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Abstract

Recently, encoders like ViT (vision transformer) and
ResNet have been trained on vast datasets and utilized as
perceptual metrics for comparing sketches and images, as
well as multi-domain encoders in a zero-shot setting. How-
ever, there has been limited effort to quantify the gran-
ularity of these encoders. Our work addresses this gap
by focusing on multi-modal 2D projections of individual
3D instances. This task holds crucial implications for re-
trieval and sketch-based modeling. We show that in a zero-
shot setting (without retraining on a specific shape cat-
egory or sketch style), the more abstract the sketch, the
higher the likelihood of incorrect image matches. Even
within the same sketch domain, sketches of the same ob-
ject drawn in different styles, for example by distinct indi-
viduals, might not be accurately matched. One of the key
findings of our research is that meticulous fine-tuning on
one class of 3D shapes leads to improved performance on
other shape classes (fine-tuned but zero-shot), reaching or
surpassing the accuracy of supervised methods. We com-
pare and discuss several fine-tuning strategies. Addition-
ally, we delve deeply into how the scale of an object in a
sketch influences the similarity of features at different net-
work layers, helping us identify which network layers pro-
vide the most accurate matching. Significantly, we discover
that ViT and ResNet perform best when dealing with sim-
ilar object scales. We believe that our work will have a
significant impact on research in the sketch domain, pro-
viding insights and guidance on how to adopt large pre-
trained models as perceptual losses. Our code is available
at https://github.com/GBerardi/ZS-SBSR.

1. Introduction

As image vision algorithms rapidly advance, we see a

recent surge of interest in sketch understanding [58, 37, 25,

11, 39, 29] and generation [51, 6]. Sketch is the earliest

form of visual communication for humanity as a whole, as

well as for each individual. However, for vision algorithms,

it poses a number of challenges caused by the diversity of

sketching styles, skills, and sketch sparsity. Sketches can

be very abstract and visually different from photos. Each

sketching scenario results in visually very different rendi-

tions. People can easily interpret sketches from very ab-

stract to highly detailed or stylized, but is there an algorithm

or model that can reliably handle all styles and scenarios?

Inspired by the success of models trained on large

datasets in a range of zero-shot applications in the image

domain [34, 42, 35, 41, 28], several works exploit its appli-

cation in the sketch domain. There are a number of inspiring

attempts of adapting CLIP (Contrastive Language-Image

Pre-Training) [40] as a perceptual loss for deep model train-

ing [17, 47, 51, 50], for model performance evaluation [64],

or as a way to alleviate the need for the sketch data dur-

ing training for a downstream task [44]. However, are the

used encoders able to discriminate fine-grained differences

within a sketch domain or across sketch and image do-

mains? Several works indicate that these models do not

necessarily perform that well in a zero-shot sketch-to-image

comparison [12, 43]. The works then either resort to fine-

tuning existing models [12, 43] or training from scratch by

adding tailored losses or sketch-targeted solutions [29, 46].

With our work, firstly, we aim to shed light on the abil-

ity of the popular pretrained models to discriminate indi-

vidual 3D instances in their multi-modal 2D projections.

To achieve this, we evaluate encoders trained with CLIP

[40] and via a classification task training on the ImageNet

dataset [2]. Namely, we study their performance in match-

ing viewpoints and object identities in sketches and im-

ages. Secondly, we investigate alternative fine-tuning strate-

gies, inspired by [5, 22, 65]. In our work, we compare

visual prompt learning [22], layer normalization weights

learning [16, 43] with a careful fine-tuning of all weights.

Thirdly, we show that well-designed fine-tuning on a sin-

gle shape class can lead to improved performance on other

shape classes, sometimes surpassing the accuracy of super-

vised methods. Importantly, we show that fine-tuning can

be done on synthetically-generated sketches for a set of 3D
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shapes without the requirement to use freehand sketches.

We demonstrate the generalization of our approach to rel-

atively abstract freehand sketches from the AmateurSketch

dataset [36]. We refer to this scenario as fine-tuned but zero-
shot. As a test application, we consider sketch-based 3D

shape retrieval. Effectively, we introduce the first sketch-

based 3D shape retrieval method with state-of-the-art per-

formance that does not require per-class training or fine-

tuning. Our fine-tuning only requires a set of 3D shapes of

just one category. It is a reasonable assumption for the 3D

shape retrieval task.

Fourthly, we perform a detailed performance analysis

of different layers of ViT and ResNet-based encoders pre-

trained either with CLIP training or with a classification task

on the ImageNet dataset. We study how the line width and

object scale affect performance and find that similar settings

can be considered optimal for ViT and ResNet-based en-

coders. We note that most works [12, 43, 29] use the acti-

vation of the final layer of an encoder. Yael et al. [51] ob-

served that while these features excel at capturing semantic

meaning, intermediate layers are more suitable when com-

paring spatial structures. In our research, we offer an in-

depth analysis with regard to our specific problem.

In summary, our key contributions are:

• A comprehensive study of the ability of the popular

pretrained encoders to discriminate individual 3D in-

stances in their multi-modal 2D projections;

• Extensive analysis of the similarity estimation perfor-

mance using various layer features and exploration of

the impact of the object’s scale;

• Comparison of various fine-tuning strategies on the

task of matching sketches in distinctive sketch styles;

• Fine-tuning approach that requires as little as a set of

3D shapes of a single category, and generalizes to free-

hand sketches and other shape class categories, reach-

ing the performance of fully supervised methods.

2. Related work
2.1. Sketch-based 3D shape retrieval

2.1.1 Category-level and fine-grained retrieval

Most of the works in sketch-based 3D model retrieval [15,

59, 30, 24, 52, 62, 27, 66, 54, 13, 21, 38, 23, 8, 57, 10, 63,

56] focus on the problem of category level retrieval: They

aim to retrieve any instance of a particular object category.

In other words, the retrieval is considered to be successful if,

given a sketch of an object, the retrieved top N 3D models

belong to the same category.

Only two works [36, 9] addressed fine-grained sketch-

based 3D model retrieval in a supervised setting. Qi et

al. [36] collected the first dataset of instance-level paired

freehand sketches and 3D models, which we also use to test

our model. They use triplet loss training [53], classic for

retrieval tasks, and represent 3D models using multi-view

RGB renderings. The main novelty of their paper lies in

learning view attention vectors. In concurrent to our work,

Chen et al. [9] train and test on the data by Qi et al. [36].

Unlike [36], they learn to project all sketch views to the

same latent representation. The main performance gain is

caused by dividing the images into three parts and learning

to match the features of each part individually. Unlike both

of these works, we represent 3D shapes using NPR (Non-

Photorealistic Renderings) [1] rather than RGB images.

To reduce the domain gap between sketch queries and

3D models, some works [33, 32] study fine-grained retrieval

from a 3D sketch created while wearing a virtual reality

headset. Our model aims for much more accessible inputs

that can be created with a computer mouse or on paper.

2.1.2 Multi-view feature aggregation

Like majority of the works on sketch-based 3D model re-

trieval, we use multi-view shape representation, however

many of these works differ in how they aggregate features

across viewpoints. Thus, Xie et al. [54] use the Wasser-

stein barycentric of 3D shapes projections in the CNN fea-

ture space to represent 3D shapes. He et al. [21] follow

MVCNN [49] and aggregate views features with element-

wise maximum operation across the views in the view-

pooling layer. Lei et al. [23] proposed a representative view

selection module that aims to merge redundant features for

similar views. Chen et al. [8] learn multi-view feature scal-

ing vectors which are applied prior to average pooling vec-

tor, in order to deal with non-aligned 3D shape collections.

Qi et al. [36] learn view attention vectors conditioned on the

input sketch, which allow to reduce the domain gap between

a sketch and multi-view projections of a 3D shape. Zhao et

al. [63] leverages spatial attention [60] to exploit view cor-

relations for more discriminative shape representation. In

our work, we focus on learning view features that can be

used to find the correct shape identity and view across dif-

ferent sketch styles: e.g. freehand and synthetic (generated

using non-photorealistic rendering).

2.2. Multi-modal retrieval

Multi-modal retrieval is not directly related to our work,

but two concurrent works [48, 46] are worth mentioning as

they rely on encoders pretrained with the CLIP model. They

explore CLIP embeddings for retrieval from multi-modal

inputs such as 2D sketches or images and text. Sangkloy et

al. [46] study image retrieval and focus on fine-tuning CLIP

using triplets of synthetic sketches, images, and their cap-

tions. They rely on the availability of textual descriptions
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Figure 1. Examples of sketches in our datasets: freehand [36], NPRs are generated using Blender Freestyle [1], and Anime is obtained from

an RGB rendering using image translation method [6] in a provided anime style. Please see Sec. 4.2 for details.

matching their images, while we require only the availabil-

ity of 3D shapes from just one 3D shape class. Similarly to

us, Schlachte et al. [48] study zero-shot 3D model retrieval

using the CLIP model, but only explore the weighted fusion

of CLIP features from multiple inputs for artistic control.

Unlike them, we perform an in-depth study analyzing ob-

ject scale, feature layers, and fine-tuning strategies.

2.3. Sketch datasets

With the advent of sketch datasets [15, 30, 3, 45, 20,

18, 36, 12] the research on sketching thrives. However,

it is costly and challenging to collect a dataset of free-

hand sketches, especially when there is a requirement for

instance-level pairing between several domains. The com-

mon practice is to let participants study a reference image

for a short period of time and then let them draw from mem-

ory [15, 3, 45, 12, 46]. This task becomes increasingly

challenging when the pairing is required to be between 3D

shapes and sketches, as one has to ensure that the view-

points are representative of those that people are more likely

to sketch from [30, 62, 57, 36, 18].

To the best of our knowledge, there is only one dataset

[36] of freehand sketches by participants with no prior art

experience paired with 3D shapes, that takes views into

account and follows the protocol of sketching from mem-

ory. The small dataset collected by Zhang et al. [61] for

each object contains only one sketch viewpoint, and the

viewpoints are non-representative, they are uniformly sam-

pled around 3D shapes. It contains too few examples and

is too noisy for retrieval performance evaluation. The re-

cent dataset of paired sketches and 3D models of cars [19]

similarly was collected without taking into account view-

points preferences, and the sketches are drawn directly on

top of image views and mostly contain outer shape contours.

We, therefore, evaluate our approach on the dataset by Qi

et al. [36], as the only existing representative dataset with

instance-level pairing between sketches and 3D shapes.

3. Method

In this and the following sections, we present our method

for zero-shot sketch-based 3D retrieval. We then provide

a comparison to alternative strategies in Sec. 6. To enable

sketch-based 3D shape retrieval, we represent 3D shapes us-

ing their multi-view projections, commonly used in sketch-

based retrieval [54, 21, 23, 8, 63, 30, 62, 57]. To reduce

the domain gap, we use NPRs (Non-Photorealistic Render-

ings) instead of RGB renderings for multi-view 3D shape

representation. In the supplemental, we provide a detailed

study of the ability of the popular pretrained models to dis-

criminate individual 3D instances in their multi-modal 2D

projections: we compare RGB renderings, NPRs, and free-

hand sketches.

3.1. Zero-shot

Given an encoder, trained on a pretext task, we first com-

pute embeddings of a Query sketch Q and Gallery 3D shape

G views using features of a chosen encoder’s layer. We

then assign the similarity between a sketch and a 3D shape

as the maximum cosine similarity between a sketch embed-

ding and individual 3D shape views embeddings. Formally,

this can be written as follows:

sim(Q,G) = max
v∈views

d(E�(Q),E�(Gv)), (1)

Gv is a 3D shape view, El(·) denotes layer � features ex-

tracted with the encoder E and d is the cosine similarity1.

We center and scale 3D objects in query and shape views

to fit the same bounding box in both representations.

3.2. Fine-tuned but zero-shot

We propose a contrastive view-based fine-tuning ap-

proach that leverages synthetically-generated sketches of

single or multiple 3D shape classes. We represent all

available 3D shapes with V views, using two different ap-

proaches to synthetic sketch generation: geometry-based

non-photorealistic rendering [1] and an image-to-image

translation method that supports different exemplar styles

[6]. We describe the generation of views in Sec. 4.2.2.

Our contrastive loss aims to match identical shape views

in these two synthetic sketch styles. Namely, given a batch

with B objects, we randomly select one view in two styles

for each object. We then compute the pairwise weighted dot

product between any two views in two different styles:

si,j := s(Gst1
i , Gst2

j ) := et < E�(G
st1
i ),E�(G

st2
j ) >,

(2)

< ·, · > is a dot product, Gst
i is some view of the i-th object

in the mini-batch in one of two styles, and t is a learned

parameter.

1We experimented with the Mean Squared Error (MSE) distance, tak-

ing the minimum MSE distance between a query and shape individual

views. We have not observed an obvious advantage of one other another.
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Finally, we compute the following contrastive loss:

L = − 1

2B

B∑
i=1

(
log

exp(si,i)∑B
j=1 exp(si,j)

+

log
exp(si,i)∑B
j=1 exp(sj,i)

)
. (3)

Due to our batch construction, this objective trains the net-

work to produce features such that the same views of the

same object in different styles have similar embeddings.

This objective neither pushes different views of the same

object to have identical embeddings nor pushes them apart.

Fine-tuning updates the weights of the visual encoder and

the temperature parameter t.
Note that Eqs. (1) and (2) can be computed based on the

features from any layer and not only the final one. In this

case, we only updated the weights up to the layer whose

features we use to compute similarity.

4. Implementation details
4.1. Encoder

In the default setting, as an encoder, we use ViT pre-

trained with CLIP. We compute similarity using the 6-th

layer.

4.2. Datasets

We use two types of datasets: (1) the dataset of freehand

sketches by participants without art experience, and (2) the

dataset of synthetically generated sketches in two styles for

11 classes of the ShapeNet 3D shape dataset [7]. Different

styles are shown in Fig. 1, and described in detail below.

4.2.1 Freehand sketches

We use the dataset of freehand sketches by Qi et al. [36]

to evaluate the models’ performance. This dataset contains

sketches for two shape categories: chair and lamp, repre-

senting 1,005 and 555 3D shapes from the respective class

of the ShapeNet dataset [7]. The sketches are created by

participants without any prior sketching experience, and fit

well the scenario we are targeting. The sketches are drawn

from a viewpoint with a zenith angle of around 20 degrees.

For each category three settings of azimuth angles are used.

For the chair category, they are 0◦, 30◦ and 75◦, while for

the lamp category they are 0◦, 45◦ and 90◦. These partic-

ular viewpoints are selected as the most likely viewpoints

based on sketching literature [14, 4, 55, 31, 26, 18] and pi-

lot studies conducted by Qi et al. [36].

The dataset provides a split to training, validation, and

test data. To facilitate comparison with previous supervised

work, we only use a test set of sketches to test models. The

test set consists of 201 and 111 sketch-3D shape quadruplets

for the chair and lamp categories, respectively. We do not

use any freehand sketches for training. Prior to testing, we

re-scale and center objects’ projections in freehand sketches

to occupy the central image area of 129× 129.

4.2.2 Synthetic sketches

Additionally, we create a dataset of synthetic sketches in

two styles, representing 3D shapes from the ShapeNetCore

3D shape dataset [7]. We select 11 of the 13 ShapeNetCore

classes, discarding two classes with the lowest number of

3D shapes.

Views and camera setting We follow camera settings

used to collect sketches in the dataset of freehand sketches

[36]. In particular, we use for all shape classes viewpoints

with the following azimuth angles: 0◦, 30◦, 45◦, 75◦ and

90◦. We set the camera distance to an object to 2.5 and

the camera zenith angle to 20◦. The size of rendered views

is 224× 224 unless specified otherwise.

NPR (style-1) We render views using silhouettes and

creases lines in Blender Freestyle [1]. We render views

as SVGs and then re-scale and center objects’ projections

in freehand sketches to occupy the central image area of

129 × 129. Prior to rasterization, we assign each stroke a

uniform stroke width of 2.2px.

Anime (style-2) We obtain the second synthetic sketch

style by first rendering RGB images of 3D shapes using

Blender Freestyle with the same camera settings as for the

first NPR synthetic style. We then re-scale and center ob-

jects’ projections in RGB renderings to occupy the central

image area of 129 × 129. Finally, we generate synthetic

sketches in the second style, using the pre-trained network

[6] in anime style.

4.3. Data usage

4.3.1 3D Shape representation

We represent a 3D shape with its multi-view NPR projec-

tions: We use the set of 0◦, 30◦, 45◦, 75◦ and 90◦, common

for chair and lamp category sketches from the AmateurS-
ketch dataset [36], to represent 3D models.

4.3.2 Fine-tuning

We split 3D shapes in each class into training (70 %), vali-

dation (15%), and test (15%) sets. We set the learning rate

to 10−7, the batch size to 64, and use the Adam optimizer.

We note that the choice of the learning rate is critical, as
larger learning rates will result in overfitting harming the
performance.
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Query Top-5:  Shapes and best matching view Query Top-5:  Shapes and best matching view

(a)

Top-5: Fine-tuned on ariplanesTop-5: Fine-tuned on boats Top-5: Fine-tuned on benchesQuery Top-5: Not fine-tuned 

(b)

Figure 2. Qualitative results obtained with features of the 6th layer of the ViT encoder pretrained on CLIP and fine-tuned using our method.

The queries are freehand sketches from the AmateurSketch dataset [36]. Green boxes highlight groundtruth shapes. (a) shows retrieved

shapes and the best matching view according to Eq. (1); (b) shows retrieval results without our fine-tuning and with fine-tuning on each of

the free classes: boats, benches, and airplanes.

Data augmentation While fine-tuning, we augment syn-

thetic sketches in the anime style with random affine trans-

formation, translation, rotation, and scaling operations.

This augmentation simulates the type of distortions that

we can encounter in freehand query sketches. Even if we

scale and center objects in freehand sketches in process-

ing, sketches might contain small rotations. The transla-

tion moves an image along the x and y axes for a random

number of pixels in the range [−10%,+10%] of the image

size. The rotation is sampled between [−10,+10] degrees.

Finally, we increase or decrease the object’s bounding box

size by a random value in the range [-10%, +10%] of the

image size.

Checkpoint selection We train our fine-tuning model for

500 epochs. At test time we use the weights from the last

epoch.

4.3.3 Test time

We test our retrieval models on the freehand sketches. We

also test on synthetic sketches to show generalization to

other shape classes. By default, we use sketches in the

anime style with azimuth angles set to 0◦, 45◦, and 90◦

as queries. To facilitate comparisons with performance on

freehand sketches, for each shape class we form the final

test sets by randomly selecting just 200 3D shapes non-

overlapping with training or validation sets.

5. Results
To evaluate retrieval accuracy, we use the standard for

retrieval tasks Top-1 (Acc@1), and Top-5 (Acc@5) accu-

Chairs Lamps
Avg. score.

Anime → NPR

Method acc@1 acc@5 acc@1 acc@5 acc@1 acc@5

[36] 56.72 87.06 57.66 87.39 n.a. n.a.

[9] 83.08 97.01 78.08 95.50 n.a. n.a.

ViT-CLIP L-6 74.79 89.39 73.27 89.49 82.48 93.82

ViT-CLIP* L-6 77.11 92.32 78.38 92.39 87.84 97.13

Table 1. Our zero-shot results versus supervised methods: [36]

and concurrent to our work [9]. Neither [36] nor [9] provide code,

therefore, we use the numbers provided in their respective papers.

For the ViT-CLIP methods, we center and scale objects in refer-

ence and query views according to optimal scaling. L-6 indicates

the layer whose features we use for similarity computation. ViT-
CLIP* represent the average performance results of three individ-

ual fine-tuning experiments on the three classes: boat, airplane,

and bench, using synthetic sketches. Avg. score. anime represents

average results on 11 classes where queries are in anime style and

gallery shapes are represented using muti-view NPR projections.

The boldface font highlights the best results, and the underscore

highlights the second-best results.

racy measures. They evaluate the percentage of times the

ground-truth is returned among the top 1 and top 5 ranked

retrieval results, respectively.

Tab. 1 (ViT-CLIP L-6) shows the retrieval accuracy of

our zero-shot setting on the freehand sketches and synthetic

sketches in anime style. We then perform three individual

fine-tuning experiments on three classes: boat, airplane,

and bench, using synthetic sketches, and report an average

accuracy over the three experiments in Tab. 1 (ViT-CLIP*
L-6). We compare with two supervised works by Qi et al.

[36] and Chen et al.[9] who train on one class at a time and

use freehand sketches from [36]. As no code is available

for the competitors, we report the numbers from their re-
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Figure 3. Role of the object projection area, line width, and feature layer in the ability to predict similarity between views in different

domains. Please see Sec. 6.2 for the details.

spective papers.

Our zero-shot models are able to achieve remarkable re-

sults, surpassing [36] in all respects. This shows the gen-

eralization ability of our method to different styles and di-

verse shape classes. Compared to concurrent to our work

[9], we can see that accuracy of our zero-shot method can

be further improved. Note that on the lamp category we

outperform the concurrent supervised method in top-1 ac-

curacy, while our method is zero-shot! Our fine-tuning but
zero-shot improves top-1/5 retrieval accuracy on average by

4.3 and 3 points, respectively, over zero-shot performance.

The visual results for our method are shown in Fig. 2.

6. Ablation studies

6.1. Choice of an encoder and pretext task

In this section, we compare (1) two types of encoders:

ViT and ResNet, and (2) two types of pretext tasks: CLIP

training and classification task training on the ImageNet

dataset [2]. All the models share the same input image size

of 224 × 224 except for ViT pre-trained on ImageNet. In

the latter case, the image size is 384 × 384, and we re-

scale and center objects’ projections in freehand and syn-

thetic sketches to occupy the central area of 291× 291.

Tab. 2 shows the comparison in retrieval accuracy in

a zero-shot setting without fine-tuning for several best-

performing layers. It shows that ViT encoder pretrained

with CLIP model achieves the best results, and justifies the

use of it as our default in most of the experiments. In-

terstingly, training on the ImageNet for the RestNet en-

coder gives slightly better performance than training with

Chairs → NPR Lamps → NPR
Avg.score

Anime → NPR

Method acc@1 acc@5 acc@1 acc@5 acc@1 acc@5

ViT CLIP L-6 74.79 89.39 73.27 89.49 82.48 93.82

ViT ImageNet L-5 63.35 82.92 66.67 87.99 81.77 94.14

ResNet CLIP L-3 65.17 84.08 69.97 87.99 76.97 90.36

ResNet ImageNet L-3 66.50 82.09 65.77 88.89 83.82 95.29

Table 2. Comparison of ResNet and ViT encoders trained either

with CLIP model or classification task on the ImageNet dataset.

See Sec. 6.1 for the details. In all cases, objects in sketches are

optimally scaled and centered.

the CLIP model.

6.2. Object projection area, line width and feature
layer

In our preliminary experiments, we observed that scaling

sketches and 3D model projections to fit the same bound-

ing box area results in improved retrieval accuracy (See

Tab. 3). These findings also align with the experiments in

[9]. We then are interested in how sensitive different back-

bones (ViT and ResNet) are to (1) the scale of the object in

the image plane; (2) the line width, and (3) how the accu-

racy of feature similarities according to features from dif-

ferent layers varies with object scale.

Chair Lamp
acc@1 acc@5 acc@1 acc@5

ViT-CLIP L-6 w/o alignment 69.82 86.40 67.27 87.69

ViT-CLIP L-6 74.93 89.39 73.27 89.49

Table 3. Comparison of the zero-shot retrieval performance of the

ViT encoder trained with CLIP on the datasets without objects cen-

tering and rescaling vs. on the datasets where objects in sketches

are centered and scaled as described in Sec. 4.3.
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Chairs → NPR Chairs → Anime Lamps → NPR Lamps → Anime
Avg.score

Anime → NPR

Avg.score

NPR → Anime

Method acc@1 acc@5 acc@1 acc@5 acc@1 acc@5 acc@1 acc@5 acc@1 acc@5 acc@1 acc@5

ViT CLIP L-6 74.79 89.39 63.35 80.93 73.27 89.49 62.16 82.88 82.48 93.82 77.03 90.94

Table 4. NPR vs. Anime 3D shape representation. In the notation X → Y , X is a query domain and Y is a 3D shape representation

domain.

6.2.1 Object bounding box size & line width

We first obtain an initial common bounding box size (170×
170) by taking the smallest square bounding box that fully

encompasses objects in all sketches in the dataset of free-

hand sketches in the form they are provided by Qi et al. [37].

We rescale and center all object projections in all freehand

and synthetic SVG sketch versions to this bounding box.

We then use two settings of line width: thick (set to 2.2px)

and thin (set to 1.0px) that we assign to all strokes (Fig. 3:

1st vs. 2nd rows), and rasterize the sketches. We evaluate

varying scaling of the original 170×170 bounding box size,

by rescaling raster images so that the object projections are

within varying bounding box sizes from 85×85 to 187×187
with 60 uniform steps (Fig. 3: scale in horizontal axes).

First, we observe that among the two considered line set-

tings, thicker lines result in better retrieval accuracy. For

freehand sketches, scaling between 0.7 and 0.8 that repre-

sents bounding boxes with sizes 119× 119 and 136× 136,

respectively, result on average in top performance across

encoder architectures and feature layers. For synthetic

sketches, the large the object in a sketch is, the more ac-

curate is the prediction. We believe that is caused by two

factors (1) the great degree of spatial alignment between

two types of synthetic sketches and (2) the presence of very

thin lines in anime style sketches at smaller object scales.

6.2.2 Feature layers

We study how retrieval accuracy varies when feature simi-

larity is computed on features from different layers for dif-

ferent object projections bounding box sizes. In Fig. 3, we

plot accuracy for similarity in Eq. (1) computed with fea-

tures from layers 4, 6 and 11 of the ViT encoder, and layers

2, 3 and 4 of the ResNet, both trained with CLIP (Fig. 3:

first three columns vs. last three columns).

Fig. 3 shows that on the two categories of the dataset of

freehand sketches features from mid-layers – ViT layer 6

and ResNet layer 3 – result in the best performance for both

architectures. On synthetic sketches, slightly better perfor-

mance is achieved with features from lower layers: layer 4

of ViT and layer 2 of ResNet. It can be also observed that

for lower layers (ViT layer 4 and ResNet layer 2) the perfor-

mance is increasing as object area is decreasing, while for

higher layers (ViT layer 11 and ResNet layer 4) the behav-

ior is opposite. The intuition is that the features from higher

layers are better suited for more abstract sketches and ex-
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Figure 4. Top-1 retrieval accuracy vs. epoch number, when ViT

encoder is trained from scratch as described in Sec. 6.3 on syn-

thetic sketches of the bench class.

tracting sketch semantic meaning, while lower layers focus

more on spatial details. Indeed, as NPR and anime synthetic

sketches are spatially more similar than NPR and freehand

sketches, the lower layers result in better performance when

anime sketch is used as a query.

6.3. Fine-tuning vs. training from scratch

To show the advantage of fine-tuning in the zero-shot

scenario, we compare our approach with training from

scratch on a single bench class. We use our fine-tuning

training objective to train ViT encoder from scratch. Fea-

tures from the 6th layer are used. Therefore, we keep only

the network part up to the 6th layer including. Since we

train from scratch, we set a larger starting learning rate of

10−5 for the Adam optimizer.

Fig. 4 shows that training from scratch is prone to over-

fitting: It results in a drop in Top-1 retrieval accuracy on

the test set of the bench class starting from the 150th epoch.

After the 80th epoch, the accuracy improves very slowly

for the lamp class and does not improve anymore for the

chair class. Note that during training the contrastive loss

Eq. (3) decreases over all 500 epochs. Moreover, for all

three considered classes, the retrieval accuracy is quite low:

it is below 30%, while the Top-1 retrieval accuracy of our

approach surpasses 70%. The overfitting result is similar to

observations in [9] when they use only one branch to repre-

sent both sketch and image modalities.

6.3.1 3D shape representation: NPR or anime

As we have two synthetic sketch styles (Sec. 4.2.2), we eval-

uate our choice of representing 3D shapes with NPR views

against views in the anime style. Tab. 4 shows a clear ad-

vantage of representing 3D shapes using NPR renderings in
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both considered cases: when query sketches are freehand

sketches or synthetic sketches.

6.3.2 Feature aggregation strategy

We evaluate our similarity computation strategy between a

query sketch and 3D shape, given by Eq. (1), against an

alternative strategy of computing the cosine similarity be-

tween the query sketch embedding and the average of 3D

shape views embeddings:

sim(Q,G) = d

(
E�(Q),

1

V

∑
v∈views

E�(Gv)

)
, (4)

where, as in Eq. (1), Q and G denote a query sketch and

a gallery shape; Gv is a 3D shape view, V is the number

of views for an object (5 in our case), E�(·) denotes �-th
layer features of the encoder E, and d stands for the cosine

similarity.

Chair Lamp
acc@1 acc@5 acc@1 acc@5

Avg. - ViT-CLIP L-6 70.32 89.72 63.06 78.08
Max. - ViT-CLIP L-6 74.93 89.39 73.27 89.49
Avg. - ViT-CLIP* L-6 74.72 90.71 66.97 82.28
Max. - ViT-CLIP* L-6 77.11 92.32 78.38 92.39

Table 5. Comparison of feature selection strategies on the test set

of the freehand sketch dataset.

Tab. 5 shows the comparison of the two similarity com-

putations strategies for the ViT encoder trained with the

CLIP model in zero-shot or our fine-tuned setting. It can

be seen that in all settings our strategy is superior to this

alternative strategy, with a gap of almost 3 points in Top-1

retrieval accuracy on chairs, and of more than 10 points in

both Top-1 and Top-5 on lamps.

6.3.3 Fine-tuning strategies

We compare our fine-tuning strategy with two alternative

strategies of fine-tuning only the weights of layer normal-

ization layers [16] and Visual Prompt Tuning (VPT) [22],

which we refer to as ViT-CLIP LayerNorm and ViT-CLIP
VPT, respectively. We train the two additional strategies un-

der the same conditions and loss as our fine-tuning strategy

but set a higher learning rate of 10−5.

The VPT approach consists in adding learnable tokens to

the attention layers of the feature extractor. During training,

all the original network weights are fixed and only the new

tokens are updated. We use the deep prompt setting and

add 5 additional tokens on the first 6 layers of ViT. As we

observe that with VPT the performance on the validation set

of the freehand sketch dataset starts to decrease after 100

epochs, we stop the training at 100th epoch and use the last

checkpoint.

Chair Lamp
acc@1 acc@5 acc@1 acc@5

ViT-CLIP L-6 74.93 89.39 73.27 89.49

ViT-CLIP LayerNorm L-6 74.96 90.71 73.87 91.59
ViT-CLIP VPT L-6 73.80 90.22 73.57 90.99
ViT-CLIP* L-6 (Ours) 77.17 92.32 78.38 92.39

Table 6. Comparison with the alternative fine-tuning strategies on

the test set of the dataset of freehand sketches.

Tab. 6 shows that both, the layer normalization layer

tuning (ViT CLIP LayerNorm L-6) and VPT (ViT CLIP

VPT L-6), allow for increased performance compared to the

zero-shot ViT (ViT-CLIP L-6) without fine-tuning. How-

ever, our fine-tuning strategy (ViT-CLIP* L-6) achieves the

best performance.

7. Limitations and Future Work

While the ViT transformer was proven to be a very ef-

ficient encoder for an image domain, it might be not the

best for sparse sketches. In the case of sketches, non-

overlapping patches can contain too little meaningful in-

formation and alternative encoder designs should be con-

sidered. One such design was recently proposed by Lin et

al. [29]. Another direction to explore is to combine vec-

tor and raster sketch encoders. To achieve zero-shot per-

formance, the models with tailored encoders then can be

trained in a multi-modal setting.

Next, our fine-tuning strategy can be expanded to include

multi-modal training. For example, if textual descriptions

of 3D shapes are available, they can be seamlessly inte-

grated into our fine-tuning process.

8. Conclusion

In this work, we introduced an effective zero-shot

sketch-based 3D shape retrieval method. We demonstrated

how to efficiently adapt models pretrained on different pre-

text tasks, like CLIP, to the studied problem. We show that

it is possible to fine-tune a model leveraging only synthetic

sketches of a single shape category and demonstrated gen-

eralization to freehand abstract sketches of other shape cat-

egories. We also showed that performance is similar inde-

pendently of the choice of a shape category for fine-tuning.

We bring insights into the role of object scale in the im-

age plane and provide recommendations taking into account

query abstraction. We compare the performance of two

popular image encoders ViT and ResNet and show that the

same object scale is beneficial for the two encoders under

consideration regardless of the pretext task used. We also

carefully study the role of object scale in the image plane

and provide recommendations taking into account query ab-

straction. We believe that our work provides valuable infor-

mation for methods aimed at assessing the perceptual simi-

larity between sketches in different styles.
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