
A. Activation quantization

In section 3.3, we formulated the QBitOpt optimization
objective in terms of network parameters ⇥. However, we
commonly also quantize the activations in neural network
quantization. Fortunately, our method extends easily to ac-
tivations too, as it is trivial to compute quantization sensi-
tivities for activations. As a reminder, in section 3.1, we
defined the Hessian diagonal h as an example of quantiza-
tion sensitivity. By computing the hessian sensitivities with
respect to activations, we can infer bitwidth allocation for
activation as per equation 9.

Considering an arbitrary neural network F with L layers
as a composition of functions:

F (x) = [fL � fL�1 � · · · � f2 � f1] (x), (16)

we can compute the sensitivity of the ith activation zi =
[fi � · · · � f1] (x) by simply considering the sub-network:

Fi+1 = [fL � fL�1 � · · · � fi+1] (17)

The hessian sensitivity is now given by:

Ex⇠D

"
@2

@z2
i

L (Fi+1(z))

����
z=zi

#
(18)

The sensitivity can be computed over the full dataset D
using an exponential moving average, as described in sec-
tion 3.1.1. In practice, one may consider applying sepa-
rate constraints to the parameter and activation quantizer
bitwidth. We leave this investigation for future work.

B. Inner bitwidth minimization

For convenience, we restate (7) here:

min
⇥

min
b

E✏


L
✓
⇥+

↵

2b � 1
✏

◆�
s.t. b⇡(b) � 0. (19)

As presented in the main text(cf. section 3.1), we aim to
solve an approximation to the inner minimization. The so-
lution to this is then used to take a gradient step for the
outer minimization. First, let � = ↵/(2b � 1). Then we
approximate the objective using a second-order Taylor ap-
proximation:

E✏ [L(⇥+ �✏)]

⇡ E✏


L(⇥) + (�✏)>r⇥L(⇥) +

1

2
(�✏)>r2

⇥L(⇥)(�✏)

�

(20)
The first term is constant with respect to b and the second
term equals zero as E✏[✏] = 0. This leaves the following

optimization objective:

1

2
E✏

⇥
(�✏)>

⇥
r2L(⇥)

⇤
(�✏)

⇤

=
1

2
Tr

�
E✏[(�✏)

> ⇥
r2L(⇥)

⇤
(�✏)

⇤
}

(a)
=

1

2
Tr

�
E✏[(�✏)(�✏)

>⇤ ⇥r2L(⇥)
⇤
}

=
1

2
Tr

�
diag(�)E✏[✏✏

>⇤ diag(�)
⇥
r2L(⇥)

⇤
}

(b)
=

1

24
Tr

�
diag(�)diag(�)

⇥
r2L(⇥)

⇤ 

=
1

24
Tr

�
diag(�)2

⇥
r2L(⇥)

⇤ 

=
1

24

|⇥|X

i

⇥
r2L(⇥)

⇤
ii
�2ii.

(21)

Here, (a) uses Tr(A>B) = Tr(BA>) where A and B are
two m ⇥ n real matrices and (b) follows from E[✏✏>] =
I/12. Finally, dropping the multiplicative constants that do
not affect the minimization problem and re-substituting �,
we obtain our optimization problem:

b⇤ = min
b

h>
✓

↵

2b � 1

◆2

, hi = r2L(⇥)ii

subject to b⇡(b) � 0.

(22)

C. Experimental configuration

C.1. Optimization

All experiments are trained on NVIDIA GPUs using
Python 3.8.10, PyTorch v1.11, and Torchvision v0.12. We
found that using separate optimizers for the model (SGD)
and quantization parameters (Adam) leads to stabler train-
ing and higher accuracy across architectures and methods.
The optimizer and learning rate schedules for both optimiz-
ers can be found in table 7. Phase-1 refers to QAT with
bitwidth reallocation using QBitOpt, whereas in phase-2,
we fix the quantizers’ bitwidth and fine-tune with QAT. At
the end of each training epoch, we re-estimate the batch-
normalization statistics using 50 batches of training data, as
per [30].

C.2. QBitOpt configuration

During phase-1 of training, we calculate an exponential-
moving average of each quantizer’s FIT sensitivity Sq with
a momentum of 0.9, as shown in algorithm 1. Because sen-
sitivities change quite smoothly during training (see fig. 2),
we decided to compute them only every two training itera-
tions to reduce training time. We infer a new bitwidth allo-
cation by solving the optimization every ⌧ = 250 training
iterations. We found that QBitOpt is not very sensitive to
this hyperparameter, and decreasing ⌧ did not lead to better



Model W/A Epochs SGD - Model parameters Adam - Quant. parameters
Phase-1 Phase-2 LR ⌘min Warmup WD LR WD

MobileNetV2 4/4 15 15 0.0033 3.3⇥10�6 - 1.0⇥10�5 1.0⇥10�5 0.0
3/3 15 15 0.01 1.0⇥10�5 - 1.0⇥10�5 1.0⇥10�5 0.0

EfficientNet- 4/4 15 15 0.0033 3.3⇥10�6 - 1.0⇥10�5 1.0⇥10�5 0.0
Lite 3/3 15 15 0.01 1.0⇥10�5 - 1.0⇥10�5 1.0⇥10�5 0.0

MobileNetV3- 4/4 20 20 0.07 7.0⇥10�5 4 1.0⇥10�5 1.0⇥10�5 0.0
Small 3/3 20 20 0.05 5.0⇥10�5 4 0.0 1.0⇥10�5 0.0

Table 7: Optimization configuration: all model parameters (except for the quantization parameters) are optimized using SGD
with a momentum of 0.9 and a cosine annealing schedule for learning rate. We use a separate Adam optimizer with a constant
learning rate for the quantization parameters. WD: weight decay; Warmup: number of epoch for linear learning rate warmup;
⌘min: final learning rate of cosine decay.

Figure 2: FIT sensitivities progression over time (y-axis in
logarithmic scale)

results. In fact, given that we learn the quantization range
↵ using gradients, ⌧ should be large enough to allow the
quantization range to adapt to the latest bitwidth allocation.

C.3. Model checkpoints

• MobileNetV2: https://github.com/tonylins/
pytorch-mobilenet-v2

• MobileNetV3-Small: https://pytorch.org/vision/0.12/
models

• EfficientNet-Lite: https://github.com/huggingface/
pytorch-image-models

D. Additional experimental results

D.1. Differential quantization (DQ)

In tables 9, 8 & 10, we present the results of our hyper-
parameter search over the regularization strength � in the
objective of differential quantization (DQ) [40]. In con-
trast to QBitOpt, the method fails to reach the target av-
erage bitwidth exactly. Notably, for MobileNetV3-Small,
we have to extend the grid search significantly to achieve

Method Avg. bits Acc. (%)

DQ [� = 0.3] 4.299 64.38
DQ [� = 0.5] 4.187 63.87
DQ [� = 0.7] 4.150 63.92
DQ [� = 1.0] 4.093 63.61

DQ [� = 1.4] 4.065 63.56
DQ [� = 2.0] 4.065 63.42
DQ [� = 3.0] 4.037 63.44
DQ [� = 5.0] 4.028 63.44
DQ [� = 8.0] 4.009 63.27

QBitOpt 4.0 64.23

DQ [� = 0.3] 3.542 60.45
DQ [� = 0.5] 3.402 59.62
DQ [� = 0.7] 3.290 58.48
DQ [� = 1.0] 3.215 58.33

DQ [� = 1.4] 3.159 57.95
DQ [� = 2.0] 3.121 57.63
DQ [� = 3.0] 3.084 56.86
DQ [� = 5.0] 3.056 55.70
DQ [� = 8.0] 3.037 56.89

QBitOpt 3.0 57.14

Table 8: MobileNetV3-Small on ImaneNet. DQ [40] re-
sults for different regularization strength �, including our
QBitOpt result. The values in bold are used in table 5.

a satisfactory average bitwidth solution. This study demon-
strates the power of QBitOpt that does not really on a scalar-
ized multi-objective loss. Instead, QBitOpt guarantees the
exact constraint, enabling the user to focus on tuning the
QAT hyperparameters and achieve the highest task perfor-
mance under the specified constraint. Please note that the
results in bold are shown in the final results table 5.



Method Avg. bits Acc. (%)

DQ [� = 0.3] 4.210 69.09
DQ [� = 0.5] 4.143 68.59
DQ [� = 0.7] 4.105 68.57
DQ [� = 1.0] 4.076 68.50

DQ [� = 1.4] 4.067 68.51
DQ [� = 2.0] 4.038 68.80

QBitOpt 4.0 69.71

DQ [� = 0.3] 3.286 66.33
DQ [� = 0.5] 3.229 65.44
DQ [� = 0.7] 3.124 64.78
DQ [� = 1.0] 3.114 64.94

DQ [� = 1.4] 3.086 64.27
DQ [� = 2.0] 3.048 64.18

QBitOpt 3.0 65.65

Table 9: MobileNetV2 on ImaneNet. DQ [40] results for
different regularization strength �, including our QBitOpt
result. The values in bold are used in table 5.

Method Avg. bits Acc. (%)

DQ [� = 0.3] 4.242 72.48
DQ [� = 0.5] 4.141 72.61
DQ [� = 0.7] 4.111 72.50
DQ [� = 1.0] 4.081 72.14

DQ [� = 1.4] 4.061 72.16
DQ [� = 2.0] 4.051 72.20

QBitOpt 4.0 73.43

DQ [� = 0.3] 3.354 70.03
DQ [� = 0.5] 3.212 69.24
DQ [� = 0.7] 3.141 68.95
DQ [� = 1.0] 3.121 68.86

DQ [� = 1.4] 3.101 68.48
DQ [� = 2.0] 3.051 68.33

QBitOpt 3.0 70.04

Table 10: EfficientNet-Lite on ImaneNet. DQ [40] re-
sults for different regularization strength �, including our
QBitOpt result. The values in bold are used in table 5.

D.2. Effect of ↵-factor in exponential moving aver-

age on sensitivity estimation

In Section 3.1.1, it was mentioned that an exponential
moving average (EMA) is used to estimate sensitivities over
multiple batches during training. Specifically, given the ob-
served sensitivity et at timestep t and ↵ 2 (0, 1], the EMA

Et is defined as:

Et = (1� ↵)Et�1 + ↵et, E1 = e1. (23)

The choice of ↵ determines how much weight is put on past
observations compared to new observations. E.g., when
↵ = 1, only the latest observations are used. Figure 3
shows results for different architectures trained using var-
ious values for ↵ 2 {0.05, 0.25, 0.5, 0.75, 0.9, 1.0}. This
shows that the choice of ↵ is insignificant, and one could
choose not to include the exponential moving average esti-
mator. This result agrees with the progression of FIT esti-
mates shown in Figure 2, where we showed that sensitivities
are relatively stable during training. However, since this fig-
ure also shows several outliers, we use the EMA estimator
for the results presented in the main text.

Figure 3: Accuracy obtained for different settings of ↵
for the Exponential Moving Average sensitivity estimation.
The whiskers, if visible, show the standard deviation over
three seeds.

D.3. Bitwidth allocation during training

When using QBitOpt, parameters and activation
bitwidths/quantization levels change during training. Fig-
ure 4 shows the bitwidth allocation over the course of train-
ing for a random subset of layers.

D.4. QBitOpt bitwidth allocation

In figure 5, we illustrate the final bitwidth allocation re-
sulting from QBitOpt on MobileNetV2 and MobileNetV3-
Small with a 3-bit average target bitwidth. In both cases,
QBitOpt allocated more bits in the first and last layers of
the networks, which is consistent with empirical observa-
tions from existing literature. In addition, in MobileNetV2,
we also observe that QbitOpt tends to assign higher bitwidth
to activations compared to weights.



(a) Bitwidth allocation using greedy integer bit optimization

(b) Bitwidth allocation using fractional bit optimization

Figure 4: Bitwidth allocation during training



Figure 5: Final bitwidth allocation for MobileNetV2 and MobileNetV3-Small using QBitOpt with 3-bit average target
bitwidth 3/3MP.


