re
ci

si
o

n)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.0

0.2

0.4

0.6

Khadas VIM3 NPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.05

0.10

0.15

0.20

0.25

Raspi4 ARM CPU

MACs

Intel CPU latency

Nano GPU latency

VIM3 NPU latency

Raspi4 CPU latency

Figure S17. Percentage of Pareto models out of all models found in the candidate pools (precision) consisting of first N (N from 1 to 5)
ZC-based Pareto sets on the VOC dataset with pre-activation NWOT score as accuracy estimator depending on the hardware platform and
latency proxy used. Aside from the actual on-device latency, other latency proxies considered are MAC count and latency on other devices.

0.2 0.4
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

P
er

ce
nt

ag
e 

of
 P

ar
et

o
m

od
el

s 
fo

un
d 

(r
e

ca
ll)

Jetson Nano GPU

0.2 0.4
Candidate pool size
(% of the dataset)

0.4

0.6

0.8

1.0

Khadas VIM3 NPU

0.2 0.4 0.6 0.8
Candidate pool size
(% of the dataset)

0.2

0.4

0.6

0.8

Raspi4 ARM CPU

VOC training
from scratch

NWOT

NWOT (pre-act)

MACs

Figure S18. Percentage of all actual Pareto models (recall) found in the candidate pools consisting of first N (N from 1 to 5) ZC-based
Pareto sets on the SKU-110k dataset with latency measured on the Jetson Nano GPU (ORT, FP32). Data shown for MAC count and NWOT
score as performance estimators, in addition to mAP50−95 values of VOC training from scratch used as a performance predictor on the
SKU-110k dataset.


