
Surround-View Vision-based 3D Detection for Autonomous Driving: A Survey

Apoorv Singh
Motional

Carnegie Mellon University
apoorv.singh@motional.com

Abstract

Vision-based 3D Detection task is a fundamental task for
the perception of an autonomous driving system, which has
piqued interest amongst many researchers and autonomous
driving engineers. However, achieving a rather good 3D
BEV (Bird’s Eye View) performance is not an easy task us-
ing 2D sensor input data of monocular cameras. This pa-
per provides a literature survey of the existing Vision-Based
3D detection methods focused on autonomous driving. We
have made detailed analyses of over 60 papers leveraging
Vision BEV detection approaches and binned them into dif-
ferent sub-groups for an easier understanding of the com-
mon trends. Moreover, we have highlighted how the litera-
ture and industry trends have moved towards surround-view
image-based methods and noted thoughts on what special
cases these surround-view methods address. In conclusion,
we provoke thoughts of 3D Vision techniques for future re-
search based on the shortcomings of the current methods,
including the direction of collaborative perception.

1. Introduction
Object detection is a trivial task for humans. Pretty

much any teenager can look at the scene from the car’s

windscreen and place all the agents, dynamic or static, in a

mental BEV (Bird’s Eye View) map. This virtual map may

include per-agent information as, but not limited to, center

coordinates, dimensions, orientation angle, etc. However,

teaching this to a computer has been a nearly impossible

task until the turn of the last decade. This task entails

identifying and localizing an object’s instances (like cars,

humans, street signs, etc.) within the field of view as shown

in 1. Similarly, classification, segmentation, dense-depth

estimation, motion prediction, scene understanding, etc.,

are other fundamental problems in computer vision.

Early object detection models were built on hand-crafted

feature extractors such as Viola-Jones detector [34], His-

togram of Oriented Gradients (HOG) [7] etc. These were

Figure 1. Surround-view Image 3D Detector in autonomous driv-

ing. Ground-truth 3D boxes overlaid over surround-images in per-

spective view (top); Ground-truth 3D boxes overlaid over BEV

HD Map (bottom), with ego car in pink.

SoTA (State-of-the-art) of their time; however, compared

to the current methods, they are slow, inaccurate, and not

scalable on generic datasets. The introduction of convolu-

tional neural networks (CNNs) and deep learning for image

classification changed the landscape of visual perception.

CNN’s use in ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) 2012 challenge by AlexNet [18]

has inspired further research on CNNs in the computer

vision industry. Mainstream applications for 3D object

detection lie around autonomous driving, mobile-robotic

vision, security cameras, etc. Limited Field-of-view (FOV)

of cameras has led researchers to the next breakthrough

problem-statement of how to leverage views from multiple
cameras to reason the 360◦ surroundings.

This survey on Surround-view Vision-based 3D ob-

ject detection provides a comprehensive review of deep

learning-based methods and architectures in the recent past.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Structure of this Survey Paper.

The main contributions of this paper are as follows:

• This paper provides an in-depth analysis of major

single-view detector baselines that inspired surround-

view detector research in 3D object detection tasks us-

ing cameras.

• This paper provides further analysis of major

surround-view detector trends currently in develop-

ment in the computer-vision community, categorizing

them for readers to follow through easily.

• This paper provided detailed background on evaluation

metrics and datasets used to evaluate and compare the

above methods.

• This paper makes a detailed analysis of the remain-

ing problems. It introduces several potential research

directions about the BEV 3D image object detectors,

opening a possible door for future research.

The rest of the paper is organized as follows: We first

look at the background information required to understand

autonomous driving 3D detections viz., evaluation metrics,

datasets, annotations, etc. in 2. Then, we introduce single-

image-based detection methods and SoTA approaches that

inspired surround-view detectors approaches in 3. In 4,

we dive into details for surround-view-based detection ap-

proaches focused on autonomous driving. We then report

and analyze the performance of these approaches on our

previously defined metrics in 5. Then in 6, we report pos-

sible research extensions on surround-view object detection

methods that may enlighten future research. Finally, in 7,

we conclude the paper.

2. Background
To cover the basics required to understand 3D BEV

object detection tasks, we discuss four aspects: Sensor

setup on an autonomous vehicle (AV); frequently used

datasets; common evaluation metrics for detection tasks in

autonomous driving, and Why Bird’s Eye View (BEV) is

important for an AV camera perception?

2.1. Sensor Setup

Before we even look at how cameras are set up in an

autonomous vehicle (AV), let’s try to understand why we

need cameras in the first place. Cameras have the most

densely packed information compared to other sensors,

making them one of the most challenging sensors to extract

information from in an AV but the most useful simultane-

ously. To understand this mathematically, let us first look at

the number of data points in each visualization shown in 3.

Take these data points (floating point numbers) as the input

to the perception algorithm for a sensor to cover 360◦ view

that is responsible for making decisions for an AV.

Let’s start with a multi-camera:

Figure 3. Surround-view 8 camera images (top); LiDAR Point

Cloud overlayed over an HD Map (bottom). Key: Green points:

LiDAR point cloud; Pink box: Ego Autonomous vehicle; Gray

map: Pre-computed HD map with color intensity.

Number of cameras: 8;

The number of pixels per camera: 2, 000 ∗ 3, 000 (image

pixel resolution: width*height);
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Representation of a pixel: 3 (three channeled RGB value).

This brings total parameters to 8∗2000∗3000∗3 = 144M
float numbers!
Similar comparison with a LiDAR now:
Number of LiDAR points in a point cloud: 250,000;

Representation of each LiDAR point: 4 (3D coordinate i.e.

x, y, z and reflectance).

This brings total parameters to: 250, 000 ∗ 4 = 1M float
numbers!

These numbers and visualizations as in 3 should be

enough to prove our point of “the key role cameras play in
the AV perception to perceive the environment.”

A camera is one of the least expensive sensors, unlike

other laser-based sensors. However, cameras are spectacu-

larly better for detecting long-range objects and extracting

vision-based road cues like the state of traffic lights, stop

signs, etc., compared to any other laser-based sensor. Setup

of surround-view cameras on an AV may vary depending

on different autonomous car manufacturers, but typically

there are 6 ∼ 12 cameras per vehicle. These many cameras

are needed to cover the entire surrounding 3D scene. We

are limited to using cameras with normal FOV (Field of

view); otherwise, we may get image distortions beyond

recovery, like with Fish-eye cameras (Wide FOV), which

are only good for up to a few tens of meters. A perception

sensor set up in one of the most cited benchmark-dataset,

nuScenes [1] in the AV space can be seen in 4.

Figure 4. Sensor setup for an Autonomous vehicle in nuScenes [1]

benchmark dataset.

2.2. Datasets

nuScenes[1], KITTI[8], Waymo Open Dataset

(WOD)[31] are the three most commonly used datasets for

3D BEV object detection task. Apart from them, H3D[28],

Lyft L5[13], and Argoverse[3] can also be used for BEV

perception tasks. nuSences contains 1000 scenes with a

duration of 20 seconds each. They contain six calibrated

images covering the 360◦ view of the road. Sensor setup

with nuScenes can be seen in 4. KITTI was the seminal

work on the autonomous driving dataset. It consists of a

smaller sample of data than the more recent ones. Waymo

Open Dataset (WOD) is another large-scale autonomous

driving dataset with 798 training sequences, 202 validation,

and 150 testing sequences, respectively. Argoverse 2

also contains 1000 scenes with LiDARs, stereo-imagery,

ring-camera imagery, a.k.a surround-cameras imagery.

Detailed information on this dataset is given as in 1.

2.3. Evaluation Metrics

3D object detectors use multiple criteria to measure the

performance of the detectors, viz., precision and recall.

However, mean Average Precision (mAP) is the most com-

mon evaluation metric. Intersection over Union (IoU) is the

ratio of the area of overlap and the area of the union between

the predicted box and ground-truth box. An IoU threshold

value (generally 0.5) is used to judge if a prediction box

matches any particular ground truth box. If IoU is greater

than the threshold, then that prediction is treated as a True

Positive (TP); else, it is a False Positive (FP). A ground-

truth object which fails to detect with any prediction box is

treated as a False Negative (FN). Precision is the fraction of

relevant instances among the retrieved instances, while re-

call is the fraction of relevant instances that were retrieved.

Precision = TP/(TP + FP ) (1)

Recall = TP/(TP + FN) (2)

Based on the above equations, average precision is com-

puted separately for each class. To compare the perfor-

mance between different detectors (mAP) is used. It is a

weighted mean based on the number of ground truths per

class. Alternatively, the F1 score is the second most com-

mon detection metric, the weighted average of precision and

recall. Higher AP detectors perform better when the model

is deployed at varied confidence thresholds. However, a

higher max-F1 score detector is used when the model is to

be deployed at a known fixed optimal-confidence threshold

score.

F1 = 2 ∗Precision ∗Recall/(Precision+Recall) (3)

In addition, there are a few dataset-specific metrics

viz., KITTI introduces Average Orientation Similarity

(AOS), which evaluates the quality of orientation esti-

mation of boxes on the ground plane. mAP metric only

considers the 3D position of the objects. However, it

ignores the effects of both dimension and orientation.

About that, nuScenes introduces TP metrics viz., Average

Translation Error (ATE), Average Scale Error (ASE),

and Average Orientation Error (AOE). WOD introduces
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Table 1. Information on benchmark dataset commonly used for 3D BEV Object Detection using cameras in autonomous driving.

DATASET CAMERAS SCENES TRAIN TEST BOXES CLASSES TEMPORAL LIDAR RADAR

NUSCENES 6 1,000 28,130 6,008 1.4M 10
√ √ √

KITTI (3D) - - 7,418 7,518 200K 3
√ √ ×

WOD 5 1,150 122,200 40,077 12M 4
√ √ ×

ARGOVERSE 7 113 39,384 12,507 993K 15
√ √ ×

LYFT L5 6 366 22,690 27,468 1.3M 9
√ √ ×

H3D 3 160 8,873 13,678 1.1M 8
√ √ ×

Average Precision weighted by Heading (APH) as its

main metric. It takes heading/ orientation information

into account as well. Also, given depth confusion for

2D sensors like cameras, WOD introduces Longitudinal

Error Tolerant 3D Average Precision(LET-3D-AP), which

emphasizes more on lateral errors more than longitudinal

errors in predictions.

2.4. Why BEV (Bird’s Eye View)?

There are several reasons why using the 3D agent’s rep-

resentation in the Bird’s Eye View makes more practical

sense for autonomous driving:

• It makes fusion with the other 360◦ sensors, i.e., Li-

DARs and RADARs, more natural as these laser-based

sensors operate in the BEV space natively.

• If we operate in BEV, we can model the temporal con-

sistency of the dynamic scene much better. Motion

compensation, i.e., translation and rotation modeling

in BEV agents, is much more trivial than the perspec-

tive view (camera view). For example, In BEV view:

Pose change depends just on the motion of the agent,

whereas in perspective-view, pose change depends on

the depth and motion of the agent.

• Scale of the objects are consistent in BEV space but

not so much in the perspective view. In perspective,

view objects appear bigger when closer to the view-

point. Hence, BEV space makes it easier to learn

range-agnostic scale features.

• In autonomous driving, downstream tasks after per-

ception, like motion prediction and motion planning,

operate on the BEV space natively. It makes natural

sense for all the software stacks to work in a common

coordinate-view system on a robotic platform.

• Newly researched field, Collaborative perception,

which we will discuss in Section 6, also utilizes BEV

representation to represent all the agents at a common

coordinate system.

3. Single-Image Based Detectors

We have divided single-view image-based object

detection methods into two-stage, single-stage, and set-

based detectors. However, we would like to mention

pioneer works like Viola-Jones [34], HOG Detector [7],

Deformable Parts Model (DPM) [10], which have revolu-

tionized computer vision with PASCAL VOC challenge in

2009 [44]. These approaches use classical computer-vision

techniques that extract human-designed heuristic features.

3.1. Two-stage Detectors

This is a class of detectors divided into two stages.

The first stage is to predict an arbitrary number of object

proposals, and then in the second stage, they predict

boxes by classifying and localizing those object proposals.

However, these proposals have inherent problems of slow

inference time, lack of global context (even within a single

image), and complex architectures. Pioneer work with the

two-stage approach is: Region-based fully convolution

network (R-FCN) [6], Feature Pyramid Network (FPN)

[23] and Mask R-CNN [12] which are built upon R-CNN

[9] line of work. There’s also a parallel work stream

around Pseudo-LiDAR [36] in which dense depth is

predicted in the first stage, thereby converting pixels into

a pseudo-point-cloud. Then LiDAR-like detection head is

applied for 3D object detection as done in Point-pillars [19].

3.2. Single-stage Detectors

YOLO [30] and SSD [24] opened the gate for single-

stage detectors. These detectors classify and localize

semantic objects in a single shot using dense predictions.

However, they rely heavily on the post-processing Non-

maximum Suppression (NMS) step to filter out duplicate

predictions as one of the over-head. Their dependence on

anchor box heuristics was addressed in Fully Convolutional

One-Stage Object Detection (FCOS) [32] to predict 2D

boxes based on center-pixel. The extension of this work is

seen in FCOS3D [35], where they address the 3D object

detection problem by regressing 3D parameters per object.

These methods still heavily rely on post-processing for
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duplicate detections with NMS.

3.3. Set-based Detectors

This approach removes hand-designed NMS using set-

based global loss that forces unique predictions per-object

via bipartite matching. The pioneering paper, DETR [2],

started this work chain. However, it suffers from slow

convergence, limiting the features’ spatial resolution. How-

ever, this issue was later addressed in Deformable-DETR

[45] method, which replaces the original global dense

attention with deformable attention that only attends to a

small set of sampled features to lower the complexity and

thereby speeds up the convergence. Another approach to

accelerate convergence is SAM-DETR [43], which limits

the search space for the attention module by using the most

discriminative features for semantic-aligned matching. This

line of work still has a CNN-based backbone. However,

they use transformer [33] based detection head.

Above mentioned approaches operate per camera; however,

the autonomous driving application needs to address the

entire 360◦ scene, which includes 6 ∼ 12 surround cameras

covering the entire spatial scene. Per-camera detections are

generally aggregated using another set of NMS filtering

to eliminate repeat detections originating from the camera

overlap Field of View (FOV) regions. AVs need to maintain

this long-range high FOV overlap to minimize the blind

spots in the short range. Perspective view detections are

lifted to BEV space by regressing depth per object or using

the heuristic-based method, Inverse Perspective Mapping,

by estimating ground-plane height.

4. Surround-Image Based Detectors
There are multiple applications of surround-camera-

based computer-vision (CV) systems like surveillance,

sports, education, mobile phones, and Autonomous Vehi-

cles. Surround-view systems in sports are playing a huge

role in the sports analytics industry. It lets us record the

right moment across the field at the right moment with

the right viewing angle. Surround-view vision has also

spread its application in class monitoring systems, which

lets teachers give personalized attention to each student.

Nowadays, it is hard to find any smartphone with a single

camera. However, to limit the scope of this paper, we will

only focus on Autonomous driving-based computer vision.

A surround-view system uses features from different

views to understand the holistic representation of the scene

around the autonomous vehicle. Combining any two or

more cameras requires prior infrastructure work related to

fixed sensor mountings and their calibration. Calibration of

the camera means extracting the extrinsic transformation

matrix between the two cameras. This camera matrix

enables us to make one-to-one mapping of a pixel in a

camera to a pixel in another, creating a relation between

multiple cameras to enable reasoning between themselves.

Surround-view images can be represented by

I ∈ R
N×V×H×W×3. N, V, H, and W are the number of

temporal frames, views, height, and width, respectively.

4.1. Why surround-view in an AV?

It is often hard to fit an entire object in a single frame

to detect and classify it accurately. This is an especially

common issue with the long-vehicle category. Let’s take a

visual understanding of what this means in as 5

Figure 5. Usage of surround-view images in 3D object detection

problem. BEV view (top); surround-view images of right-front,

right, and right-back cameras (bottom). This shows that we may

classify the object as a car with one or two cameras, but without

all three images, we won’t be able to perfectly localize, i.e., fit a

bounding box on the black limousine.

4.2. Types of Surround-view Detectors

SoTA surround-view Detection can be broadly classified

amongst two subgroups viz., Geometry-based view trans-
formers and Cross-attention-based vision-transformers.

4.2.1 View Transformers

Pioneer work: Lift, Splat, Shoot [29] started a chain work

where they lift each image individually into a frustum of

BEV features, then splat all frustums onto a rasterized BEV

grid. Given n images Xk ∈ R
3xHxW

n, each with an extrin-

sic matrix Ek ∈ R
3x4 and an intrinsic matrix Ik ∈ R

3x3, we

can find a rasterized BEV map of the feature in BEV coor-

dinate frame as y ∈ R
CxXxY, where C, X, and Y are channel

depth, height and width of the BEV map. The extrinsic and

intrinsic matrices define the mapping from reference coor-

dinates (x, y, z) to local pixel coordinates (h,w, d) for each

n camera. This approach does not require access to any
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depth sensor during training or testing; just 3D box anno-

tations are enough. This architecture is demonstrated in as

6. One of the latest development in this line of work is

BEVDet [16], which improves on pre-processing and post-

processing techniques.

Figure 6. Lift-splat-shoot (LSS) [29] architecture: Lift step is vi-

sualized where per-image-frustum’s pixel is projected to a discrete

depth in BEV coordinate space with a context vector(top). The

overall architecture is shown, which takes in n images and returns

BEV semantic map (bottom).

BEVDet4D [14] adds temporal dimensionality to this

method, making it a 4-dimensional problem. They tried

to address the inherent problem of high-velocity error in

vision-based detectors. Single-frame vision-based detec-

tors generally have higher velocity errors than laser-based

sensors, as LiDAR detectors use multiple-sweep data

with temporal information embedded in the point cloud.

RADAR’s inherent point cloud includes velocity attributes

using the Doppler effect. Adding temporal frames in a

vision-detector enables us to learn temporal cues of the

dynamic agent on the road.

As a further extension, BEVDepth [21] method adds

a camera-aware depth estimation module that facilitates the

object depth predicting capability. They hypothesize that

enhancing depth is the key to high-performance camera 3D
detections on nuScenes benchmark. They have replaced

the vanilla segmentation head in LSS with the Center-

Point [42] head for 3D detection. They use supervision

from the detection loss only for the auxiliary depth head

baseline. However, due to the difficulty of monocular

depth estimation, a sole detection loss is far from enough

to supervise the depth module. Then used, calibrated

LiDAR data was to project the point cloud onto the images

using camera transformation matrices hence forming 2.5D

image coordinates P imgi(u, v, d), where u and v denote

coordinates in pixel coordinates and d denotes depth from

the corresponding LiDAR point cloud. To reduce memory

usage, further development of M2BEV [38] decreases the

learnable parameters and achieves high efficiency on both

inference speed and memory usage.

These detectors include four components: 1. An im-

age encoder to extract the image features in a perspective

view; 2. A depth module generates depth and context,

then an outer product to get the point features; 3. A view

transformer to convert the feature from perspective to BEV

view; and lastly, 4. A 3D detection head to propose the

final 3D bounding boxes. BEVStereo [20] introduces a dy-

namic temporal stereo method to enhance depth prediction

within compute cost-budget. Simple-BEV [11] introduces

RADAR point cloud on the LSS approach. Based on view

transformers, BEVPoolv2 [15] is the current SOTA per

nuScenes [1] vision-detection leaderboard. They use a

BEVDet4D-based backbone with dense-depth and tempo-

ral information for training. They have shown TensorRT
runtimes speedups as well. TensorRT is the model format

generally used by Nvidia deployment hardware.

4.2.2 Vision Transformers

Vision Transformers can be divided as per the granularity

of the queries (object proposals) in the transformer decoder

as per [27] viz., sparse query-based and dense query-based

methods. We will go into detail about the representative

work for both of these categories:

Sparse Query-based ViT: In this line of work, we

try to learn object proposals to look for in the scene

from the representative training data and then use those

learned object proposals to query at the test time. Here the

assumption is made that test data objects are representative

of the training data ones.

Seminal paper with single-image (Perspective-view),

DETR [2] started this line of work, which is later extended

to surround-view images in BEV space with DETR3D

[37]. Here given n surround-view images I ∈ R
H’×W’×3,

the backbone and/or FPN and/or Transformers encoder

produce n encoded image features F ∈ R
HWxd, where d

is the feature dimension, and H’, W’ and H, W denote

spatial sizes of the image and the features, respectively.

Then these n encoded features and a small set of object

queries Q ∈ R
Nxd are fed into the Transformer decoder to

produce detection results. Here N is the number of the

object queries, typically 300 ∼ 900 for the entire 360◦

scene as a meta-data camera; transformation matrices are

also used as an input. These matrices are required to create

3D reference point mapping onto the 2D coordinate space
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and sample respective 2D features per query.

In the Transformers decoder, object queries are sequentially

processed by a self-attention module, a cross-attention

module, and a feed-forward network (FFN), and then

finally by a Multi-Layer Perceptron (MLP) to produce 3D

BEV detections as the final output. For an interpretation:

object queries denote potential objects at different locations

on the BEV map; the self-attention module performs

message passing among different object queries; and in the

cross-attention module, object queries first search for the

corresponding regions/ views to match, then distill relevant

features from the matched regions for the subsequent pre-

dictions. Also worth noting is that the transformer-based

encoder is an optional add-on here, but the core part of

these detectors is in the transformer-based decoders. The

workflow of this approach can be easily understood as 7

Figure 7. Adaptation workflow from DETR3D [37].

As a further development of this work, Polar DETR

[4] parameterizes 3D detections in polar coordinates,

which reformulates position parametrization, velocity

decomposition, perception range, label assignment, and

loss function in the polar coordinate system (r, θ). This

approach eases optimization and enables center-context

feature aggregation to enhance the feature interaction. In

Graph-DETR3D [5], they quantify the objects located at

different regions and find that the “truncated instances”

(i.e., at the border regions of each image) are the main

bottleneck hindering the performance of DETR3D. Al-

though it merges multiple features from two adjacent

views in the overlapping regions, DETR3D[37] still suffers

from insufficient feature aggregation, thus missing the

chance to boost the detection performance fully. To address

this issue, Graph-DETR3D[5] aggregates surround-view

imagery information through graph structure learning

(GSL). It constructs a dynamic 3D graph between each

object query and 2D feature maps to enhance the object

representations, especially at the image-border regions.

A positional encoding development work by PETR

[25] cites a problem with the 2D encoding of features in the

former approach. They transform surround-view features

into a 3D domain by encoding the 3D coordinates from

camera transformation matrices. Object queries can now be

updated by interacting with the 3D position-aware features

and generating 3D predictions, simplifying the procedure.

A follow-up work PETRv2 [26] adds dimensionality to get

temporal-aware denser features.

Dense Query-based ViT: Here we have a dense query

based on the region of interest in the BEV representation.

Each query is pre-allocated with a spatial location in 3D

space. This line of work is better than the former in that

we can still detect certain objects not learned as object

proposals in the training data with sparse queries. In other

words, this approach is more robust to the scenario when
training data is not the perfect representative of the test
data.

With this line of work, Pioneer was BEVFormer [22].

They exploit spatial and temporal information by inter-

acting with spatial and temporal space through predefined

grid-shaped BEV queries. To aggregate spatial information,

they designed spatial cross-attention that each BEV query

extracts from spatial features across the camera views. For

temporal information, they use temporal self-attention to

recurrently fuse the history BEV information as shown in

8. This approach at the time surpassed sparse-query-based

Vision Transformers methods by getting higher recall

values, owing to the fact of exploiting dense queries.

However, dense queries come at the cost of high compute

requirements, which was tried to address using deformable-

DETR’s [45] K-points around reference point sampling

strategy. The fully transformer-based structure of BEV-

Former makes its BEV features more versatile than other

methods, easily supporting non-uniform and non-regular

sampling grids.

A follow-up work, BEVFormerV2 [41] adds perspective

supervision, which helps convergence and leverages image-

based backbone better. This brings back two-stage detec-

tors, where proposals from the perspective head are fed into

the bird’s-eye-view head for the final predictions. In addi-

tion to the perspective head proposals, they use DETR3D-

style learned queries. For auxiliary perspective loss, they

use FCOS3D [35] head which predicts the center location,

size, orientation, and projected center-ness of the 3D bound-

ing boxes. The auxiliary detection loss of this head, denoted

as perspective loss Lpers, complements the BEV loss Lbev ,

facilitating the optimization of the backbone. The whole

model is trained with a total objective

Ltotal = λbevLbev + λpersLpers (4)
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Table 2. Results of vision-only 3D object detections on nuScenes camera-only 3D detection benchmark on the test set. Abbreviations are

defined in 5.

METHOD YEAR MAP MATE MASE MAOE MAVE MAAE NDS

BEVPOOLV2 2022 0.586 0.375 0.243 0.377 0.174 0.123 0.664

BEVFORMER V2 2022 0.580 0.448 0.262 0.342 0.238 0.128 0.648

BEVSTEREO 2022 0.525 0.431 0.246 0.358 0.357 0.138 0.610

BEVDEPTH 2022 0.503 0.445 0.245 0.378 0.320 0.126 0.600

POLARFORMER 2022 0.493 0.556 0.256 0.364 0.439 0.127 0.572

PETR V2 2022 0.490 0.561 0.243 0.361 0.343 0.120 0.582

BEVFORMER 2022 0.481 0.582 0.256 0.375 0.378 0.126 0.569

BEVDET4D 2022 0.451 0.511 0.241 0.386 0.301 0.121 0.569

GRAPH-DETR3D 2022 0.425 0.621 0.251 0.386 0.790 0.128 0.495

POLARDETR 2022 0.431 0.588 0.253 0.408 0.845 0.129 0.493

BEVDET 2021 0.424 0.524 0.242 0.373 0.950 0.148 0.488

PETR 2022 0.434 0.641 0.248 0.437 0.894 0.143 0.481

DETR3D 2021 0.412 0.641 0.255 0.394 0.845 0.133 0.479

FCOS3D 2021 0.358 0.690 0.249 0.452 1.434 0.124 0.428

CENTERNET 2019 0.338 0.658 0.255 0.629 1.629 0.142 0.400

Figure 8. Overall architecture of BEVFormer [22]. (a) The en-

coder layer of BEVFormer contains grid-shaped BEV queries,

temporal self-attention, and spatial cross-attention. (b) In spatial

cross-attention, each BEV query only interacts with image features

in the regions of interest. (c) In temporal self-attention, each BEV

query interacts with two features: the BEV queries at the current

timestamp and the BEV features at the previous timestamp.

PolarFormer [17] reasons the nature of the ego car’s per-

spective, as each onboard camera perceives the world in the

shape of a wedge intrinsic to the imaging geometry with

the radical (non-perpendicular) axis. Hence they advocate

exploiting the Polar coordinate system on top of the BEV-

Former [22].

5. Experiments

nuScenes [1] is the widely used dataset in the literature

for which sensor setup shown in 4 includes six calibrated

cameras covering the entire 360◦ scene. Results on dis-

cussed pioneer works are shown on the test set of nuScenes

in 2. This is under the filter camera track detections. The

key for the metric abbreviations is as follows: mAP: mean

Average Precision; mATE: mean Average Translation Er-

ror; mASE: mean Average Scale Error; mAOE: mean Av-

erage Orientation Error; mAVE: mean Average Velocity Er-

ror; mAAE: mean Average Attribute Error; NDS: nuScenes

detection score.

6. Further Extensions
Based on the most recent developments around the

surround-view BEV vision detections, we will now high-

light possible future directions for the research.

Deployment compute-budget and run-time constraints:
Autonomous vehicles operate on a tight compute budget,

as we can have a limit of compute resources on board.

However, when the 5G internet became mainstream, all

computation could have been shifted to cloud comput-

ers. We, the industry as a whole, should start focusing

on the run-time constraints of these compute-expensive

transformer-based networks. One possible direction is to

limit the object proposals (queries) based on input-scene

constraints. However, there is a need to have a smart way

to handle it, or else these networks may suffer through a

low recall issue.

Smart object proposal initialization strategies: We

may develop query initialization strategies that mix and

match sparse and dense query initialization to enable both

pros. The major con of the dense query-based approach is

its high run time. This can be handled by using HD maps

to focus only on the areas of the road which matter the

most. Like BEVFormerv2 [41], object proposals can also

be taken from different modalities. As one step further,

these proposals may also be taken from the past time-step,

with a fair assumption that the driving scene won’t have

changed much within a fraction of a second. However,

to make AVs scalable, researchers need to focus more on
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affordable sensors like cameras and RADARs and not too

much on expensive LiDARs or HD-Maps.

Collaborative Perception: A relatively new field of

the area uses multi-agents and multi-view transformers

to enable collaborative perception. This setup requires

minimal infrastructure to enable smooth communications

between different AVs on the road. CoBEVT [39] shows

initial proof of how Vehicle-to-Vehicle communication

may lead to superior perception performance. They test

their performance on OPV2V [40] benchmark dataset for

V2V perception.

7. Conclusion

We introduced development work around vision-based

3D object detection focused on autonomous vehicles in this

work. We reviewed more than 60 papers and 5 benchmark

datasets to prepare this paper.

Specifically, we first build a case on why a camera-based

surround-view detection head is important for solving au-

tonomous vehicles. Then we started with how research

has progressed from single-view detection and extended to

surround-view detection head paradigm, thereby increasing

the detection performance. We have categorized two promi-

nent categories for surround-view camera detectors to keep

an eye on viz., Geometric View-Transformers based and Vi-
sion Transformers based. In the end, we proposed our take

on surround-view detection trends, focusing on deploying

those networks on an autonomous car, which may enlighten

future research work.
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