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Abstract

This paper introduces our methods in creating a compre-
hensive evaluation resource for assessing the capabilities
of algorithms aimed at segmenting and perceptually group-
ing 2D mechanical technical drawings. Our dataset encom-
passes a diverse collection of such drawings, accompanied
by semi-automated annotations of segments and groups.
These annotations were reviewed by domain experts, fol-
lowing detailed guidelines to ensure both consistency and
top-notch quality. The dataset is intended to serve as an in-
valuable asset for researchers dedicated to advancing tech-
niques that enhance the comprehension and interpretation
of 2D mechanical drawings.

1. Introduction

Technical drawings serve as a universal language that en-

ables engineers, designers, and manufacturers to effectively

communicate intricate details and specifications of a prod-

uct. By capturing essential dimensions, tolerances, and ge-

ometric configurations, technical drawings lay the founda-

tion for successful and precise manufacturing processes.

One of the primary purposes of technical drawings is to

convey critical tolerance information that ensures the ac-

curacy and functionality of the end product. Tolerances

define the permissible variations in dimensions, ensuring

that the manufactured components fit together seamlessly

and perform as intended. These drawings provide a visual

representation of how different parts fit and interact within

an assembly, aiding in the identification of potential issues

and streamlining the production process. However, under-

standing and interpreting these drawings can be challeng-

ing due to the complexity and variability of their content.

To address this problem, researchers have developed vari-

ous techniques for automatically segmenting and grouping

the elements in technical drawings, with the goal of improv-

ing their readability and comprehension. There has been a

significant amount of research on techniques for segment-

ing and perceptually grouping elements in 2D mechanical

technical drawings.

Datasets In research papers, most of the work done on

technical drawings refers to the architecture, engineering

and construction industries. We can cite [6], which presents

a large-scale real-world CAD drawing dataset of floor

plans. Similarly to vehicle conception drawings, architec-

ture drawings are composed of line segments, arcs, curves,

and texts.

The authors of [1] proposed a benchmark of four kinds of

drawings: mechanical, architectural, and two distinct types

of utility drawings.

On the other hand, segmentation datasets encompass a

wide range of domains, offering extensive coverage. The

authors of [22] propose a large dataset for semantic seg-

mentation of medical images. The analysis of urban scenes

is another application([20], [2]), used essentially for au-

tonomous driving or urban security concerns. The authors

of [12] propose a composite dataset from different domains

(Cityscapes [2], Mapillary [16], COCO [13], ADE20K [27],

and others), in order to do cross-domain semantic segmen-

tation by training a single generic model that can be applied

to images even not seen during training.

(Video object segmentation [18], instance segmenta-

tion [8].)

Multi-view segmentation in also applied to different fields

and images, like plants [21], Jacquard patterns (in textil

field) [24], radars [17] or car detection [9]. [19] and [11]

exploit the geometry of 3D mesh reconstructed from multi-

view images (e.g. for scene understanding).

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Between the research done on 3D graphical models and im-

ages, we can also cite [14], where the authors prepared a

dataset of computer-generated sketch data. The dataset is

collected from CAD databases, and can be used for build-

ing a retrieval system for 3D CAD models. [10] proposes an

approach for segmenting 3D shapes into labeled semantic

parts. The key idea of their approach is to combine image-

based fully convolutional networks for view-based reason-

ing, with a surface-based projection layer, for more coher-

ent shape segmentations. [26] proposes a method to syn-

thetically generate a large amount of technical drawings in

order to be used for training drawing component segmen-

tation models. Their method is essentially based on the

randomization of the dimension sets under two constraint

conditions. In addition to datasets specifically designed for

2D drawings, there are also datasets that provide segmenta-

tion annotations for 3D CAD models. While these datasets

may not be tailored exclusively to 2D drawings, they hold

the potential for inferring 2D segmentations. Among such

datasets, noteworthy examples include: The study by [25]

introduces a minimalist language encompassing fundamen-

tal sketching and extrusion modeling operations. Their ap-

proach is underpinned by a dataset containing a substantial

collection of 8,625 human-designed sequences, all meticu-

lously expressed within the confines of this simplified lan-

guage. [4] introduces the CC3DOps dataset, featuring 37k

CAD models annotated with operation type and step labels.

Additionally, they present the CADOps-Net, a deep neu-

ral network that cohesively learns CAD operation types and

their step-wise decomposition.

Technical/engineering drawings analysis The authors

of [23] propose a hybrid approach to build a parser which

automatically interpret technical drawings. They combine

image segmentation (DBSCAN) and object recognition ap-

proaches (CNN, ResNet-50) for extracting and identifying

the principal drawing components, and ILP approaches for

extracting tables properties.

[5] proposes a novel technical drawings vectorization

method, based on deep vectorization model and primi-

tive optimization approach, with pre-processing (cleaning)

and post-processing (minimizing the number of primitives)

steps. [3] highlights the dual nature of engineering draw-

ings (mixture of objects and annotations) and proposes a

CAD conversion strategy based on the iterative nature of

understanding engineering drawings by expert humans. The

authors summarize its major functions as follows: primi-

tive recognition, syntax-based annotation analysis and layer

separation, functional analysis of each view, and 3D recon-

struction.

The authors of [15] propose a general framework for engi-

neering drawing digitization based on the following steps:

drawing pre-processing, shape detection, feature extrac-

tion and representation, classification, and contextualiza-

tion. While exploring the state-of-the-art approaches, they

highlight two major challenges for applying CNNs in this

domain: the lack of sufficient annotated examples, and the

complexity for designing a generic digitization platform due

to the diversity in term of image quality ranges, standards

and rule sets for complex engineering drawings.

The authors of [7] focus on view and section identification

of technical drawings. They model the relationship among

various views by a graph representation and validate these

relations by an approach based on evidence theory.

2. Dataset
2.1. Technical drawings

The technical drawing of a part is considered as a techni-

cal and graphical communication tool which aims at facili-

tating the interpretation of a particular shape. This drawing

provides, in the form of a plan, the tolerances and dimen-

sions required for manufacturing. This graphical language

is based on a set of criteria and rules known as international

standards and composed of the following components:

• the objects composing the part, represented by differ-

ent types of lines, circles, ellipses and arcs.

• the different views of the part (front, back, left, right,

top, bottom, transverse and perspective views),

• the title bloc known also as information block and lo-

cated in the bottom right-hand corner of the page. This

block provides a better understanding of the techni-

cal drawing and contains the part name, the designer’s

name, the drawing number, the measurement unit, the

material of the construction, the scale, the angle of pro-

jection, etc.

• the objects quotations.

In this work, we focus on images, and ignore the textual

parts of the technical drawings, except quotations.

As mentioned beforehand, the objects composing the

part are represented through different types of lines. Each

line has a specific signification and can be:

• continuous line: this type represents the physical

boundaries of an object. We can find thick lines used

on the outside contour and thin lines on the inner con-

tour,

• hidden line: the dashed lines are drawn to represent

invisible or hidden edges of the object behind the main

lines,

• center line: drawn to show the centers of the round

elements,
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Figure 1. Example of a section and detail view

• section line: these lines are used to show the internal

sections like holes in section planes,

• extension and dimension line : generally represented

as thin lines and drawn to show dimensional features

and lengths of the objects in technical drawings,

• cutting plane line: intermittent and thick lines, used to

represent a plane in which sectional view is taken.

The different lines detailed above constitute the part’s

views in the technical drawing. Each view has a particular

purpose and should not duplicate information already

shown in another view. The most common views used in

an engineering drawing are : front, top and side views.

Nevertheless, some additional views can be necessary to

represent more information such as section and detail view

(see figure 1).

2D Technical drawings can offer information absent in

3D CADs or highlight certain aspect of 3D CADs. In

both cases, 2D drawings tend to avoid redundancy i.e.

information available in 3D CADs. Hence, the dataset that

we present in this work is not generated from 3D CADs but

rather manually constructed by experts.

2.2. Annotation

We collect a set of technical drawings (a total number of

371) used in vehicle design, by the aid of multiple mechan-

ical experts. For confidentiality, we mask some sensitive

information in their title blocs. The drawings are complex,

and contain various entities like lines, circles, ellipses, arcs

and quotations.

To annotate our ”real life” technical drawings, we develop a

graphical interface (by JAVA and the swing API), which let

the user (here a mechanical expert) to (1) identify the differ-

ent views, (2) specify the different objects in each view, and

(3) to do the correspondence of objects among the different

views. The resulting annotations will be saved in JSON for-

mat. In the following parts of this section, we describe each

one of these functionalities.

2.2.1 View Detection

As said before, a technical drawing is composed of multi-

ple elements, especially the different views of a mechanical

part: front, back, left, right, top, bottom, perspective, cross

sections, zoomed and combined views.

The user can identify each view by its type by a bounding

box (Figure 2). The type of the view and the coordinates of

the left upper and the right down points of the bounding box

are saved in a JSON file for each technical drawing.

Figure 2. The view identification module of the graphical interface

2.2.2 Object Segmentation

After identifying the different views, the user will be

redirect to the object segmentation module, where he can

specify the different objects of each view using a list of

graphical primitives. The list is composed of the followings

elements: continuous line, dashed line, double dashed

lines, circles, ellipses and arcs.

As showed in Figure 8, the user can specify each object

by validating it via a “validate object” button. By this act,

each object segmentation will be shown in a different color,

and its corresponding annotation will be saved in a JSON

file. The content of the JSON file will be discussed in

section 2.3.

In this phase, the object annotations are done by the user

clicks. The resulting images and their annotations will be

used to train an image recognition algorithm, which will

be tested on real technical drawings. So it is important to

have images the most similar to the original ones. To guar-

anty the quality of the generated images and annotations,

we propose to the user some functions to let him produce

almost exactly the same images:

Line: The user can create geometric forms like square or

rectangle by specifying their composed lines. To draw a

line, we ask the user to click on its two endpoints.
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As said before, the quality of the resulting image is pri-

mordial. To this end, we make available the following op-

tions: to guaranty the well alignment of vertical and hori-

zontal lines, the user can specify it by pushing the ”Shift”

keyboard key. The Figure 3 illustrates the difference be-

tween two versions without using the alignment function

(3.a), and by using it (3.b).

Figure 3. The ”Shift” aligned closing point function result

Also, to draw a closed form, we allow the user to align

his first and last clicks by pushing the ”CTRL” keyboard

key. This action allows us to have a well closed form. The

Figure 6 illustrates the difference between the two versions

without using this function (4), and by using it (5).

Circle: For drawing a circle, we ask the user to click on

the upper and bottom points of the circle. Based on these

clicks, we compute the x and y indexes of the upper left

corner of the circle bounding box, and the diameter of the

circle (equal to its width and height).

Ellipse: To reproduce an ellipse, we ask the user to click

on its two longer extremity points and a shorter one. Based

on these three points, we compute the center of the ellipse

and its rotation angle, which are necessary to draw it.

To obtain a specific arc, we need to know four data points

of it. So, for drawing an arc, we ask the user to specify the

following data points (illustrated in Figure 7: the two end-

points of the arc, its middle extremity point, and one middle

points between an endpoint and the middle extremity point.

The Equation 1 illustrates the equation of a conic. We

consider an arc as part of an ellipse. So to find the arc

points, we first solve the equation system 2, to find solu-

tions for the coefficients A,B,C and D. Then we consider

the arc bounding box and explore the points in this bound-

ing box, by going trow them, iteratively, line by line (and

then column by column). In each iteration, we compute the

Equation 1 of the points, and select the one with the nearest

equation solution to one, as an arc point.

Ax2 +By2 + Cx+Dy = 1 (1)

Figure 4. Without ”Ctrl”

[b]0.3

Figure 5. With ”Ctrl”

Figure 6. The ”CTRL” aligned line function result

Figure 7. An example of the arc data points asked to the user

⎡
⎢⎢⎣
x2
1 y21 x1 y1

x2
2 y22 x2 y2

x2
3 y23 x3 y3

x2
4 y24 x4 y4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
A
B
C
D

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ (2)

To guarantee a correct segmentation, a particular atten-

tion must be paid by the mechanical expert, while specify-

ing the different objects. In our case, each shape variation

in the main part is considered as a new object and should

be annotated using a different color. Furthermore, several
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Figure 8. The object segmentation module of the graphical inter-

face

parts in technical drawings are composed of an assembly of

multiple sub-parts. Thus, we consider these sub parts as dif-

ferent objects that need to be annotated with distinct colors.

An example of object segmentation is illustrated in figure 9.

Due to the complexity of some technical drawings, an in-

Figure 9. Object segmentation in a technical drawing from a me-

chanical expert viewpoint

appropriate segmentation can be done. The most common

mistakes that can be made during the object specification

are:

• the annotation of different objects using the same

color: in this case the mechanical expert considers two

distinct objects as a unique one. This can be happen

when the difference between the objects is not clearly

illustrated in the engineering drawing. An example of

this unsuitable segmentation is shown in Figure 10.

The dashed lines in this drawing represent two holes

with different diameters which must be colored differ-

ently.

• the annotation of the same object with two different

colors: this error can be made when an object is rep-

resented in a view with more than a unique geometric

form. We consider the example shown in figure 11.

The threaded hole is represented through an inner thick

circle and an outer thin three-quarter of a dashed circle.

These circles have to be annotated as the same object

using the same color.

Figure 10. Annotation of two holes

Figure 11. Annotation of a threaded hole

2.2.3 Object annotation

As mentioned before, the annotations of segmented objects

of technical drawings are saved in a JSON file. In this an-

notation file, for each object, we have a list of its composed

elements. The type of the element could be different types

of lines, circles/ellipses or arcs. Depending on the element

type, the following data will be annotate:

• Line: the coordinates of the two endpoints of the line,

• Circle and Ellipse: the coordinates of the upper left

corner of the circle/ellipse bounding box, the cir-

cle/ellipse width and height, its rotation (0 for circles)

and the coordinates of its center point.

• Arc: the coordinates of the upper left corner of the arc

bounding box, its width and height and the list of arc

points.

An example of an annotation file is illustrated in Fig-

ure 12, where we can find a part composed of two objects:

the first one is composed of two continuous lines and an

arc, and the second is an ellipse.

In order to train deep learning models on our data, we

transform the annotations in the coco format [13]. In this

format, we specify some information about each object: its

area, bounding box, category id, image id, segmentation

type (is crowd or not crowd) and segmentation list of

vertices (x, y pixel positions).

There is two different types of annotations: is crowd and
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not crowd. The former consists in iterating on the image

and giving each pixel a boolean value, whether it belongs

or not to the object. Therefore, the pixels that belong to

an object are colored as shown in the Figure 14, while the

latter one is composed of segments that encapsulate the

object as illustrated in Figure 15.

In this work, we found the not crowd annotation type

more efficient, so to specify the segmentation of objects,

we contour its composing elements by polygon vertices as

follows (also illustrated in Figure 13):

• Line: each line is surrounded by a rectangle based on

two parallel lines with a small margin.

• Circle/Ellipse: to segment a circle, we need an exte-

rior circle linked to an interior one. To obtain the exte-

rior circle, we set its x1, y1 (coordinates of the upper

left corner of its bounding box) to x1 − margin and

y1−margin, and a value of 2∗margin will be added

to the width and height. Then for each pixel of this big-

ger bounding box, we compute the circle equation, and

save the points belonging to it. A similar procedure

will be conducted to obtain the interior circle (with a

smaller bounding box, by x1+margin, y1+margin,

width − 2 ∗margin and height − 2 ∗margin). We

keep one point of four of these two linked circles to

construct the circle segmentation.

The same procedure is used for ellipses based on the

ellipse equation.

• Arc: to segment an arc, we specify an exterior segment

linked to an interior one based on the coordinates of the

5 origin arc points.

Figure 12. An extract of the resulting JSON file for the annotation

of a technical drawing view.

Figure 13. Segments of different forms

Figure 14. Samples of the crowded annotation type.

Figure 15. Samples of the not crowded annotation type.

2.2.4 Perceptual Grouping

To guarantee a correct segmentation, it is essential to

match the objects in different views which refer to the

same entity. For this purpose, we developed a module

in the graphical interface (Figure 16) that exposes the

different views with the segmented objects in different

colors. Via the colors palette, the user can define the

correspondence of objects in different views. The mod-

ule will save the correspondence annotations in a JSON file.

Based on the segmentation done previously, the object

correspondence can be defined. This correspondence con-

sists in matching an object with its correspondents repre-

sented in the different views using the colors palette. An

example of an object correspondence in four different views

is illustrated in figure 17.

It is important to note that any inappropriate segmen-

tation can be the origin of some mistakes while defining
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Figure 16. Object correspondence module of the graphical inter-

face.

Figure 17. Object correspondence form a mechanical expert view-

point

the correspondence. Therefore, the mechanical expert must

verify that the objects specification is done correctly. How-

ever, even though the segmentation is done in a correct way,

some confusions can be present during the objects corre-

spondence. In diverse technical drawings, some superposed

objects in a view can be found. Since the engineering draw-

ings are based on the concept of orthographic projection,

this superposition is always present. Nonetheless, the place-

ment of one object above or on top of another one, makes

the correspondence task difficult for the mechanical expert.

Thus, to tackle this issue, the mechanical expert must do the

correspondence of one object and ignore the second one.

We present in Figure 18 an example of superposed objects

in a technical drawing.

Figure 18. Two holes in the top view represented by one object in

the front view

Furthermore, another case can be presented while cor-

responding the different objects, where we can find some

objects represented in a view and hidden in another one.

Figure 19 illustrates this case.

Moreover, the oval holes can be source of some confu-

sions during the objects correspondence. In various techni-

Figure 19. A hidden correspondent of a hole in the perspective

view

cal drawings, the orthographic projection of these holes are

represented by four dashed lines, two outer lines to repre-

sent the rounded corners of the oval hole and two inner ones

for its axis. This representation is similar to an orthographic

projection of two simple holes as shown in figure 20 which

is confusing in some cases. For this purpose, the mechan-

ical expert must verify the technical drawing to make sure

that the drawing is well understood.

Figure 20. Example of the correspondent of an oval hole in a tech-

nical drawing

2.3. Resulting dataset characteristics

In this section, we describe the dataset of mechanical

drawing segmentation and perceptual grouping that was

used to evaluate the proposed approach and the baselines.

2.3.1 Description

The dataset consists of 371 mechanical drawings with anno-

tated segments and groupings, where 371 is the number of

drawings in the dataset. The drawings are obtained from a

variety of sources, including technical manuals, blueprints,

and CAD models, and cover a wide range of styles and

complexity levels. The segments are manually annotated

by expert drafters and represent the different elements in

the drawings, such as lines, symbols, and annotations. The

groupings are also annotated by expert drafters and repre-

sent the perceptual organization of the segments into mean-

ingful units, such as views, components, and subassemblies.

The dataset is divided into a training set, a validation set,

and a test set, with a ratio of 60%, 20%, and 20%, respec-
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tively. The training set is used to train the proposed ap-

proach and the baselines, the validation set is used to tune

the hyperparameters of the models, and the test set is used

to evaluate the final performance of the models.

2.3.2 Statistics

Table 1 shows the statistics of the dataset of mechanical

drawing segmentation and perceptual grouping, including

the number of drawings, segments, and groupings in the

training set, validation set, and test set. The table also shows

the average number of segments and groupings per drawing

in each set.

The dataset is balanced, with a similar number of seg-

ments and groupings in each set. The average number of

segments and groupings per drawing is 75, which represents

a moderate level of complexity for the task of mechanical

drawing segmentation and perceptual grouping. The dataset

includes a diverse range of styles and complexity levels,

which allows for the evaluation of the proposed approach

and the baselines in a wide range of scenarios.

Database count

Drawings Views Objects Groups

371 825 7120 744
Table 1. Statistics of Technical Drawings Database: Number of

Drawings, Views, Objects in a View, and Groups Across Views

Vue type count

Vue Count

FRONT 267

TOP 183

LEFT 86

PERSPECTIVE 334

REAR 3

TRANSVERSE 34

RIGHT 51

BOTTOM 34
Table 2. Statistics of view detection

3. Measurements
There are several ways to measure the visual quality

of the groupings generated by an approach for mechanical

drawing segmentation and perceptual grouping. Here are a

few examples:

Qualitative assessment: This method involves having ex-

pert drafters assess the visual quality of the groupings gen-

erated by the approach and provide a subjective rating. The

ratings can be collected using a structured questionnaire or

a simple scale (e.g., from 1 to 5). The advantage of this

method is that it captures the nuances of the groupings and

allows for a more detailed analysis of the strengths and

weaknesses of the approach. The disadvantage is that it is

subjective and may be affected by the biases of the evalua-

tors.

Objective metrics: This method involves using objective

metrics to quantify the visual quality of the groupings gen-

erated by the approach. Some examples of objective metrics

that can be used include:

Grouping error: This metric measures the average error

between the groupings generated by the approach and the

annotated groupings in the evaluation dataset, using a suit-

able distance metric. A lower grouping error indicates a

higher visual quality.

Grouping compactness: This metric measures the com-

pactness of the groupings generated by the approach, i.e.,

the extent to which the segments in a grouping are close to

each other. A higher compactness indicates a higher visual

quality.

Grouping legibility: This metric measures the legibility

of the groupings generated by the approach, i.e., the extent

to which the segments in a grouping are clearly separated

from the segments in other groupings. A higher legibility

indicates a higher visual quality.

The advantage of this method is that it allows for a more

objective and systematic evaluation of the visual quality of

the groupings. The disadvantage is that it may not capture

all the aspects of the visual quality and may be affected by

the choice of the metrics.

Ultimately, the choice of the measurement for the vi-

sual quality of the groupings will depend on the goals of

the evaluation and the resources available. A combination

of qualitative and objective measurements may provide a

more comprehensive evaluation of the visual quality of the

groupings.

4. Conclusion
In this paper, we presented a dataset of mechanical draw-

ing segmentation and perceptual grouping for the evalua-

tion of approaches for the automatic analysis of mechanical

drawings. The dataset consists of 371 drawings with an-

notated segments and groupings, covering a wide range of

styles and complexity levels. The dataset is divided into a

training set and a test set, with a ratio of 80% and 20%, re-

spectively. The dataset is balanced and includes a moderate

level of complexity, with an average of 7120 segments and

744 groupings per drawing.

The dataset of mechanical drawing segmentation and

perceptual grouping is a valuable resource for the research

community, as it allows for the evaluation of approaches for

the automatic analysis of mechanical drawings in a consis-

tent and fair manner. We hope that the dataset will facilitate

the development of new and improved approaches for this

important task.
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