Appendices

A. Related works on object detection

Recently, two-stage detectors [10, 25] have been per-
formance state-of-the-art.  They first generate class-
independent region proposals by using the region proposal
network, then classify them by using detection heads. How-
ever, they have the drawbacks of long inference time and
complex model architecture. To cope with this drawback,
one-stage detectors [24, 19] directly predict object cate-
gories and bounding boxes (that is, anchors) at each loca-
tion of feature maps that are generated by the backbone net-
work. Although this end-to-end approach has the advan-
tage of faster inference, it requires hyper-parameter tuning
to find suitable anchors and complex model architecture for
increasing the number of anchors.

B. Training details

| Stage | Search space, (D,W,E) ‘
1 {0,1,2} x {1.0} x {0.35}

{0,1,2} x {0.8,1.0} x {0.35}

{0,1,2} x {0.65,0.8, 1.0} x {0.35}

{0,1,2} x {0.65,0.8,1.0} x {0.25,0.35}
{0,1,2} x {0.65,0.8,1.0} x {0.2,0.25,0.35}
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Table A1. Search space for OFA PS.

Stage 1 1213 1(4]5
Epochs || 70 | 5 | 65| 5 | 65

Table A2. Training schedule for OFA progressive shrinking.

The search space and training schedule for each OFA
progressive shrinking (PS) stage are detailed in Table Al
and Table A2. For training, we used the Adam optimizer
[18]. Settings for each dataset are detailed as follows.

Pascal VOC: The initial learning rate was set to Se-4,
with the step scheduler for learning rate decay. The learning
rate was decayed by 0.1 at 45 and 60 epochs. The training
epochs for fullnet were 70. The training batch size was 32.

COCO: The initial learning rate was set to Se-4, with
the cosine scheduler for learning rate decay. The fullnet
training epochs were 140. The training batch size was 64.

C. Evalution of path filter

Our path filter is designed to predict the relative per-
formance of paths. It is more flexible than the path filter
proposed in the prior work [15], i.e., once the path filter is
trained, a different pruning ratio can be applied. Here, we

Pruning ratio || Accuracy | Precision | Recall |

0.2 0.940 0.850 0.180
0.3 0.910 0.869 0.252
0.4 0.890 0.864 0.368

Table A3. Path filter performance for predicting the weakest
Tpath % paths on different pruning ratios. Our path filter can be
used for different pruning ratios.
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Figure Al. The performance of the optimal architecture a*, for
object detection on the Pascal VOC (left) and the COCO (right)
dataset. Our method outperforms OFA (w/o progressive shrinking,
PS) across all given FLOP bounds. CompOFA* performs well
only for larger FLOPs.

demonstrate that our path filter performs well when differ-
ent pruning ratios are adopted. Table A3 presents the path
filter performance to predict the weakest 7,1 % paths. For
all pruning ratios, the precision is more than 0.7. The per-
formance, especially for precision and recall, improves for
larger pruning ratios because classification is easier when
the number of positive and negative samples is similar. The
results confirm the utility of our path filter for different
pruning ratios.

D. Comparision with prior NAS approaches
under the same GPU costs

Epochs Epochs
Method (Pascpal VOC) (C%CO)
OFA (w/o PS) 147 147
CompOFA* 147 147
Ours 70 140

Table A4. Training schedule for comparison under the same GPU
costs.

Figure A1 presents the evolution search results for train-
ing the supernet with OFA (w/o PS) and CompOFA* for
the same GPU costs with the proposed method. The train-
ing schedule is summarized in Table A4. OFA (w/ PS) is
trained for the same schedule as results in Figure 5 and



presented for reference. For both Pascal VOC and COCO,
training more epochs improves the accuracy of small paths
for OFA, however, it degrades the accuracy for large paths.
Moreover, the accuracy of small paths for CompOFA* is
smaller than that of ours. This infers the limitation of hand-
crafted search space pruning.



