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Abstract

Although three-dimensional (3D) modeling of buildings
is gaining increasing significance across various real-world
applications, the concise representation of buildings from
point clouds acquired through unmanned aerial vehicles
(UAVs) and other means remains a formidable challenge.
In this paper, we introduce an innovative framework for the
reconstruction of individual 3D building CAD models de-
rived from point clouds generated by UAV-captured pho-
tographs. Our framework encompasses four pivotal com-
ponents: An instance segmentation model designed to ex-
tract buildings from UAV-observed point clouds. Estima-
tion of building surfaces through the utilization of neural
networks and the signed distance function of point clouds.
Edge estimation based on the inferred building surface. Es-
timation of building polygons derived from the identified
edges. Experimental results obtained from the SPLAT3D
dataset affirm the capability of our proposed methodology
to generate high-quality building models, thereby offering
substantial advantages in terms of accuracy, compactness,
and computational efficiency. Furthermore, we demonstrate
the robustness of our approach against noise and incom-
plete measurements, thereby showcasing its applicability
to point clouds obtained through photogrammetry utilizing
UAV-captured photos.

1. Introduction

Three-dimensional (3D) CAD models of buildings have

gained paramount importance in a wide array of applica-

tions, encompassing urban planning [19], solar potential

analysis [32], and noise pollution assessment [40, 1]. The

surge in augmented and virtual reality applications has addi-

Figure 1. Our approach takes a point cloud as its input and gen-

erates three-dimensional (3D) building models as its output. In

order to accomplish this, we employ advanced instance segmenta-

tion techniques, utilizing semantic class labels and instance labels,

to extract buildings (b) from the given point cloud (a). Follow-

ing that, we utilize signed distance functions (SDF) to reconstruct

the surfaces of the buildings (c), enabling us to estimate the three-

dimensional representation of the building’s surface information

(d).

tionally intensified the need for exceptionally detailed and

accurate 3D representations of buildings [2]. Despite the

many applications, the creation of CAD models relies on

manual work, and automatic creation is desired.

In order to reconstruct individual 3D CAD models

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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of buildings from point clouds observed by LiDAR or

SfM/MVS, it is essential to perform building extraction.

Extensive research has been conducted on instance segmen-

tation methods to address this requirement. By employing

instance segmentation techniques on point clouds, it be-

comes feasible to discern not only the class label assigned

to each point but also the distinct object units representing

individual buildings. Consequently, this study incorporates

building extraction through the utilization of instance seg-

mentation methodologies.

The majority of existing generic 3D reconstruction meth-

ods have been primarily tailored for smooth surfaces rep-

resented by dense triangles, often overlooking the inher-

ent piecewise planarity commonly observed in urban envi-

ronments [24, 16]. In contrast, compact surface models,

characterized by a significantly reduced number of faces,

possess the ability to effectively capture the geometric in-

tricacies of buildings. While some studies claim that it is

possible to reconstruct compact surface models from point

clouds [3, 33, 28, 34] or from dense triangle meshes [4, 27],

these methods often encounter serious scalability issues. In

light of these shortcomings, the primary objective of this

study was to develop a robust methodology capable of di-

rectly reconstructing compact surfaces of buildings from

point clouds.

We capitalize on the inherent capacity of 3D shapes to be

implicitly encoded within a function space (implicit func-

tion), thereby transcending the limitations imposed by ex-

plicit representations such as point clouds, surface meshes,

or voxels. Implicit functions have emerged as a prevalent

means of describing 3D shapes, with the shape’s surface

being manifested as the zero-set of a signed distance field

(SDF), as originally proposed by Kazhdan et al. [24]. The

SDF is formulated through a trainable parameter that dis-

cerns whether a given point resides inside or outside the

object. While extracting explicit geometry from the SDF

can be accomplished through computationally intensive iso-

surfacing techniques, homogeneous functional representa-

tions present distinct advantages in the realm of geometric

machine learning, primarily due to their uniform distribu-

tion. Notably, a recent learning-based SDF approach by

Park et al. [35], termed DeepSDF, harnessed the function

space within 3D geometric modeling. The DeepSDF di-

rectly learns an implicit function from the input point cloud

and generates a smooth surface model of the object. Never-

theless, the extraction of a concise polygonal model from

the implicit function remains an ongoing research chal-

lenge.

In this paper, we introduce an innovative framework for

the extraction of buildings and the subsequent 3D modeling

process. Our proposed methodology excels at reconstruct-

ing polygonal building meshes that are compact, watertight,

and possess an inherent learnable implicit surface represen-

tation, thereby facilitating explicit geometry construction.

Figure 1 visually demonstrates the underlying principles of

our building modeling approach. We consider buildings to

be characterized by surfaces that exhibit both smoothness

and piecewise planarity, with polygonal surfaces possess-

ing an arbitrary number of sides representing the epitome

of compactness. By leveraging a deep neural network to

learn an implicit field, specifically guided by neural princi-

ples, we extract the building surface from a candidate set

that embodies an explicit polyhedral embedding. To ad-

dress varying levels of surface complexity, we formulate

the surface extraction problem as a Markov random field

(MRF), affording the capability to efficiently handle such

intricacies. Through the judicious application of combina-

torial optimization, we further regularize the occupancy of

a building inferred from the deep implicit field, while si-

multaneously penalizing excessive surface complexity. Our

reconstruction framework seamlessly integrates the notable

strengths of deep implicit field inference, including its in-

herent efficiency and robustness, with the fidelity and pre-

cision associated with reconstruction approaches rooted in

primitive assembly-based methodologies.

Compared with current state-of-the-art methods, our 3D

modeling framework can obtain high-quality building mod-

els with significant advantages in terms of fidelity, compact-

ness, and computational efficiency. The primary contribu-

tions of this paper are as follows:

• We propose a 3D building modeling method that com-

bines instance segmentation and SDF.

• We propose a learning-based framework for building

extraction and compact building model reconstruction

from point clouds. This is the first work to use a

deep implicit field for building reconstruction, and our

method shows significant performance and quality ad-

vantages over state-of-the-art methods, particularly for

complex building models.

• We introduce an MRF formulation for surface extrac-

tion from the occupancy learned by a neural network.

Our formulation allows for complexity control and fa-

vors compactness in the final reconstruction and is far

more efficient than the existing integer programming

formulation.

2. Related Study
2.1. Instance Segmentation

Instance segmentation is a method that assigns class

labels to each instance in isolation, rather than simply

assigning class labels to individual points as in seman-

tic segmentation[46, 45]. Numerous methodologies have

been proposed for 3D instance segmentation, encompassing
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bottom-up approaches [44, 43, 14, 26, 29], top-down ap-

proaches [20, 47, 47], and more recently, voting-based ap-

proaches [8, 15, 17, 22, 42]. MASC [29] employs a multi-

scale hierarchical feature backbone, akin to our own; how-

ever, the multi-scale features are utilized to calculate pair-

wise affinities followed by an offline clustering step. Such

backbones are also effectively utilized in other domains

[12, 37]. DyCo3D [18] is another influential work and

is among the few approaches that directly predict instance

masks without a subsequent clustering step. DyCo3D re-

lies on dynamic convolutions [21, 41], which is similar

in concept to our mask prediction mechanism. However,

it does not utilize optimal supervision assignments during

training, leading to subpar performance. Optimal assign-

ment of the supervision signal was first implemented by

3D-BoNet [47] using Hungarian matching. Similarly to our

approach, D-BoNet predicts all instances in parallel. How-

ever, it utilizes only a single-scale scene descriptor, which

cannot encode object masks of diverse sizes. The authors

of [23] proposed a method called PointGroup, which can

segment objects from both original and offset-shifted point

sets. Their algorithm uses a simple yet effective technique

that groups nearby points with the same label and expands

the group progressively. Chen et al. [9] have extended the

PointGroup method to develop HAIS, which further incor-

porates surrounding fragments of instances and refines them

based on intra-instance prediction. In our work, we utilize

the HAIS architecture as an initialization step for building

extraction from point clouds.

2.2. 3D modeling

Recent advancements in developing deep learning-based

implicit functions have demonstrated their potential for 3D

reconstruction. These methods rely on learning a mapping

from an input (such as a point cloud) to a continuous scalar

field and then extracting the surface of the object using iso-

surfacing techniques such as Marching Cubes [30]. While

iso-surfacing is powerful in extracting smooth surfaces, it

is limited in preserving sharp features and introduces dis-

cretization errors, creating deep implicit fields unsuitable

for compact polygonal model reconstruction.

To address this limitation, researchers have incorporated

constructed solid geometry (CSG) [11] into their meth-

ods. One such example is the end-to-end neural network

BSP-Net [11], which reconstructs a shape from a set of

convexes obtained via binary space partitioning. Simi-

larly, CVXNet [13] is an architecture that represents a low-

dimensional family of convexes. These methods learn to di-

vide and conquer 3D space with implicit function; however,

their inputs are images or voxels, unlike the point clouds

our work addresses.

Most deep learning-based implicit function methods use

a single latent feature vector, which imposes strong pri-

Figure 2. Our workflow of instance segmentation and neural-

guided reconstruction workflow.

ors dependent on the training data, limiting their gener-

alization ability. While this allows plausible surface re-

construction even with highly contaminated data, the fea-

ture space inevitably overfits the shapes in the training set,

which may fail for shapes from unseen categories. The

Points2Surf [16] architecture addresses this limitation by

estimating a signed distance function (SDF) with both lo-

cal and global feature vectors, demonstrating outstanding

generalization capabilities in implicit field learning. In our

work, we utilize the Points2Surf architecture as an initial-

ization step for 3D reconstruction.

3. Proposed Method
3.1. workflow

Our proposed method follows a three-step workflow, as

illustrated in Fig. 2. We perform instance segmentation on

the point cloud to extract a point cloud of buildings, which

is then used to create a 3D model of individual buildings.

And then we used a pre-trained SDF network to obtain sur-

face information of each building point cloud. Finally, we

make a 3D building model from surface information using

a Graph Cut optimization process.

1. Instance Segmentation. To begin, instance segmen-

tation is utilized to extract point clouds of individ-

ual buildings from a larger point cloud obtained from

photographs taken by a UAV. Instance segmentation

is a technique that separates and instantiates each ob-

ject within the input point cloud while also classifying

the instance’s category. For this purpose, we employ

HAIS [9], which is a widely used approach for point

cloud instance segmentation.

2. SDF. Next, we reconstruct the building’s surface from

the point cloud by utilizing a signed distance function

(SDF) as an implicit function representation. First, we

generate a linear cell complex that conforms to the pla-

nar primitives detected from the point cloud, thus par-

titioning the ambient 3D space. This adaptive parti-

tioning is both efficient and respects the geometry of

the building. The non-overlapping cells in the com-

plex are used as candidates, whose outer shell forms

the final surface. To learn a shape-conditioned implicit

field that characterizes the building object represented
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by the point cloud, we employ a deep neural network.

The implicit field describes the object’s spatial occu-

pancy, providing a binary decision boundary for any

query point in the 3D space.

3. 3D Modeling. This step takes the learned implicit field

as an occupancy indicator and outputs the boundary

representation of the building’s surface. We formulate

surface extraction as a binary classification problem

and solve it using MRF optimization that encourages

compactness and guarantees the final model is water-

tight.

3.2. Instance Segmentation

In this study, we utilize the point cloud instance segmen-

tation technique, HAIS [6], to extract buildings. The archi-

tecture of HAIS [6] comprises four principal components,

as shown in Fig. 3. The first component is the point-wise

semantic label prediction network, which extracts features

from point clouds and predicts semantic labels and center

shift vectors for each point. The second component is the

point aggregation module, which generates initial instance

predictions based on point-wise predictions. The third com-

ponent is the set aggregation module, which expands in-

complete instances to cover missing parts, and the fourth

component is the intra-instance prediction network, which

smooths instances to filter out outliers.

point-wise semantic label prediction. The term “seman-

tic label” refers to a classification assigned to a point cloud

based on its characteristics. In this study, the point cloud

features obtained from the 3D UNet are fed into a two-layer

Multi-Layer Perceptron(MLP), and the cross-entropy loss

function is employed to classify individual points into their

respective classes. It should be noted that this study focuses

on the extraction of buildings, and the classification task in-

volves differentiating between buildings and non-buildings.

center shift-vector. It is a common practice in point cloud

instance segmentation to determine the shift vector or direc-

tion of the current voxel or point cloud towards the center

of its corresponding instance. This technique helps to en-

hance the clustering effect and facilitates the network’s abil-

ity to learn shape features. Similarly, in the present study,

the point cloud features derived from the 3D U-Net model

are also passed through a two-layer MLP to obtain the off-

set vectors. These offset vectors are then supervised using

a loss function. Initially, only the offset vectors of the an-

tecedent point clouds are taken into consideration, while the

background point clouds are ignored. Moreover, each point

cloud offset vector is assigned a different weight. This is

because, when a point cloud is situated near the center of

an instance, predicting the offset vector accurately becomes

crucial. Conversely, predicting the offset vector accurately

for distant point clouds, such as those at the instance bound-

ary, is significantly more difficult and hence incurs a larger

penalty. The weight assigned to each offset vector, denoted

by w is calculated based on the true value of the offset vec-

tor. During training, Lshift is used to optimize the center

shift vector prediction, which is formulated as

Lshift =
1∑

pi∈P

�(pi ∈ Pfg)
·
∑
pi∈P

L(pi),

L(pi) = w(pi) · ‖ �xgt
i −�xpred

i ‖1 · �(pi ∈ Pfg),

w(pi) = min(‖ �xgt
i ‖2, 1).

(1)

�(·) is the indicator function. P is the whole point set

and Pfg is the foreground point set respectively. Background

points are ignored in Lshift. w(pi) operates as a point-wise

weighted term. Points closer to the instance center rely less

on the center shift vectors and should contribute less to the

loss.

point aggregation module. Upon obtaining the afore-

mentioned two features, we proceed to the initial aggre-

gation step, wherein we first shift the point coordinates to

bring them closer to the center of the instance, thereby facil-

itating subsequent aggregation. Next, we establish a thresh-

old value: when the semantic label of two points is of the

same class, and the distance between them after offset is less

than this threshold, we initially consider these points to be

part of the same instance, and connect them using an edge.

This leads us to the following scenario: Fragments gener-

ally refer to points located on the boundary of instances that

are challenging to partition.

set aggregation module. When both fragments and pri-

mary instances share the same semantic label and the dis-

tance between them is less than a certain value, the initial

notion is to establish a threshold that allows them to be

merged together. However, because there are many frag-

ments belonging to different instances, this approach can

be too drastic. As an alternative, the HAIS approach im-

plements a flexible threshold. Specifically, the maximum

value of “a” and “b” is taken as the threshold. The value of

“a” means that the larger the instance, the further away its

fragments may be. A tangible example of this is the grav-

itational pull of a planet, which can attract objects that are

farther away from it. The value of “b” represents the cate-

gory size count, as an instance’s size is typically associated

with its category. By estimating this, one can approximate

the size of an instance and set an appropriate threshold value

“r”. By taking the maximum value of “a” and “r” a dynamic

threshold can be obtained, which is used for further aggre-

gation.
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intra-instance prediction network Despite the series of

steps outlined above, instances may still absorb incorrect

fragments. To address this, instances are first divided into

smaller pieces, and features are extracted through 3D con-

volution. This is followed by a segmentation using a com-

mon classification loss function. It is worth noting that only

samples with real instances having a mask Intercect over

Union (IoU) greater than 0.5 are obtained at this stage. The

subsequent step involves confidence prediction, where the

confidence score reflects the credibility of the instance. One

simple approach to constrain confidence is to assign higher

values to instances with greater IoU. For this masking pro-

cess, the loss is formulated as,

Lmask =− 1
Nins∑
i=1

�(ioui > 0.5) ·Ni

·
Nins∑
i=1

{
�(ioui > 0.5)

·
Ni∑
j=1

[
yj · log(ŷj) + (1− yj) · log(1− ŷj)

]}
,

(2)

where Nins represents the number of instances and Ni de-

notes the point number of instance i. Furthermore, score

loss is employed to suppress over-detection by evaluating

the plausibility of each estimated instance region as well as

the masking process. This score loss is formulated as,

Lscore =− 1

Nins

·
Nins∑
i=1

[
ioui · log(ŝi)

+ (1− ioui) · log(1− ŝi)
]
.

(3)

loss function The whole network is trained from scratch

in an end-to-end manner and optimized by a joint loss con-

sisting of several loss terms,

L = Lseg + Lshift + Lmask + Lscore, (4)

where Lseg is the cross-entropy loss of semantic scores, and

Lshift, Lmask and Lscore are defined in Eq. 1, 2 and 3 respec-

tively.

3.3. SDF

A signed distance field (SDF) is utilized for estimating

the surface of each instance of a point cloud representing

buildings. In this study, Point2Surf [16] is employed as the

SDF method.

The goal of surface estimation is to extract a subset of

cells, denoted by L ∈ C, from the cell complex obtained

through adaptive binary space partitioning, such that its oc-

cupancy OL represents the interior space enclosed by the

outer surface of the building. To achieve this, the occupancy

of the building is learned as an SDF, where the value is the

distance d from a point x to the building surface:

SDF(x) = d : x ∈ R
3, d ∈ R. (5)

The sign of the value indicates whether the point lies inside

(with a positive sign) or outside (with a negative sign) of the

surface of the building.

Taking inspiration from the work on points-to-surface

mapping [16], we employ a deep learning-based approach

to acquire knowledge of the signed distance field from a

given point cloud. More specifically, we develop a neural

network that can estimate the signed distance value for any

point x ∈ R
3 as follows:

f(x) ≈ f̃(x) = sθ(x | z), with z = eφ(P ). (6)

Here, z corresponds to a latent representation of the build-

ing surface, encoded from the input point cloud P using an

encoder e, and s represents the neural network. The en-

coder e and neural network s are parameterized by θ and

φ, respectively. Following the neural network architecture

of Point2Surf [16] for points-to-surface mapping, we de-

compose the signed distance field into two components: the

absolute distance fd and its sign fs.

• The absolute distance value. The estimated absolute

distance f̃d(x) can be obtained solely from the local

neighborhood of the query point, as expressed by the

following equation:

f̃d(x) = sdθ
(
x | zdx

)
, with zdx = edφ

(
pd
x

)
. (7)

Here, pd
x ∈ P refers to a set of neighboring points

surrounding the query point x.

• The sign. To estimate the sign f̃s(x) at point x, rely-

ing on local sampling alone is insufficient because the

occupancy information cannot be accurately estimated

from the local neighborhood. Instead, a global uniform

sub-sample ps
x ∈ P is taken as input, and the sign is

estimated as follows:

f̃s(x) = sgn (g̃s(x)) = sgn (ssθ (x | zsx)) ,
with zsx = esψ (ps

x) .
(8)

Here, ψ is used to parameterize the encoder and g̃s(x)
represents the logit expressing the confidence of point

x being at a positive distance from the surface.

The two latent representations, zsx and zdx, share infor-

mation to formulate signed distance learning as follows:(
f̃d(x), g̃s(x)

)
= sθ

(
x | zdx, zsx

)
,

with zdx = edφ
(
pd
x

)
and zsx = esψ (ps

x)

(9)

This results in a joint prediction of the signed distance func-

tion f̃d(x) and the confidence of x having a positive dis-

tance to the surface, expressed as g̃s(x).
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Figure 3. The HAIS framework, as described in [9], consists of several stages. First, the input point cloud undergoes point-wise feature

learning via a 3D UNet-like structure with submanifold sparse convolution. Next, HAIS utilizes the spatial constraint of points to perform

point aggregation with fixed bandwidth. Based on the results of this point aggregation, a set aggregation with dynamic bandwidth is

performed to generate instance proposals. Finally, an intra-instance prediction is implemented for outlier filtering and mask quality scoring.

Figure 4. Modeling method using SDF(Point2Surf[16]) and mak-

ing 3D model by polygonize process.

3.4. 3D modeling

To estimate the building surface based on the occu-

pancy map obtained from SDF, we refer to the work by

Chen et al. [10], who proposed a method called Point2Poly.

Point2Poly utilizes adaptive space partitioning and surface

extraction techniques to generate a surface representation

from the occupancy map.

Space partitioning. We present an algorithm for adaptive

partitioning that subdivides the 3D space into a set of cells,

each of which is a convex polyhedron. Our method extracts

planes from the point cloud and applies a refined planar

primitive using BSP to partition the space. To detect planes,

we employ the RANSAC algorithm described in [38]. We

also perform a refinement procedure that iteratively merges

planes under specific proximity conditions to account for

noise and outliers in the data. Our algorithm dynamically

and locally updates a binary tree structure during the parti-

tioning process and maintains cell adjacency information.

Surface extraction. After obtaining the cell complex and

the occupancy information of its cells, the task of surface

reconstruction involves obtaining a consistent classification

of the cells into the categories of interior and exterior, fol-

lowed by an outer shell extraction step. To accomplish this,

we propose the use of a Markov random field (MRF) for-

mulation for interior/exterior cell classification.

We represent the cell complex C = ci and denote the

binary label assigned to a cell ci as xi ∈ interior, exterior.

Our energy function is expressed as a weighted sum of two

energy terms, i.e.,

E(x) = D(x) + λV (x), (10)

where D(x) and V (x) are the data cost term and the

smoothness cost term, respectively, and λ is the weight pa-

rameter that balances the two terms.

• Data cost. We present the definition of the data cost

term such that it accurately reflects the classification

confidence. Specifically, we define it as the measure-

ment of the deviation between the classification and

the previously estimated cell occupancy in the cell

complex, i.e.,

D(x) =
1

|C|
∑
ci∈C

|xi − occu(ci)| , (11)

where occu(ci) refers to the learned occupancy of the

cell ci. We compute occu(ci) as:

occu(ci) = sigmoid(SDF(ci) · vol(ci)), (12)

where SDF(ci) denotes the signed distance value of the

query point at the centroid of ci, predicted by the neu-

ral network, and vol(ci) is the volume of ci. We assign

higher weights to the cells with larger volumes, regard-

less of their predicted signed distance. The sigmoid

function sigmoid(x) = 1
1+e−x normalizes the signed

distance to the range (0, 1).

• Smoothness cost. We introduce an energy term that

promotes the assignment of similar labels to adjacent

cells. To ensure that our building surface model re-

mains simple, we have designed this term to penalize
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its complexity. Because the final surface is extracted

from the outer shell of the interior cells, reducing its

complexity is equivalent to limiting its surface area.

Therefore, we define our smoothness cost as

V (x) =
1

A

∑
{ci,cj}∈C

aij · (ci, cj), (13)

where ci, cj ∈ C represents a pair of adjacent cells

in the complex. Here, aij denotes the surface area of

the common face of the two cells. We choose A as a

normalization factor, which is equal to the maximum

area of all faces in the cell complex. The indicator

function (ci, cj) takes a value of 1 if ci and cj receive

different labels, i.e.,

(ci, cj) =

{
0, xi = xj

1, xi �= xj

(14)

In essence, the smoothness cost acts as a regularization

term, penalizing any zigzag artifacts that may appear

on the final surface model.

By minimizing the energy function as specified in Equa-

tion 10 using the graph cut algorithm [5], one can obtain the

interior cells. The final surface model can then be obtained

by extracting the outer surface of the union of these interior

cells. Because our adaptive binary space partitioning tech-

nique produces a valid polyhedral embedding, the resulting

surface is inherently guaranteed to be watertight.

4. Experimental Results
4.1. Experimental Settings

Datasets. Experiments were conducted on a standard

benchmark dataset called STPLS3D [7]. STPLS3D is a

synthetic outdoor dataset closely mimicking the data gen-

eration process of aerial photogrammetry point clouds.

Twenty-five urban scenes totaling 6 km2 are densely an-

notated with 14 instance classes. We followed the common

splits [7, 42] in the training and test phases.

Implementation Details. The implementation details ad-

hered to those of established methodologies [23, 9]. The

model was developed utilizing the PyTorch deep learning

framework [36] and was trained for 120k iterations using

the Adam optimizer [25]. The batch size was set to 4, and

the learning rate was initialized to 0.001, then scheduled by

cosine annealing [31]. The voxel size and grouping band-

width b were set to 0.02 m and 0.04 m, respectively, while

the score threshold for soft grouping τ was set to 0.2. At

inference, the whole scene is fed into the network without

cropping. For the SPLAT3D dataset with high point density,

scenes are randomly downsampled at a ratio of 1/4 before

cropping. At inference, the scene is divided into four parts

before feeding into the model, and then the outputs from the

four parts are merged to get the final results.

4.2. Instance Segmentation.

To assess the instance-level performance of our proposed

method, we evaluated it on SPLAT3D data; the resulting

extraction outputs for various types of buildings are pre-

sented in Fig. 5. This figure provides visual evidence of

the effectiveness of our hierarchical aggregation and intra-

instance prediction techniques, particularly for objects with

large sizes and fragmentary point clouds, where grouping

all points together presents a significant challenge. Our pro-

posed approach addresses this issue by producing precise

instance segmentation masks. The trained model extracted

0.91 for the mAP and 0.88 for the trained Mask3D [39]. In

the extraction results for building point clouds, the mAP

is comparable to that of Mask3D [39], the current best

performance. In this experiment, the performance of our

model was higher than applying Mask3D’s trained model

for multi-class object detection to extract only buildings.

Figure 5. Building extraction results on the test dataset.

4.3. 3D modeling

Using the neural network trained on the building point

clouds extracted by HAIS from the SPLAT3D dataset, our

proposed method can reconstruct buildings of various ar-

chitectural styles, as demonstrated by the results presented

in Fig. 6. The signed distance function (SDF) and graph-

cut-based modeling method accurately characterize the sim-

ple shape of the buildings. However, errors can arise when

dealing with subtle structures, which can be attributed to
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uncertainty in planar primitive detection and regularization

imposed on surface extraction.

To address the issue of noise in actual point cloud data,

a 3D model was reconstructed using a learned points2surf-

based SDF from a synthetic point cloud with intentionally

varied noise levels, as shown in Fig. 7 Specifically, to eval-

uate the robustness of the learned model to noise, Gaus-

sian noise was applied to each point, and in doing so, point

clouds with three different Gaussian noise levels were cre-

ated and tested. The SDF model method was trained on

point clouds with low noise levels in the [0, 0.001R] range,

but reconstructed reliably for point clouds with significantly

higher noise levels up to 0.005R (see Fig. 7 Weak Noise).

This corresponds to a measurement error of as much as 0.5

m on a 100 m square building. However, point clouds of

0.01R (Fig. 7 middle noise) or 0.03R (Fig. 7 strong noise)

are not sufficient for modeling. Our research is focused

on assembling the initially detected planar primitives into

a compact polygonal building model, rather than detecting

the planar primitives themselves. Therefore, we assume that

the dominant planes, such as walls and roofs, can be iden-

tified from the input point cloud. However, this may not

always be feasible when dealing with noisy or incomplete

scans. Several steps have been devised to reduce inaccu-

racies due to primitive detection, such as primitive refine-

ment and MRF complexity, but these may still be insuffi-

cient when the provided primitives are incomplete or con-

tain large errors.

Figure 6. Example of 3D models from our method.

Figure 7. Robustness to noise. Note that our neural network was

trained on point clouds without noise, and at the time of inference,

we have fed the point cloud into the trained model with different

noise levels [0, 0.005R], where R denotes the radius of the bound-

ing sphere of the input point cloud.

5. Conclusion

We introduced a pioneering and effective approach for

the reconstruction of urban buildings by combining in-

stance segmentation and an implicit representation learned

as an occupancy indicator for explicit geometry extraction.

Through our novel occupancy learning strategy and the use

of the MRF formulation, we demonstrated that our method

produces high-quality building models with notable bene-

fits in terms of accuracy, compactness, and computational

efficiency. To our best knowledge, this is the first study to

explore the use of a deep implicit field for building recon-

struction from UAV-obtained point clouds.

In our future work, we aim to enhance our current

method by integrating the construction of explicit geome-

try into a neural network, creating an end-to-end pipeline.

Furthermore, we intend to incorporate user interactions into

the reconstruction pipeline to improve the usability of the

method in challenging scenarios. Although our MRF-based

surface extraction technique is efficient enough to allow for

interactive editing, we plan to further refine our approach

by ensuring that all operations related to building model-

ing are differentiable, and by training instance segmentation

and SDF end-to-end. It should be noted that our building ex-

traction and 3D modeling pipeline consist of distinct deep

learning models, and as such, the results of the 3D modeling

of the building are not reflected in the instance segmentation

results during deep learning model training. Hence, in the

future, we plan to integrate all building modeling operations

and make them differentiable for seamless end-to-end train-

ing of the instance segmentation and SDF models.
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