
A. Appendix
A.1. PDEs and Data

We train our neural networks on datasets that contain so-
lutions u for different boundary and initial conditions so
that it is able to generalize across these conditions, without
the need for retraining. Datasets are obtained as follows:

• Generate a pair of initial conditions u0(x) and bound-
ary conditions B[u](t,x) = 0 and evaluate these val-
ues on the relevant subsets of our grid T × X .

• Use a conventional high-accuracy numerical solver to
obtain u(t,x) for all (x, t) ∈ T × X .

• Pick a series of input indices, and subsequent target
indices, from the time interval T , starting from a pos-
sibly randomly chosen location. The values of u(·,x)
at these indices will form the inputs and targets in our
training scheme.

Burger’s equation The Burger’s equation is a common
PDE that arises in fluid dynamics and nonlinear wave phe-
nomena. In 1D the PDE, given the domain that we use, is
given by
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where u represents the speed of the fluid at a certain place
and time, and ν is the viscosity coefficient. The Burger’s
equation describes the conservation of mass and momentum
in a one-dimensional fluid flow, taking into account both
convection effects (u∂u

∂x ) and diffusion effects (ν ∂2u
∂x2 ).

We use the 1D Burger’s equation dataset from [27]. It
is defined with a spatial resolution of 1024, with periodic
boundary conditions, and temporal resolution of 200. The
dataset consists of 9000 train and 1000 test trajectories
started from samples of different initial conditions that
are formed using a superposition of randomly chosen
sinusoidal waves. A viscosity coefficient of ν = 0.001 is
used.

Darcy’s Law The steady state 2D Darcy flow equation is
a partial differential equation (PDE) that describes the flow
of fluid through a porous medium. We use the PDE and
domain expressed as

−∇ (a(x)∇u(x)) = f(x), x ∈ (0, 1)2, (10)

u(x) = 0, x ∈ ∂(0, 1)2,

where a(x) is a diffusion coefficient based on the per-
meability of the porous medium and the dynamic viscosity
of the fluid, u(x) represents the pressure of the fluid, and f

represents any external sources or sinks of fluid within the
domain. We set f to constant 1 and train an operator that
maps a(x) to the solution u(x).
We use the Darcy flow dataset from [17]. It is defined on
a spatial grid of 421 × 421. We use 1024 train elements
((a(x), u(x)) pairs) and 100 validation elements. Details
for how a(x) is randomly generated for each data element
can be found in [6].

Navier-Stokes equation The 2D Navier-Stokes Equation
and domain that we use for our experiments is given by

∂v(x, t)

∂t
= −v(x, t) · ∇v(x, t) + ν∇2v(x, t) (11)

− ∇p(x, t) + f(x), x ∈ (0, 32)2, t ∈ (0, 21].

It describes the flow of a fluid in terms of its velocity com-
ponents v, the viscosity ν, and a buoyancy term f . We as-
sume incompressibility, so ∇ · v = 0, and Dirichlet bound-
ary conditions (v = 0).
The dataset is taken from [9]. A viscosity of ν = 0.01 is
used, and a buoyancy factor of f = (0, 0.5)T . While gen-
erating the data, the pressure field p is solved first, before
subtracting its spatial gradients. In addition to the two ve-
locity field components a scalar field s(x) is introduced that
is being transported through the velocity field. Its evolution
is determined by

∂s

∂t
= −v(x, t)∇s, (12)

with Neumann boundaries ∂s
∂x = 0 on the edge of the do-

main. For more details, see [9, 4]. The full dataset consists
of 2080 train samples and 1088 test samples.

Diffusion-Sorption Equation The diffusion-sorption
equation models a diffusion process that is retarded by a
sorption process. The 1D PDE is given by:
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x ∈ (0, 1) t ∈ (0, 500], (13)

where D = 0.0005 is the effective diffusion coefficient, and
R(u) = 1 + 2.16u−0.126 is the retardation factor hindering
the diffusion process. This equation is applicable to, for ex-
ample, groundwater contaminant transport.
The boundary conditions are u(t, 0) = 1 and u(t, 1) =
D ∂u

∂x (t, 1) The dataset, taken from [27], is discretized into
1024 spatial steps and 501 time steps. There are 9000 train
trajectories and 1000 test trajectories, each based on differ-
ent randomly generated initial conditions using u(0, x) ∼
U(0, 0.2) for x ∈ (0, 1).



Hyperparams DiffSorp Burgers’ N.S. Darcy

Epochs 200 200 100 400
QAT Epochs 100 50 50 100
Batch size 50 50 16 4
Learning rate 1e-3 1e-3 1e-3 5e-4
Weight decay 1e-6 1e-6 1e-6 1e-6
QAT learn. rate 1e-4 1e-4 1e-4 1e-4
Input steps 5 5 4 1
Output steps 5 5 1 1
Train steps 10 20 1 1
Test steps 10 20 1 1
Subsample t 2 5 1 1
Subsample x 32 16 2 8

Table 3: Dataset-related hyperparameters for all models per
experiment. The steps refer to consecutive time steps for the
time-dependent PDEs, while the Darcy PDE can optionally
be interpreted as having inputs at t = 0 and outputs at t = 1.

A.2. Hyperparameter specifications

We summarize the hyperparameters used per dataset in
Table 3.

In the second session of experiments we did not subsam-
ple the spatial grid, except for the Darcy dataset for which
we subsampled every 2 grid points. The first three scaling
levels applied in figure 4 correspond (from left to right) to
0.01, 0.02, 0.05 for the DiffSorp data, 0.02, 0.05, 0.1 for the
Burgers data, 0.1, 0.2, 0.5 for the Navier-Stokes data and
0.05, 0.1, 0.2 for the Darcy data. The loss measure used in
all datasets is the MSE as described in equation 5. How-
ever, for the Darcy dataset, we also normalize each element
in the sum by dividing by the squared targets, and take the
squared root of the resulting sum.

The UNet is taken from [9], but in order to make its size
comparable to the other models we use 16 hidden channels
for the Navier-Stokes dataset and 8 hidden channels for the
other datasets. The FNO model is taken from [17], using 4
layers, a width of 128, 32 modes for the 2D datasets, and 16
modes for the 1D datasets. The Transformer is taken from
[6]. It uses 6 encoder layers, 128 hidden channels and a
Galerkin attention type for the 2D datasets, and 4 encoder
layers, 32 hidden channels and Fourier attention type for the
1D datasets.

A.3. Inference Cost Calculation Details

We describe a few differences compared to the regular
deepspeed library [22]. Most standard deep learning opera-
tions rely on big matrix multiplications and as such deep-
speed outputs the number of MACs used in their corre-
sponding modules. On the other hand, there are some op-
erations that have no MACs, and deepspeed simply outputs

the number of FLOPs. However, because we care to differ-
entiate addition and multiplication operations for our proxy
measure of inference cost, we add some manual changes
to deepspeed so that multiplications are properly accounted
for.

• We assume bilinear interpolation to be three times the
cost of linear interpolation, and for linear interpolation
we assume 2 multiplications and 4 additions per output
point.

• The FNO model uses Fast Fourier Transforms, which
are not encountered for in deepspeed. To be able to
take these into account in our proxy for model in-
ference cost we assume a complexity of N⌈log2 N⌉
(additions and multiplications), which we divide by 2
when the real-valued FFT is used.

• In deepspeed no MACs are assigned to the einsum op-
erator. Although it can in theory represent various dif-
ferent types of computations, in our code we only use
it for basic matrix multiplications (in the FNO model).
We thus change the deepspeed output accordingly.


