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Abstract

Point clouds are a set of data points in space to repre-
sent the 3D geometry of objects. A fundamental step in the
processing is to achieve segmentation of the point cloud at
different levels of detail. Within this context, hierarchical
clustering (HC) breaks the point cloud down into coher-
ent subsets to recognize the parts that make up the object.
Along with classic approaches that build a hierarchical tree
bottom-up using linkage criteria, recent developments ex-
ploit the tree-likeness of hyperbolic metric space, embedding
data into the Poincaré Ball and capturing a hierarchical
structure with low distortion. The main advantage of this
kind of solution is the possibility to explore the space of dis-
crete binary trees using continuous optimization. However,
in this framework, a similarity function between points is
assumed to be known, while this cannot always be granted
for point cloud applications. In our method, we propose to
use metric learning to fit at the same time the good similar-
ity function and the optimal embedding into the hyperbolic
space. Furthermore, when arbitrary rotations are applied
to a 3D object, the pose should not influence the segmenta-
tion quality. Therefore, to avoid extensive data augmentation,
we impose rotation invariance to ensure the uniqueness of
the hierarchical segmentation of point clouds. We show the
performance of our method on two datasets, ShapeNet and
PartNet, at different levels of granularity. The results ob-
tained are promising when compared to state-of-the-art flat
segmentation. 1

1. Introduction

In today’s Information Age, digital data has become a

commodity that is easily accessible and widely disseminated.

As a response, many sectors in the industry have embraced

new information technologies, including LiDAR technology,

to facilitate and improve decision-making processes. Nowa-

days, it’s common to create a digital twin or point cloud by

scanning a 3D object with LiDAR. A crucial step is the se-

1Project code: https://github.com/TheCrossProduct/HPCS

mantic segmentation of a point cloud, which aims to partition

each point with a label. It allows achieving an understand-

ing of 3D objects or scenes in many applications such as

infrastructure maintenance or autonomous vehicles. To allow

an extensive and accurate analysis, deep learning enables

us to improve the performance in the quality of predictions.

However, a flat segmentation that creates a partition of non-

overlapping segments is not always sufficient to describe the

input data.

Hierarchical Clustering (HC) provides an analysis of

point clouds to improve the understanding of how parts

are connected at different levels of detail. Hence, in con-

trast to flat segmentation, hierarchical clustering provides

a hierarchy that structures parts across granularity levels,

from coarse- to fine-grained concepts. Hierarchical cluster-

ing can be performed by a variety of techniques, including

traditional algorithms based on similarities between points.

These similarity-based HC methods leverage the pairwise

similarities to decode a tree-like structure as the dendrogram

with a linkage method. In particular, an approach has been

proposed by Dasgupta [7] which, given a weighted-graph

defined on a dataset, introduces a cost function to evaluate

different hierarchical trees. However, the discrete optimiza-

tion in this setting to find the optimal hierarchy is NP-Hard.

Therefore, Chami et al. [5] exploit the ability of hyperbolic

space to implicitly encode a hierarchical structure and pro-

pose a continuous relaxation of the Dasgupta’s cost function

in the Poincaré space.

Although the knowledge of similarities is a general hy-

pothesis for weighted graphs, there is not a straightforward

definition of a similarity relationship for point clouds. For

example, the Euclidean distance is not informative enough,

as two distinct points could be close to each other when

separating two parts in space. Accordingly, hierarchical seg-

mentation of point clouds is confronted with the barrier of

finding a similarity function on the input space. To this end,

we make use of state-of-the-art of deep learning models for

point cloud segmentation to extract features of point clouds.

The main contribution of this paper is threefold:

1. We integrate metric learning in hyperbolic space to find

a similarity function. At the same time, the similarity

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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function is evaluated to determine an optimal embed-

ding successfully.

2. We propose a method to learn a hierarchical clustering

using only the labels of a flat segmentation as ground

truth by means of hyperbolic geometry.

3. Instead of most papers that assume pre-aligned 3D ob-

jects, we integrate a rotation invariant framework to

allow the geometric processing of point clouds in arbi-

trary poses.

2. Related Work
Many research efforts in the field of hierarchical clus-

tering have focused on the development of deep learning

methods by offering a means of continuous representation.

This optimization framework has enabled us to determine a

hierarchy in hyperbolic space and support the functionality

of point cloud segmentation that is invariant to its pose.

3D Point Cloud Processing The state-of-the-art applica-

tion of deep learning to point cloud data is designed to pro-

cess raw point cloud data [11]. PointNet [23] pioneered this

manipulation, proposing to learn a stack of layers invariant

by permutation, but is limited due to its inability to capture

fine-grained concepts. Later, PointNet++ [24] introduced a

hierarchical neural network to enhance the analysis of small

neighborhoods by offering some notion of local similarity.

Because of its inherent ambiguity in defining a neighborhood,

over the years many ways of implementing convolution oper-

ations for point clouds have been proposed [17,29,34]. More

recently, DGCNN [33] exploits the local neighborhood fur-

ther by applying convolutions that compute edge features.

VN-DGCNN [8] incorporates a framework in DGCNN to

facilitate the construction of equivariance and invariance on

arbitrary rotations.

Hierarchical Clustering The development of Dasgupta

[7] formulates a discrete optimization function for HC that

guides a good hierarchy with low cost. Later, Wang and

Wang [31] proposed an extended formulation to induce a

consistent hierarchy given a similarity graph. Chami et al. [5]

derive a continuous analogue in hyperbolic space to define

a relaxation of Dasgupta’s cost function. More importantly,

they propose to learn an optimal embedding in the Poincaré

disk, where a tree-like structure is observed to decode a hi-

erarchy. In addition, as studied by Sarkar [26], hyperbolic

space has the property to realize low distortion. The origi-

nal approaches assume that the similarity structure between

points is known in advance. In the work of Gigli et al. [10],

the pairwise similarities were learned with the application of

a triplet loss and the hyperbolic clustering function of Chami

et al. [5]. While most works focus on applying a hyperbolic

embedding in text or graphs, only limited research efforts

have assessed the quality of hierarchical clustering for 3D

point clouds. Nonetheless, other works use the hierarchical

nature of the hyperbolic space along with metric learning to

learn representation of images [9, 12]. In regard to 3D point

clouds, Montanaro et al. [20] propose to embed point clouds

to account the part-whole hierarchy for classification. Our

segmentation contribution differs from [20] due to the use of

a rotation-invariant framework presented in Section 3 and a

large margin cosine loss in Section 4.

3. Background

To sharpen the intuition before defining our method, this

section firstly reviews the background to introduce the opti-

mization of hierarchical clustering in hyperbolic space.

3.1. Similarity-based HC

The classical clustering procedure considers a dataset D
of n datapoints where the pairwise similarities (wij)i,j∈[n]

are known in advance. The similarity between datapoints

is employed by hierarchical clustering (HC) to construct a

binary tree T where each leaf node corresponds to exactly

one datapoint [13]. Clusters of different levels are formed by

merging subtrees at internal nodes, in which the root node

contains the entire dataset D. When two leaves (i, j) are

merged, their lowest common ancestor (LCA) is defined as

i ∨ j. Consequently, T [i ∨ j] is the subtree that depicts the

smallest cluster including both i and j. In the case of three

leaf nodes (i, j, k), the relation {i, j|k} holds if i ∨ j occurs

deeper in T than i∨j∨k. The goal of similarity-based HC is

to seek a hierarchical clustering by leveraging the similarity

structure between datapoints [6]. Therefore, Dasgupta [7]

proposed a cost function to assess the quality of a hierarchy:

CDasgupta(T ) =
∑
ij

wij |leaves(T [i ∨ j])|. (1)

In order to obtain a low cost, a high wij should be cut as

far down as possible in tree T to minimize the number of

leaves in T [i∨ j]. Although the cost function (1) can initiate

a good tree with a low cost, Wang and Wang [31] noticed

that it resulted in an inconsistent hierarchy given a similarity

structure. Therefore, they suggest a more meaningful cost

function based on triplets of datapoints i, j, k and their lowest

common ancestors (LCA):

CWang(T ;w) =
∑
ijk

[wij+wik+wjk−wijk(T ;w)]+2
∑
ij

wij ,

(2)

where

wijk(T ;w) = wij1[{i, j|k}]+wik1[{i, k|j}]+wjk1[{j, k|i}].
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Consider a triplet (i, j, k) and assume that wij involves

the largest similarity among the three pairwise similarities.

The intuition implies that nodes i and j should be merged

first before node k to pursue a relation {i, j|k}. The cost

function is designed to reward this relation in T as it invokes

the subtraction of the largest similarity wij in the first term

of equation (2). Consequently, the lower similarities wik

and wjk remain to minimize the loss. For a bad tree T that

merges k first with relation {i, k|j} or {j, k|i}, wij is added

only once and thus differs from Dasgupta’s cost function.

A HC is optimal when for all triplets, their relations in T
are consistent with their similarities. Moreover, finding a

tree that optimizes the cost function in (1) or (2) is NP-hard.

Therefore, to introduce continuous optimization, Chami et

al. [5] propose to relax (2) in the hyperbolic space.

3.2. Hyperbolic HC

Hyperbolic geometry has shown great advantages in en-

coding complex information such as point clouds [20], or

images [2, 14]. In this section we review the elements neces-

sary to understand our method. Keen readers can find more

details at [1, 4, 25].

Hyperbolic Geometry A Riemannian manifold is defined

as a pair consisting of a manifold M and a positive-definite

inner product gx in the tangent space TxM at each point

x ∈ M. One can define an exponential map expx which

projects any vector v of the tangent space TxM onto M,

such that expx(v) ∈ M, and inversely a logarithmic map

which projects any point in M back onto the tangent space at

x. The N -dimensional hyperbolic space is an N -dimensional

Riemannian manifold of constant negative curvature −c. It

can be described using several isometric models [4]. We

will use the Poincaré ball model (BN
c , gB

c ) where BN
c :=

{p ∈ RN | c||p||2 ≤ 1}. We assume c > 0, such that BN
c

corresponds to a ball of radius 1/
√
c in Euclidean space. The

Poincaré ball is coupled with a Riemannian metric gB
c (p) =(

2
1−c||p||

)2

gE where p ∈ BN and gE is the canonical metric

of the Euclidean space. The geodesic distance between two

points p, q ∈ BN is specified as:

dBN (p, q) = cosh−1

(
1 + 2

‖p− q‖2

(1− ‖p‖2)(1− ‖q‖2)

)
.

(3)

With the origin q = 0, (3) could be simplified to:

do(p) = d(o, p) = 2 tanh−1(‖p‖). (4)

As opposed to Euclidean geometry, this particular space

has the property to infer the underlying hierarchical structure

of a dataset in its embedding [2,15]. Moreover, as researched

by Nickel et al. [22], (3) is able to reflect the similarity of

objects with their hyperbolic distance. In addition, a Poincaré

embedding provides low distortion to simultaneously learn

the hierarchy and similarities for large trees.

Hyperbolic Optimization The perspective of hyperbolic

space to represent the similarity information between points

as their hyperbolic distance will guide the learning of an un-

derlying hierarchical structure. A differentiable function that

enables the similarities is sought to arrange the embedded

vertices. To propose a continuous version of Dasgupta’s cost

function (1), Chami et al. [5] leverage the hyperbolic proper-

ties to determine a respective LCA. Firstly, given two leaf

nodes i and j of tree T , their LCA i ∨ j is the closest node

to the root r that lies on the shortest path πij connecting

both i and j. More formally, i ∨ j = argmink∈πij dT (r, k)
measures the length of the path from the root r of T to

node k. The same definition applies to the hyperbolic LCA,

where the shortest path between two points zi and zj is rep-

resented by their geodesic and zi ∨ zj is thus the node on

that geodesic zi � zj closest to the origin (see Figure 1).

Consequently, the hyperbolic LCA connects the two points

in zi ∨ zj := argminz∈zi�zj do(z) and the hyperbolic dis-

tance between the origin and LCA is computed using (4).

Figure 1. Given two points zi, zj ∈ BN , the hyperbolic LCA zi∨zj
is defined as the point on the geodesic connecting zi and zj (gray

dashed line) closest to the origin.

Equation (2) was non-differentiable due its term

wijk(T ;w) that sought the LCA among one of relations

1[{i, j|k}], 1[{i, k|j}], 1[{j, k|i}]. With the definition of hy-

perbolic LCA, Chami et al. [5] introduce a differentiable

function to learn an optimal Poincaré embedding. Let Z =
{z1, ..., zn} ⊂ BN be an embedding of a tree T with n
leaves, their cost function is then:

CHypHC(Z;w, τ) =
∑
ijk

(wij + wik + wjk

− wHypHC,ijk(Z;w, τ)) + 2
∑
ij

wij , (5)
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where

wijk(Z;w, τ) = (wij , wik, wjk)·
στ (do(zi ∨ zj), do(zi ∨ zk), do(zj ∨ zk))

�.

The probability distribution outputted by the softmax func-

tion στ (·) is controlled by a temperature τ : στ (w)i =
ewi/τ/

∑
j e

wj/τ . For instance, the model will be more con-

fident about its predictions the closer the hyperparameter

gets to zero. The embedding is accompanied by a learnable

scale parameter that should increase over training to pro-

vide more information and certainty about the tree structure

formed. Moreover, the scale normalizes the embedding in

the Poincaré disk so that all points are on the same radius to

calculate the LCA hyperbolic distance to the origin.

3.3. Rotation-invariant Framework

When arbitrary rotations are applied to a 3D object, the

global object pose should not influence the segmentation

quality. The most commonly used solution is to take advan-

tage of data augmentation, where the inputs are randomly

rotated during training to induce an insensible output to

that transformation [16]. However, data augmentation does

not imply neither equivariance nor invariance. There is a

need to impose invariance while avoiding an extensive data

augmentation of possible rotations during training time. A

group-inspired solution [3], is to construct an invariant func-

tion, from a non-invariant function by summing over all the

group SO(3), which is possible for image but intractable

for 3D points. Another alternative is to use the fact that any

feature computed on a Gram matrix is rotation invariant [27],

however, this is computationally infeasible because an n×n
matrix should be stored in memory during training. There-

fore, Deng et al. [8] propose a lightweight framework that is

integrable into existing architectures as DGCNN. The main

component is a Vector Neuron (VN) representation that lifts

classical neurons with 3D vectors. A neural network consists

out of neurons where each one takes a scalar input x ∈ R.

The stacked scalars form a C dimensional latent feature that

is fed to the neurons of a hidden layer. In specific, a clas-

sical feature x = [x1, x2, ..., xC ]
� ∈ RC with xi ∈ R is

extended to a vector feature V = [v1, v2, ..., vC ]
� ∈ RC×3

with vi ∈ R3. Thus a point cloud with n points, a collec-

tion V = {V1, V2, ..., Vn} ∈ Rn×C×3 is obtained where the

change of latent channels C follows a mapping between lay-

ers that only considers the second dimension of the tensor:

V(d+1) = f(V(d); θ) : Rn×C(d)×3 → Rn×C(d+1)×3 (6)

with d the layer depth and θ the learnable parameters

of the network. The mapping (6) is required to induce

rotation equivariance, i.e. for any rotation matrix R ∈

SO(3), f(VR; θ) = f(V; θ)R. For more detailed infor-

mation about the VN implementation of hidden layers - lin-

ear, non-linear, max pooling and normalization - we refer to

the original paper of Deng et al. [8]. Nonetheless, the idea

behind their invariant layer will be outlined as this is the

property we seek within our method. Therefore, the invariant

architecture leverages the output of equivariant VN layers to

identify an object that is invariant to its pose. The basic prin-

ciple is that the product of an equivariant signal V ∈ RC×3

by the transpose of another equivariant signal T ∈ RC′×3 is

rotation invariant, i.e., (V R)(TR)� = V RR�T� = V T�

for all rotation matrix R. Note that as V T� is a C × C ′

matrix, the computation is feasible for small values of C ′.
Accordingly, we consider C ′ = 3, and use the equivari-

ant MLP proposed in [8], T := VN-MLP([V, V ]) where

V := 1
n

∑
n V ∈ RC×3.

4. Method

The goal of Chami et al. [5] was to discover a hierarchy

of datapoints by leveraging their given pairwise similari-

ties. In this work, the similarities are unknown but learned

end-to-end together with the optimization of a hyperbolic

embedding. Therefore, a similarity function is learned such

that it would enable us to determine a hierarchy in a Poincaré

ball BN . The objective to seek a good similarity function is

defined by the Large Margin Cosine Loss (LMCL) [32] with

margin m and scale s:

LLMCL(Z,A;m, s) =

1

n

∑
i

− log
es(A

T
yi

z∗
i −m)

es(A
T
yi

z∗
i −m) +

∑
j �=yi

esA
T
j z∗

i

, (7)

subject to ||A|| = 1, where AN×J is a learnable matrix, J
the number of classes, and z∗ := z/||z||. In (7) zi is the i-th
feature vector corresponding to the ground-truth class of yi,
the Aj is the weight vector of the j-th class. Note that due to

norm-one constraints AT
j z

∗
i = cos(θij) where θij the angle

between Aj and zi. Geometrically, it means that we assign

the sample i to class j if the angle between Aj and zi is the

smallest among all class centers Aj , and m plays the role of

angular margin in the decision.

In this method, deep metric learning is integrated with

the cost function in (5) to define similarities in hyperbolic

space. As a consequence, the LMCL computed using cosine

similarity is now evaluated in the Poincaré ball BN to learn

a similarity function wi,j = 1
2 (1 −

〈zi,zj〉
‖zi‖‖zj‖ ). By intuition,

with the operation of both hyperbolic and LMCL loss in

BN , we think this would improve similarity learning and

hyperbolic clustering. Hence, the loss function to find op-

timal parameters θ and optimal embedding Z ∈ BN is the

following:
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min
‖A‖=1,Z∈Z

λCHypHC(Z,w; τ) + LLMCL(Z,A;m, s), (8)

where λ is a trade-off parameter to control the importance of

the hyperbolic loss.

With the hyperbolic space BN in mind, the provided point

cloud object will first be represented by a neural network in

the feature space to extract geometric properties. The learned

embedding, established by grouping points in Euclidean

space RN , is projected to the Poincaré ball in BN accord-

ing to the Riemannian metric. At this point, the framework

in figure 2 illustrates that the point cloud X is embedded

in feature space by a neural network namely VN-DGCNN.

This feature embedding U is in turn projected as a Poincaré

embedding Z to optimize the loss function defined in (8)

and encode a hierarchical structure. With the point clouds X
and corresponding class labels Y , we recognize a supervised

learning framework where the labels Y are leveraged for

classification of LMCL and to define triplets in the compu-

tation of the hyperbolic loss. The challenge of estimating

similarities and seeking an optimal hyperbolic embedding at

the same time imposes the need for a more efficient triplet

sampling technique. By defining a set of easy triplets THyp,

we provide the hyperbolic loss with estimated similarities

to first merge pairs of the same class. The approach is that

LMCL triggers hard triplets to become easy. These easy

triplets are in turn applied to the hyperbolic loss to perform

hierarchical clustering.

Figure 2. Overview of the method. VN-DGCNN is used to extract

points features that are successively embedded into the hyperbolic

space. LLMCL is a loss for supervised classification in angular simi-

larity and CHypHC is included to promote better hierarchical struc-

ture in hyperbolic space.

The objective is to produce an embedding that structures

different parts in the Poincaré space. With the leaf nodes

representing points of an object, we seek a leaf embedding

that organizes connected points more close to each together

than unrelated ones. This process of differentiating between

points is subject to similarity learning by including LMCL.

It induces the convergence of similar points in the Poincaré

space to form parts at segmentation levels. Moreover, we

aim to arrange a Poincaré space such that it’s able to decode

a binary tree that captures the hierarchical structure of an

object. This goal is illustrated in figure 3, where each part is

ordered in a way such that a merge with neighboring parts

induces a higher level in the hierarchy.

5. Experiments
5.1. Experimental Setup

Datasets The ShapeNet [35] and PartNet [19] datasets

are employed to study the performance of our method. For

ShapeNet, the object categories are in coarse-level segmenta-

tion. To focus and report the performance on different levels

of granularity, PartNet allows us to work in coarse-grained,

middle-grained and fine-grained segmentation. An example

shape of the chair category in PartNet is given in figure 4

to illustrate the three segmentation levels. For the experi-

ments, results are gathered to establish an evaluation about

the hierarchical functionality of the method on different seg-

mentation levels.

Figure 4. From left to right: coarse-, middle- and fine-grained in an

example of chair class.

Architecture The DGCNN architecture for part segmenta-

tion is applied with the VN network to provide robustness

over rotations. Consequently, vector neurons are plugged in

the DGCNN architecture to create VN-DGCNN that will be

used to study the performance of our method. The DGCNN

architecture corresponds to VN-DGCNN with integrated

VN layers. Three EdgeConv layers are used to capture local

geometric features. The information from these layers is ag-

gregated to encode a latent space that is in turn decoded by a

MLP network into a feature embedding. This transformation

is accompanied by a categorical vector to decode the latent

space in an oriented way according to the object category.

In specific, when training a model for all categories, the

categorical vector is defined by one-hot encoding to adjust

the feature embedding to the category of the object running

through the network.

Metric Let k be the number of clusters that we want

to determine in the generated dendrogram. For the eval-
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Figure 3. Example of prediction of an airplane object (left). Using VN-DGCNN model we extract features in the Euclidean space (middle-left)

and we project them into the Poincaré space (middle-right). Finally, we decode a hierarchical tree (right) using a complete linkage algorithm

computed on hyperbolic embeddings. We paint the points according to the prediction that is achieved by selecting the number k = 4 of

clusters that maximize the IoU with the ground truth.

uation of an object, we recursively iterate over k to ob-

tain a partition of k clusters from the hierarchy. For each

k, the clustering quality of the prediction is measured by

using the Intersection-over-Union (IoU) score. However,

before computing the IoU score, the ground-truth labels

{l1, . . . , ln} are associated with the cluster prediction labels

{c1, . . . , ck}. Therefore, we compute the matrix that con-

tains the IoU scores of all couples (li, cj)i,j between the

classes and clusters. To each label in the ground truth, we

assign the predicted label that maximizes the IoU score as

follows, li ← argmaxj∈1,...,k IoU(li, cj). Moreover, we in-

troduce other to classify all the remaining prediction labels

and penalize the prediction when the number of clusters k
becomes higher. The IoU score is then computed by using

the remapped prediction labels. Finally, the k of the hierar-

chy that gives the highest IoU in comparison to the ground

truth is selected. To compare our method with other bench-

marks, the mean IoU (mIoU) is calculated for a category at a

segmentation level by averaging the IoUs of all test objects.

Thus, we observe the performance with the use of shape

mIoU.

Hyperparameters For the experiments, 1024 points are

randomly sampled from the point cloud to train, validate and

test the model. The k is set to 20 for the k-nearest neigh-

bor (k-NN) graph in the EdgeConv layers of VN-DGCNN.

Although VN-DGCNN is invariant, we apply an arbitrary ro-

tation of the SO(3) group to each object during training and

test evaluation. The batch size and learning rate for ShapeNet

is 16 and 0.001 respectively. For PartNet, the main batch

size used is eight, with a learning rate of 0.05. A temperature

value of 0.1 is used to control the softmax function στ (·) in

(5). The trade-off λ in (8) is set to 0.1 in all our experiments.

We fix the margin m and scale s of LMCL to 0.35 and 2

respectively.

We select complete-linkage to decode the Poincaré ball

into a corresponding dendrogram. The cosine similarity is

chosen as a metric to this agglomerative clustering method to

exploit the similarity function learned by LMCL. In addition,

it’s noticed that the number of points differs for every class

in a 3D object. Therefore, the number of triplets for an

underrepresented class could be increased to an extent such

that it would have more influence on the hyperbolic loss and

be segmented.

5.2. Hierarchical Segmentation Results

In the following, an ablation study is performed to provide

more insight in the effectiveness of similarity learning and

hierarchical clustering. For an fair evaluation, the state-of-

the-art performance is compared against our results that

focus on hierarchical segmentation and rotation invariance.

To this end, the comparison determines if there is any trade-

off in the formation of a hierarchy.

5.2.1 ShapeNet

The ShapeNet dataset includes a category label to construct

a category vector and train one model for all object cate-

gories. Therefore, the training set of ShapeNet contains all

the 16 categories with a total of 50 classes to train one model.

In addition, the model is tested per category to provide an

evaluation in the segmentation quality of different shapes.

The state-of-the-art results of ShapeNet dataset are shown

at the top of table 1. The traditional point cloud architec-

tures do not provide robustness over rotations with results

corresponding to flat segmentation. With the state-of-the-art

results of pre-aligned data for training and testing , I/I case,

we want to assess the robustness of PointNet and DGCNN

to rotations. The evaluation adopts an additional train/test

setting, SO(3)/SO(3), with SO(3) for random rotations. The

sensitivity of PointNet and DGCNN to data augmentation

marks a degradation when the scores for the two rotation

groups are compared in the first and second column of the

table. As a result, the segmentation performance drops when

training and evaluation adopt a random rotation from the

SO(3) group. The VN-DGCNN architecture has a consistent

segmentation quality over rotation settings. In the paper of

Deng et al. [8], the invariant model shows a trade-off in score

from 85.2 to 81.4% mIoU when the pre-aligned setting I/I is

compared with DGCNN. However, for model (1) with 78.6%
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SO(3) I Airplane Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

PointNet 62.3 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ 76.7 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PointCNN 71.4 86.1 84.1 86.5 86.0 80.1 90.1 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

DGCNN 78.6 85.2 84.2 83.7 84.8 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.0 93.3 82.6 59.7 75.5 82.0

(1) VN-DGCNN 78.6 78.6 77.0 71.3 73.0 61.2 85.7 55.2 88.0 78.3 78.8 79.9 25.1 83.2 65.6 44.4 61.6 79.9

(2) VN-DGCNN+HC 77.7 77.7 72.8 85.8 77.8 66.7 81.6 63.2 90.4 76.8 78.3 37.7 58.8 94.0 69.5 61.4 73.3 82.7

VN-DGCNN+B-HC 82.1 82.1 77.6 87.7 74.5 71.9 86.2 72.2 91.0 76.9 79.7 56.5 57.2 96.1 70.7 51.9 79.0 86.2

Table 1. The evaluation metric is shape mIoU (%). Top: state-of-the-art part segmentation results of traditional architectures in I/I setting.

Middle: (1) part segmentation results of VN-DGCNN and (2) hierarchical segmentation results of our method with VN-DGCNN. Both

models trained from scratch in SO(3)/SO(3) setting. Bottom: Hierarchical segmentation results of our method with VN-DGCNN. As

opposed to model (2), model (1) is used as a backbone to train our hierarchical method. The model is thus not trained from scratch in

SO(3)/SO(3) setting.

mIoU in the middle of table 1, we retrained from scratch

with other hyperparameters than the original DGCNN setting

of 2048 points, k set to 40 and batch size of 32.

The results of our HC approach using the VN-DGCNN ar-

chitecture are shown by model (2) in the middle of table

1. The dimensionality of the Poincaré ball is set to B32 or

B50 to provide enough space for the classes of all 16 cate-

gories. The analysis of the categorical results reveals that the

hierarchical model (2) is able to compete with the flat seg-

mentation of VN-DGCNN model (1). In the bottom of table

1, we use model (1) as a pre-trained feature extractor to train

the HC approach. The VN-DGCNN model (1) in the middle

of the table thus serves as a backbone to our hierarchical

method. In particular, we assume that the pre-trained model

gives an arranged feature embedding to map to the Poincaré

ball for hierarchical segmentation. To this end, the results

demonstrate that model (1) is able to adapt to our approach

with scores higher than both in the middle of table 1 without

backbone. From the SO(3)/SO(3) setting in the first column,

it can be deducted that our method achieves categorical im-

provements and an impressive overall 82.1% mIoU score for

both rotation groups. A prediction of the airplane category

is illustrated in 3 to demonstrate the hierarchical ability of

neighboring parts.

5.2.2 PartNet

In PartNet, we encounter a wide range of classes for middle-

and fine-grained that need to be segmented. The state-of-

the-art architecture with the highest shape mIoU scores is

selected from the PartNet [19] paper. Namely, the results of

PointNet++ are shown in the top of table 2. This point cloud

architecture is not rotation-invariant with models correspond-

ing to flat segmentation. Therefore, a network is trained for

each category at each segmentation level to obtain the Point-

Net++ results. Instead of a model per segmentation level, we

focus to train a network at fine-grained level for a category.

This fine-grained model is in turn tested at coarser granu-

larity levels to assess the hierarchical functionality of our

method. Hence, in the bottom of table 2, our VN method is

only trained at the finest level 3. The VN results of levels 1

and 2 are obtained according to the best cut of the dendro-

gram. We include the Pointnet++ results of levels 1 and 2 for

comparison, but these models have been trained to predict

the labels of each specific simplification level.

A 4-dimensional feature space is opted to map the Eu-

clidean space to a Poincaré ball B4. A comparison of table

2 shows that the proposed method develops an hierarchical

understanding on 3D shapes. We observe an improvement

of categorical results, even for the coarser levels to prove

the competence of hierarchical learning. An example of the

chair category at fine-grained level is illustrated in figure

Avg Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

PN++1 75.9 54.7 85.8 84.5 74.1 81.9 90.7 73.5 77.8 73.6 75.0 65.5 80.3 72.1 61.2 86.7 71.5 81.4

PN++2 54.7 34.8 - 54.9 - 60.6 - 57.0 - - - 56.8 63.0 58.4 52.9 53.6 - -

PN++3 53.4 25.1 61.0 49.6 46.1 52.5 81.0 48.0 56.1 60.4 49.1 46.0 54.3 50.7 50.6 47.0 54.7 75.1

Avg 63.7 38.2 73.4 63.0 60.1 65.0 85.8 59.5 67.0 67.0 62.0 56.1 65.9 60.4 54.9 62.4 63.1 78.2

VN1+HC 70.2 48.1 86.3 70.5 80.5 56.7 87.4 74.6 67.9 61.3 76.8 63.5 76.7 79.5 40.6 79.3 59.6 84.4
VN2+HC 49.0 26.4 - 53.7 - 44.4 - 73.8 - - - 62.2 45.8 53.7 23.0 58.4 - -

VN3+HC 51.9 24.2 85.1 52.9 42.3 42.7 83.8 59.4 43.3 46.5 64.9 49.0 41.0 42.4 22.9 58.0 47.0 76.0
Avg 60.1 32.9 85.7 59.0 61.4 47.9 85.6 69.3 55.6 53.9 70.9 58.2 54.5 58.5 28.8 65.2 53.3 80.2

Table 2. The evaluation metric is shape mIoU (%). The numbers 1, 2 and 3 refer to the three granularity levels: coarse-, middle- and

fine-grained respectively. Top: state-of-the-art part segmentation results of PointNet++ in I/I setting. Bottom: hierarchical segmentation

results of our method with VN-DGCNN in SO(3)/SO(3) setting.
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Figure 5. Hierarchical segmentation of chair example at each granularity level in PartNet dataset. The N -features in RN and BN are

represented in two dimension using t-SNE [30] and UMAP [18] respectively. From top to bottom: coarse-, middle- and fine-grained

segmentation.

5. It shows that the dendrogram is able to capture a sim-

ilarity function that merges neighboring parts to induce a

higher level in the hierarchy. However, the performance dif-

fers over categories and we note a limitation of our method

over cuboid shapes as the dishwasher or microwave category.

Due to the rotation-invariance, we assume that the model

has difficulties to orientate the object among the rectangular

surfaces. As opposed to pre-aligned 3D objects, the model is

thus at a disadvantage to recognize the front of a microwave

or dishwasher.

6. Conclusion
We applied metric learning to study the performance of

hierarchical clustering in hyperbolic space. In particular for

3D point clouds, where a similarity function needs to be

learned to arrange its parts over different levels of detail. We

trained a rotation-invariant architecture on two datasets to ex-

amine our method of hierarchical segmentation and inspect

any tradeoffs over flat segmentation. The proposed method

achieves the best performance among the SO(3) group for

ShapeNet and obtains very competitive hierarchical segmen-

tation results trained on the finest level of PartNet. As future

work, we can suggest the use of loss functions where the

different levels of the hierarchy are specifically included as

in [15, 21, 28].
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