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Abstract

This paper introduces a novel benchmark to study the
impact and relationship of built environment elements on
pedestrian collision prediction, intending to enhance en-
vironmental awareness in autonomous driving systems to
prevent pedestrian injuries actively. We introduce a built
environment detection task in large-scale panoramic im-
ages and a detection-based pedestrian collision frequency
prediction task. We propose a baseline method that in-
corporates a collision prediction module into a state-of-
the-art detection model to tackle both tasks simultaneously.
Our experiments demonstrate a significant correlation be-
tween object detection of built environment elements and
pedestrian collision frequency prediction. Our results are
a stepping stone towards understanding the interdependen-
cies between built environment conditions and pedestrian
safety.

1. Introduction
Autonomous driving systems rely on their ability to

gather and interpret information from their surround-

ings [62], enabling them to anticipate future events and

make situation-aware decisions without compromising road

safety for all parties involved. A challenging task for au-

tonomous vehicles (AVs) is the detection of pedestrians and

other vulnerable road users to avoid pedestrian-motor vehi-

cle collisions. While much of the prior research has focused

on pedestrian-detection tasks, few studies have examined

the role of road infrastructure and built environment fea-

tures in improving pedestrian detection and thus reducing

*Equal contribution

Figure 1: STRIDE. Given specific city coordinates (left)

and the corresponding panoramic street view image (mid-

dle), we propose to predict the number of pedestrian colli-

sions in those coordinates (right) by detecting built environ-

ment features (middle).

the chance of pedestrian collisions. In particular, it is well

known that pedestrian safety is impacted by road design and

the built environment [74, 65, 21, 34, 28, 69, 42], includ-

ing objects that comprise defined pedestrian crossing areas

(e.g., crosswalks, stop lines, speed bumps), traffic control

(e.g., traffic signs, pedestrian signs, stop signs) and traffic

speed (e.g., road width, traffic lanes, trees, street lights).

However, the influence of these features on pedestrian

injuries can vary depending on the dynamics of road users

within specific geographical locations. Consequently, the

presence or absence of such features may have distinct ef-

fects in low and middle-income countries compared to high-

income ones [65]. Therefore, it is crucial to prioritize ad-

vancing autonomous driving systems that can generalize to

the unique characteristics of their environments worldwide.

Despite road features’ crucial role in pedestrian injuries,

limited research has explored the correlation between these

objects and pedestrian collision frequency using visual in-

formation extracted from the street-level scene. Existing

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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frameworks often rely on precomputed data about the street

environment or primarily focus on identifying and anticipat-

ing collisions rather than proactively preventing them. This

research gap underscores the need for a comprehensive ap-

proach that leverages visual cues from the street to analyze

the relationship between road features and pedestrian colli-

sion occurrences.

This paper introduces a novel dataset comprising more

than 18k Google Street View [3] panoramic images, an-

notated with bounding boxes for 27 categories of common

road environment objects that may affect pedestrian safety.

Furthermore, we calculate the true incidence of pedestrian

injuries for specific geographical points corresponding to

the images within the dataset by leveraging public historical

records from 2015 to 2021 from Bogota City in Colombia.

Most publicly available data for autonomous driving pri-

marily originates from European, Asian, or North Ameri-

can countries [20, 60, 94, 35, 55], thus leaving Latin Amer-

ican and African countries significantly underrepresented.

Therefore, focusing on the Latin American region bridges a

crucial gap and provides specific insights into these coun-

tries and their unique challenges. The geographic diver-

sity introduced by our dataset facilitates the development of

more inclusive and robust models for autonomous driving

and other related applications.

Thus, our approach addresses both the object detection

task and predicts the frequency of pedestrian collisions. We

introduce a baseline method that builds upon the state-of-

the-art model DINO [98]. Our model can estimate the num-

ber of pedestrian collisions associated with a given location

by leveraging actual visual features from the images and the

corresponding geographical coordinates.

Our main contributions can be summarized as follows:

1. We propose the task of automated pedestrian collision

prediction by considering the road-built environment

in a specific location.

2. We establish an experimental framework for study-

ing this problem in a city within the Latin American

context, including frequencies for pedestrian collisions

and detection labels for Google Street View panoramic

images.

3. We empirically demonstrate that by training a multi-

task model to detect objects in the urban built envi-

ronment with a potential influence on pedestrian in-

juries, we can improve the predicting capabilities of

the model.

To ensure the reproducibility of our results and to pro-

mote further research on predicting pedestrian collisions,

we make all the resources of this paper publicly available

on our project web page 1.

1https://github.com/BCV-Uniandes/STRIDE

2. Related Work

2.1. Built Environment Object Recognition in Au-
tonomous Driving

Object recognition for autonomous driving has been ex-

tensively studied. For instance, generic object detection

benchmarks like MS COCO [50], and PascalVOC [33]

include street images with annotated vehicles, pedestri-

ans, and some general road elements. More specifi-

cally, pedestrian detection is a pioneering and well-studied

task [22, 32, 26], explored with large and complex datasets

[100, 9, 61, 18, 46], and even with 3D detection and track-

ing approaches [31, 35]. Broader benchmarks also cover

detection of vehicles [27, 102, 12], traffic signs [27, 47, 30],

and axis-aligned vehicle detection [8, 12]. However, these

datasets focus mainly on dynamic agents and neglect the

importance of static road infrastructure elements for com-

prehensive scene understanding.

On the contrary, standard benchmarks for urban static

object identification include lane segmentation [81, 44],

lane markings detection [44, 47], and multiple traffic signs

detection [30]. Fine-grained urban scene parsing datasets

like [10, 70, 25] provide pixel-level semantic annotations

for street images, covering some static road infrastructure

and dynamic agents. CityScapes [20] and KITTY [2] of-

fer panoptic segmentation annotations, thus identifying in-

stances within some semantic classes. Mapillary Vistas [60]

extended this framework by including many more seman-

tic categories and using highly variable user-uploaded data.

BDD100K [94] extends these tasks through time by includ-

ing segment tracking in videos, while ApolloScape [78],

KITTI [35, 7, 6] and [80], focus on 3D point cloud segmen-

tation. However, most of these benchmarks have limited

classes for street infrastructure, often treating them as stuff

categories, unlike our benchmark, which explicitly identi-

fies and differentiates these objects to study their effect on

pedestrian collision frequency.

2.2. Panoramic Street View Benchmarks

Initial frameworks for wide field of view autonomous

driving tackle object detection of a few categories using

panoramic images [47, 76, 59]. Further approaches use

data gathered with fisheye and surround-view cameras an-

notated for semantic scene parsing [24, 92, 29, 43, 49], thus

introducing significant distortion and deformation caused

by this type of cameras. Other frameworks use synthetic

data [71, 83] for the same task, which generates a consider-

able gap for real-world applications.

Fine-grained frameworks offer pixel-wise annotations on

a few panoramas from annular lenses [84, 85] or Google

Street Views [87, 86, 40, 99, 63] as testing sets for do-

main adaptation. Recently, Mapillary Metropolis [52] in-

troduced the first large-scale panoramic panoptic segmenta-
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Figure 2: Number of labeled bounding boxes (y-axis) per class in each fold and their corresponding category name (x-axis).

tion benchmark with 360° panoramas of 4,000×8,000 res-

olution aligned with aerial images and 3D point clouds.

Similarly, the Waymo Panoramic Video Panoptic Segmen-

tation Dataset [53] used an extensive set of 220° panoramas

for panoptic segmentation and segment tracking. Despite

these advancements, many street infrastructure classes are

still disregarded in these benchmarks, and only Mapillary

Metropolis utilizes large panoramic images. On the con-

trary, our dataset considers multiple streets features cate-

gories on 4,000×13,312 images, surpassing any previous

panoramic benchmark in image size.

2.3. Street Collision Prediction Benchmarks

Existing methods for collision frequency prediction rely

primarily on tabular variables related to road properties,

street conditions, traffic volume, and environmental fac-

tors [15, 14, 11, 79, 103]. More complex approaches

incorporate historical collision records [17, 68], spatial

and temporal relations among city regions and time win-

dows [95, 77, 4, 96], and satellite images [56, 96]. Con-

versely, the US-Accidents benchmark [55, 54] provides in-

formation on the presence of general street components.

However, these frameworks rely heavily on alternative or

precalculated data rather than analyzing urban scene images

captured from street-level perspectives.

In contrast, computer vision-based approaches predom-

inantly employ detection and tracking methods to identify

vehicle crashes [82, 88, 90, 64, 73, 75, 39] or to track ve-

hicles and other agents to predict accidents and anomalies

[57, 58, 89, 1, 72, 91, 37, 36, 101, 48]. Similarly, some

frameworks estimate vehicle trajectories to anticipate col-

lisions [19, 16, 38]. Other alternative benchmarks utilize

reinforcement learning [5], forecasting in time series [41],

and causality recognition [93] to anticipate accidents. Con-

trarily, some datasets specifically target pedestrian safety

by predicting pedestrians’ intentions to cross [66, 67], and

some studies on this task have demonstrated that street in-

frastructure state considerably impacts pedestrian crossing

prediction capabilities [42]. However, no previous frame-

work has directly studied the relations between built envi-

ronment elements and collision prediction using computer

vision models.

Figure 3: Distribution of the number of bounding box
annotations per image. The figure shows the number

of images (y-axis) with a certain number of annotated in-

stances (x-axis). Our images contain a varying range of in-

stances with a similar distribution among folds.

3. STRIDE Dataset

We introduce the Street View-based Environmental Fea-

ture and Pedestrian Collision Dataset (STRIDE), a novel

challenging benchmark that studies the interrelations be-

tween built-environment elements and pedestrian collision

frequency for scene awareness in autonomous driving. Fig-

ure 1 presents an overview of our benchmark. STRIDE

combines multiple public data sources for two main tasks:

(1) road-built-environment static object detection; and (2)

image-guided pedestrian collision frequency estimation. In

this section, we describe the details of our benchmark.

3.1. Image Gathering

First, we uniformly sampled random locations along

the streets of Bogota City in Colombia, including specific

points where statistical analysis indicated a higher inci-

dence of pedestrian injuries. Secondly, to leverage complete

360° information, we utilize the 3D Google Street View ser-

vice [97] to download panoramic images corresponding to

the selected locations. The resulting dataset encompasses

18,036 panoramic images from different parts of the city.

Our images have a high resolution of 4,000×13,312, mak-

ing them the panoramic dataset with the most extensive im-

ages. We split our data into a training and validation set and

a test set. Our training and validation set comprises 9,900

images on which we performed a 2-fold cross-validation to

train and validate our experiments. The remaining 8,136

images are used for testing.
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Figure 4: Number of annotated bounding boxes (y-axis)
per relative box area interval (x-axis). Most instances in

our dataset have small relative sizes due to the large scale of

our images.

3.2. Detection Annotations

We selected a team of skilled annotators and trained

them to draw bounding boxes around relevant static objects

in the street infrastructure present in our panoramic images.

Experts in built environment safety defined the classes used

for annotation to encompass a comprehensive range of static

objects that play crucial roles in pedestrian safety. We anno-

tated all 9,900 images in our training set with 27 static street

furniture classes indicated in Figure 2. For cross-validation

splitting, we ensured that the distributions of street object

classes, number of boxes per image, and area of boxes were

maintained consistently across both folds.

3.3. Pedestrian Collision Annotations

To correlate our dataset with real-world pedestrian colli-

sions data, we leverage publicly available pedestrian colli-

sion records of Bogota City from 2015 until 2021. This data

consists of records documenting the total number of vehicle

collisions with pedestrians (pedestrian collisions) reported

for each crossing point on the city’s streets. By utilizing

the corresponding geographic coordinates of each image,

we associate each of our panoramic images with a single

crossing point. We used ArcGIS 10.8 to perform geospatial

analysis and geostatistics to identify each image’s closest

registered crossing point. Most of our images matched a

registered point within a 30-meter distance; the rest were

matched to points in a 100-meter radius. We filtered a few

images outside of the urban area or with more than a 100-

meter distance to a crossing point. We provide the distri-

bution of distances in the Supplementary Material. In the

end, 17,388 downloaded images were matched with a street

segment, from which 9,252 belonged to detection annotated

images. As for detection, we trained and cross-validated

with these 9,252 images and tested on the remaining 8,136.

3.4. Dataset Statistics

Figure 3 presents the distribution of the number of an-

notated bounding boxes per image. We annotated a total

of 557,115 objects. Our images contain an average of 56.5

annotations per image, a minimum of 2 boxes, and a maxi-

(a)

(b)

Figure 5: Pedestrian Collision frequency distribution
among training folds (a) and testing set (b). Figures por-

tray the percentage of images (y-axis) for each amount of

pedestrian collisions (x-axis). Our dataset maintains a con-

stant long-tail distribution among the training folds and the

testing set. Note: The figures were cut to a maximum of 30

collisions for better visualization.

mum of 275 boxes per image. This diverse range of anno-

tations per image allows for a robust representation of vari-

ous street object distribution in different urban scenes. Fur-

thermore, Figure 2 shows each semantic class’s frequency

distribution. We observe a considerable imbalance in the

frequency distribution of our classes, as some parts of the

street infrastructure, like curbs, street lights, and trees, are

naturally more frequent than roundabouts, Bus Rapid Tran-

sit (BRT) Stations, and Median barriers. Hence, this long

tail distribution is highly representative of real-world-urban

scenes.

Additionally, our annotated bounding boxes exhibit

highly varying sizes. Figure 4 portrays the distribution of

the bounding box areas relative to the image size. The abso-

lute areas of our annotated boxes range from 100 to 57.15e6

pixels with an average size of 4.37e5. Based on the MS

COCO standards [50], the absolute areas of our annotations

correspond mostly to large objects (see the Supplementary

Material for more detail on box areas distribution according

to MS COCO standards). However, due to the considerably

large size of our images, most boxes have a low relative area

with an average relative area of 0.82%. This characteristic

makes our detection benchmark extremely challenging.

Finally, Figure 5(a) exhibits the histogram with the dis-

tribution of the number of pedestrian collisions per image

in the training set folds. Figure 5(b) exhibits the distribu-

tion in the test set. The number of pedestrian collisions

corresponding to each image presents a considerable imbal-
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Figure 6: STRIDE Baseline Method. Our model uses DINO [98] (bottom) for object detection on an input panoramic

image from a sampled street point. Our pedestrian collision prediction module (top-right) employs self-attention on the

output embeddings of DINO’s decoder to capture spatial and semantic relationships among object proposals. Additionally,

we extract a visual feature from DINO’s backbone, and we encode the geographical coordinates of the sampled street point.

Finally, we pool the output features of the self-attention layer and concatenate them with the visual features and the encoded

coordinates to perform a linear regression and estimate pedestrian collision frequency.

ance and an evident long tail in both sets as, naturally, most

crossing points have a low pedestrian collision incidence.

Our images have a minimum of 0 pedestrian collisions, a

maximum of 193 pedestrian collisions, an average of 6.65

pedestrian collisions, and a standard deviation of 14.3. This

imbalance in the pedestrian collisions distribution presents

another challenge in our data.

3.5. Evaluation Metrics

We use the standard Average Precision (AP) metric from

MS COCO [50] to evaluate the object detection task. For

the pedestrian collisions prediction task, we adopt the root

mean squared error (RMSE) as the primary evaluation met-

ric as it has an increased sensitivity for large errors. Simi-

larly, we avoid using the mean absolute error (MAE) metric

since our unbalanced data easily biases it. As an alternative,

we propose the Weighted Mean Absolute Error (WMAE)

as a more stringent metric that severely penalizes underes-

timations, thereby addressing the specific challenges posed

by our benchmark. We define WMAE as follows:

WMAE(y, ŷ) =

∑N
i (yi + 1)|yi − ŷi|
∑N

i (yi + 1)
(1)

Where yi is the ground truth value of the ith image, ŷi
is the predicted value of the ith image, and N is the total

number of images.

4. STRIDE Baseline
We propose a multi-task model capable of simultane-

ously detecting essential street infrastructure objects in

panoramic street images and predicting the frequency of

pedestrian collisions. Figure 6 depicts our model. The gen-

eral intuition behind our method lies in leveraging the visual

information captured in panoramic street images to iden-

tify built environment elements and their correlation with

pedestrian collision occurrences. Thus, we employ a two-

stage process; we first utilize the DINO [98] model to detect

various street infrastructure objects in the images. Subse-

quently, we introduce a pedestrian collision prediction mod-

ule that exploits self-attention to capture spatial and seman-

tic relationships among the detected objects. By combining

the extracted features from both stages, we aim to enhance

the accuracy of pedestrian collision prediction.

4.1. Object Detector

We build upon DINO [98], a state-of-the-art efficient ob-

ject detection model. As a DETR-like architecture [13],

DINO utilizes a set-prediction approach to predict a fixed-

size set z of N class probability-bounding box pairs us-

ing N input learnable queries. DINO combines multiple

enhancements to the original DETR model [51, 45, 104].

First, it includes a mixed query selection approach that

leverages information from the backbone and the encoder

to initialize anchor boxes as positional embeddings. Addi-

tionally, a contrastive denoising training introduces negative

and positive noise to ground truth boxes, facilitating bipar-

tite matching and faster convergence. Finally, DINO also

integrates box refinement and deformable attention from

Deformable-DETR [104] to boost efficiency and perfor-

mance. For further details on the DINO architecture, we re-
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fer readers to the original DINO paper [98]. We adapt and

optimize this architecture to detect and classify annotated

built environment objects in our panoramic street images.

4.2. Pedestrian Collisions Prediction

We extend DINO with an additional pedestrian colli-

sions prediction module (PCPM) as shown in figure 6. This

module captures the relationships between the detected ob-

jects and the likelihood of pedestrian collisions in a given

street image. On the one hand, the PCPM employs a self-

attention layer on the output features of DINO’s decoder to

capture spatial and semantic information. This layer allows

the module to focus on relevant regions and learn their in-

terdependencies within identified objects. We exclude the

features corresponding to noise queries from the module’s

processing as we only consider actual object proposals. On

the other hand, we extract a visual embedding from the out-

put feature map of DINO’s backbone to capture general vi-

sual cues from the image. Furthermore, The output features

from the self-attention layer are pooled and concatenated

with the visual embedding. Additionally, we encode and

concatenate the geographical coordinates of the image to

include geospatial information. Finally, a regression multi-

layer perceptron (MLP) processes the concatenated embed-

dings and calculates the number of pedestrian collisions as-

sociated with the input image. This approach enables us to

capture both the global context of the street image and lo-

calized details of detected objects to improve the predictive

capabilities of our model.

4.3. Implementation Details

Object Detection: We train DINO with a ResNet50 back-

bone and DINO’s 4-scale implementation as we prioritize

image resolution over model parameters. To fully exploit

the resolution of our images, we train the model using a

batch size of 1 and the largest image size allowed by our

GPU resources, which is 1,800×5,990 pixels. We trained

DINO for 50 epochs in 4 NVIDIA Quadro RTX GPUs

with an SGD optimizer, and a learning rate of 1e−4 de-

cayed by 0.1 after 12 epochs. We use random horizontal

flips followed by either a random short side scale augmen-

tation with a 1,600 to 1,800 range, or a short side rescal-

ing between 1,920 and 3,000 pixels with a random crop

of 1,800×5,990 pixels. Finally, we rescaled images to

1,800×5,990 for inference.

We discovered that using DINO’s pretrained weights on

the MS COCO dataset [50] is not beneficial for our specific

task due to its substantial differences in class composition

with our dataset (each dataset excludes most classes of the

other). Hence, we pretrain our model for object detection in

Mapillary Vistas [60] using only the categories with certain

similarities to ours. We chose this dataset because it has

the best coverage of static street infrastructure categories

Model DINO [98] Deformable-DETR [104]
AP 32.59 ±1.34 30.28 ±0.07
AP50 50.53 ±1.76 49.25 ±0.22
AP75 34.46 ±1.43 31.26 ±0.15
APS 18.11 ±0.63 16.65 ±0.29
APM 45.10 ±0.89 42.23 ±0.18
APL 56.40 ±4.35 54.18 ±0.30

Params. 47M 40M

Table 1: Results in STRIDE’s object detection task of

DINO [98] compared with Deformable DETR [104]. The

best performances are shown in bold.

among previous datasets and provides highly diverse

images that include some Latin American scenes.

Pedestrian Collisions Prediction Module: We train our

module for 20 epochs with a batch size of 5 on 4 Quadro

RTX GPUs. We rescale images to 1,800×5,990 and use

random horizontal flips for training. We use an L2 loss

function with an SGD optimizer and a learning rate of 1e−4

decayed by 0.1 after 15 epochs.

5. Experiments
Experimental Setup: We train and validate DINO with

all the 9,900 annotated images in our dataset and report

the standard deviation error across folds. Additionally, we

modify MS COCO’s standards [50] of object sizes to our

images. We define small objects as those with < 0.01% rel-

ative area, medium as 0.01% to 10% relative area, and large
as > 10% relative area. We use the same cross-validation

scheme for pedestrian collisions prediction and we test on

the 8,136 images of the test set.

5.1. Detection

Table 1 shows the quantitative results of our best detec-

tion model. Our best-performing model achieves a consid-

erably lower AP value compared to DINO’s performance

on generic benchmarks [98, 50]. This performance drop

proves the challenging differences between objects’ appear-

ances in large panoramic images and standard images, un-

derscoring the need for more specialized detection models

tailored to our object detection task in panoramic urban en-

vironments. Moreover, our model has the lowest perfor-

mance on small and medium objects, despite their high fre-

quency in our dataset. This behavior is due to the image

downscaling process, which strongly reduces the absolute

area of objects, reaching areas of just 50 pixels. We provide

qualitative results examples in the Supplementary Material.

We note that DINO correctly identifies and locates most ob-

jects in our images but frequently produces false positive

box predictions.
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Predicted measure Value RMSE WMAE
Mode 0 16.93 ±0.34 38.11 ±1.45

Median 2 16.24 ±0.36 36.37 ±1.50
Mean 6.70 16.32 ±1.03 36.11 ±3.80

Table 2: Control experiment results for the pedestrian
collisions prediction task by constantly predicting the

training set’s mode, median, and mean to calculate the sta-

tistical lower bounds of our benchmark in our training folds.

Regarding per-class detection performance, we provide

detailed results for each class in the Supplementary Mate-

rial. Our model performs poorly in low frequent categories

such as roundabouts and median barriers. However, we also

observe that some highly frequent categories, such as curbs

or sidewalks, do not yield high detection performances. We

attribute this discrepancy to the high intra-class visual ap-

pearance variability of these objects, which are often oc-

cluded or appear in small sizes at distant parts of the im-

ages.

Finally, we compare our model with Deformable DETR

[104] by adapting and optimizing it for our task using the

same backbone and pretraining scheme. Table 1 also sum-

marizes our overall results; detailed results are presented in

the Supplementary Material. As expected, DINO outper-

forms Deformable-DETR in all metrics within fewer train-

ing iterations due to its contrastive denoising training. Nev-

ertheless, regardless of the performance difference, we note

that both detectors obtain similar value ranges and rela-

tive performances for all AP subtypes among both models.

These consistencies validate the reliability of our results for

object detection in our benchmark.

5.2. AutoML Regression

Initially, we conduct control experiments to establish ref-

erence points and statistical lower-bound metrics for our

pedestrian collision prediction task. Specifically, we calcu-

late our metrics for predicting statistical measurements of

central tendencies, such as the training set’s mean, mode,

and median, as constant predictions for the validation pro-

cess. Table 2 shows these results. Additionally, we per-

form baseline experiments using a model search with Au-

toML from Python’s H2O library to predict pedestrian col-

lisions. We show these results in Table 3. First, we run Au-

toML solely on the geographical coordinates of our images.

Our results demonstrate a considerable correlation between

the coordinates and pedestrian collision occurrences, which

suggests that the model might learn to discern areas with

elevated pedestrian collision frequency within the city. This

observation also serves as an additional reference point to

understand the relationship of geographical location infor-

mation in pedestrian injury prediction.

Moreover, we study the impact of incorporating DINO’s

Coordinates Object Counts RMSE WMAE
� – 15.03 ±0.20 30.04 ±1.32
– DINO 13.66 ±0.36 27.73 ±1.10
� DINO 13.58 ±0.36 27.65 ±1.25
– Ground Truth 13.53 ±0.26 27.33 ±1.00
� Ground Truth 13.44 ±0.26 26.96 ±1.02

Table 3: Results of AutoML experiments on the training
folds using geographical coordinates and the number of in-

stances per class (object counts). We indicate the use (�)

or absence (–) of coordinates and counts and whether the

counts are obtained from DINO predictions or ground truth

annotations. The best results are shown in bold.

predictions of the number of instances per category in an

image (object counts) for pedestrian collision prediction.

We observe a notable increase in performance, indicating

that a regression model can effectively leverage object pres-

ence information to predict pedestrian collisions. This find-

ing underscores the importance of object recognition inputs,

as they provide valuable cues to identify risk factors and as-

sess the likelihood of pedestrian collisions. Similarly, we

use ground truth counts and achieve a slight performance

increase, therefore proving that the model benefits from im-

proved object recognition. We obtain lower error values by

including the geographical information as input, once again

proving the impact of geographical location on pedestrian

collisions prediction. Regardless of the promising perfor-

mances of these baseline models, the performance of Au-

toML is highly limited by the lack of visual or spatial infor-

mation processing.

5.3. Pedestrian Collisions Prediction Module

To evaluate the impact of the detection task on pedestrian

collision prediction, we first calculate pedestrian collisions

directly from the sole backbone and the input coordinates

using an MLP. We use the backbone pretrained in ImageNet

[23] and train until convergence. The results of this experi-

ment are shown in Table 4 as Backbone Regression. Using

the backbone yields a better performance than AutoML’s

best model, thus proving the importance of visual informa-

tion for pedestrian collision prediction as it provides general

context features to identify risky environments.

Additionally, we explore various configurations for the

pedestrian collisions predictions module to optimize the

performance of our model. Initially, we use a linear layer

on the outputs of DINO’s decoder; this experiment is por-

trayed in Table 4 as Linear Layer. This configuration out-

performs AutoML’s best method and the Backbone Regres-
sion experiment. This result underscores the potential of

object detection embeddings for pedestrian collision pre-

diction. Subsequently, we introduce the self-attention layer

(shown in Table 4 as Self-Att. Layer) instead of the linear
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Module Design RMSE WMAE Params. (M)
Backbone Regression 13.26 ±0.11 27.01 ±0.80 0.54

Linear Layer 13.11 ±0.49 26.07 ±1.68 0.11

Self-Att. Layer 12.79 ±0.38 25.51 ±0.78 0.44

Self-Att. + Visual Embd. 12.67 ±0.33 24.73 ±1.05 1.08

Table 4: Results of the pedestrian collision prediction
module in our training folds. We compare different de-

sign choices of our pedestrian collision prediction module.

We present the number of parameters corresponding just to

the regression module. The best results are shown in bold.

layer, and we note a significant boost in performance for our

model, as it captures relationships and dependencies among

the spatial and semantic information encoded in the out-

put embeddings of DINO’s decoder. Hence, self-attention

enables the model to understand better associations among

predicted objects which is essential for pedestrian collision

prediction.

Furthermore, we incorporate the visual embeddings ex-

tracted from DINO’s backbone into the pedestrian collision

prediction module (named Self-Att. + Visual Embd.). This

modification led to a further increase in performance, es-

pecially in WMAE. The visual embeddings encapsulate

general visual information before object location, provid-

ing valuable context cues for pedestrian collision prediction.

These results demonstrate the importance of leveraging de-

tection and visual information for accurate pedestrian colli-

sion estimation in street scenes. Finally, we explore multi-

ple encoding techniques to incorporate geographical coordi-

nates into the model. These techniques included linear pro-

jection or positional encoding. However, we observed no

significant performance improvement compared to a sim-

ple normalization approach. Our results also demonstrate

that the increase in model performance requires a signif-

icant computational cost as the number of parameters for

each module design (shown in Table 4) increases with the

inclusion of the self-attention and visual features.

5.4. Model Testing

We directly evaluate our best model for pedestrian col-

lision prediction and compare it with our best AutoML

method that takes the object counts predicted by DINO as

input. Table 5 presents our results. Both models exhibit

similar performance on the test and the cross-validation

sets. The relative behavior of both models remains consis-

tent, with the prediction module of DINO consistently out-

performing the AutoML model. This observation validates

the superiority of the prediction module and reinforces the

efficacy of calculating pedestrian collisions directly from

the visual, spatial, and semantic embeddings provided by

DINO. Our findings confirm the validity of our proposal and

underscore the value of leveraging visual information from

DINO for accurate pedestrian collision prediction. We pro-

Model RMSE WMAE
AutoML 13.78 ±0.02 28.55 ±0.12

STRIDE Baseline 12.88 ±0.01 23.41 ±0.40

Table 5: Results of STRIDE’s baseline on the test set. We

compare the performance of our best AutoML model with

the best pedestrian collision prediction module configura-

tion. The best results are shown in bold.

vide the distribution of the Exact Error among predictions

on the test set in the Supplementary Material. Most of our

model predictions achieve low error values with a tendency

towards slight overestimations. However, the model fails

the most in predicting large pedestrian collision values due

to the reduced frequency of these samples.

6. Conclusions
This paper introduces STRIDE, a novel benchmark to

improve environmental awareness in autonomous driving

by studying the relationship of built environment elements

in pedestrian injury prediction. Our framework introduces a

multitask approach to simultaneously detect relevant built-

environment features and estimate pedestrian collision

frequency. We present a new dataset that geographically

associates public records of pedestrian collisions with

large-scale panoramic street view images, manually anno-

tated for built environment detection of 27 categories. By

presenting multiple challenges representative of real-world

situations, our benchmark provides a robust testing ground

for image-guided pedestrian collision prediction models.

To pave the way for future research, we propose a strong

baseline that combines a state-of-the-art object detector

with an additional collision prediction module. Our experi-

mental validation demonstrates that our model can leverage

our detection annotations by capturing interrelations among

built environment features to estimate pedestrian collision

frequency. Our benchmark promotes the development

of autonomous agents capable of predicting pedestrian

collision events solely from visual inputs and GPS co-

ordinates, which holds the potential to enhance situation

awareness and real-time active collision prevention. Hence,

our work is a stepping stone towards improving security

in autonomous driving systems, mitigating potential risks,

and ensuring safer transportation.
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