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Abstract

In this paper, we focus on semantic segmentation method
for point clouds of urban scenes. Our fundamental con-
cept revolves around the collaborative utilization of diverse
scene representations to benefit from different context in-
formation and network architectures. To this end, the pro-
posed network architecture, called APNet, is split into two
branches: a point cloud branch and an aerial image branch
which input is generated from a point cloud. To leverage the
different properties of each branch, we employ a geometry-
aware fusion module that is learned to combine the results
of each branch. Additional separate losses for each branch
avoid that one branch dominates the results, ensure the
best performance for each branch individually and explic-
itly define the input domain of the fusion network assuring
it only performs data fusion. Our experiments demonstrate
that the fusion output consistently outperforms the individ-
ual network branches and that APNet achieves state-of-the-
art performance of 65.2 mIoU on the SensatUrban dataset.
Upon acceptance, the source code will be made accessible.

1. Introduction
Urban-level point cloud segmentation is an important

stepping stone for semantic scene understanding for various

applications like autonomous driving, robotics, large-scale

map creation or mixed reality [14, 6]. The majority of urban

semantic segmentation methods can be categorized to either

use aerial / birds-eye-view image data [31, 37] or 3D point

cloud data [18, 38, 9].

On the one hand, 2D/2.5D image-based approaches ben-

efit from the simple data structure that allows for highly ef-

fective aggregation of large spatial contexts which is useful

for semantic inference and for which a large pool of net-

work architectures exist [12, 17, 31, 37]. However, these

methods are limited to resolve full 3D shapes and spatial

context along the gravity directions.

On the other hand, point cloud-based approaches can

leverage full 3D spatial context, but context aggregation

and high detail levels are generally much more expensive to

a) Colored point cloud

b) Prediction of P-branch c) Prediction of A-branch

d) Prediction of APNet e) Ground Truth

Figure 1. APNet Segmentation. Starting from a colored input

point cloud (a) the data is fed into two separate branches: a point-

cloud branch (b) and an aerial image branch (c). The key idea is

to exploit the advantages of both branches regarding spatial con-

text and network architectures. The results of both branches is

then merged with a fusion network. APNet achieves a better re-

sult, which is much closer to the ground truth than the solution of

individual branches.

progress and are thus more limited in spatial resolution and

context reasoning. Unlike images, as they may suffer from

large color variations due to changing weather conditions or

day-to-night cycles, point clouds are more robust to these

phenomena [14]. However, point clouds are more challeng-

ing to process due to their irregular and non-uniform struc-

ture. Similarly, many established network architectures ex-

ist for point cloud processing [2, 18, 25, 38, 9].

We argue that semantic reasoning in both domains has

advantages and disadvantages, e.g. incorporating a larger

context within a 2D domain enhances the recognition ca-
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pabilities of flat and large objects, whereas small objects

with a 3D spatial extension are more effectively detectable

within the 3D domain. With this objective in mind, our pri-

mary aim is to leverage and combine the best properties of

both domains to propose a unified semantic segmentation

approach that synergistically learns from both.

Recent papers show impressive results on vehicle-based

point cloud datasets by combining different representa-

tions [15, 22, 30]. However, their corresponding represen-

tations, e.g. range-view and voxelization, are less suited for

UAV-based datasets. To address the aforementioned ob-

jectives, we propose APNet, which concurrently operates

within the aerial image domain and the point cloud domain.

Exemplary results of APNet are depicted in Fig. 1. Our

contributions can be summarized as follows:

• We introduce APNet, an effective network architecture

for urban-level point cloud segmentation that leverages

differences in domain properties regarding network ar-

chitectures and spatial context by following a multi-

branch where each branch is specialized for a particu-

lar domain.

• We propose a geometry-aware fusion module that

introduces the geometric information of the origi-

nal points into the process of feature fusion of two

branches and achieve a better performance.

• Our experiments demonstrate the efficacy of APNet by

attaining state-of-the-art performance on the SensatUr-

ban dataset [7].

2. Related Work
2.1. Single Representation for Point Cloud Segmen-

tation

In recent years, various deep learning-based methods

are proposed for point cloud segmentation. These methods

can be grouped into three categories based on their repre-

sentation: projection-based, voxelization-based and point-

based methods. The aim of both the projection-based and

voxelization-based methods is to transform 3D point clouds

to a regular representation and then use off-the-shelf net-

works to extract the features. In contrast, point-based meth-

ods directly process irregular point clouds.

Projection-based representation. Deep learning has made

great strides in 2D computer vision tasks, leading re-

searchers to apply the well-established 2D networks to 3D

tasks. Lawin et al. [13] propose a 3D-2D-3D pipeline to

solve point cloud segmentation. They project a point cloud

onto multi-view 2D planes and feed the resulting images to

a 2D segmentation network. The final semantic per-point

label is obtained by fusing the pixel-level predictions. Al-

though the multi-view strategy can alleviate occlusion, the

pre- and postprocessing are inefficient and the results are

sensitive to viewpoint selection. Furthermore, multi-view

projection is typically used for a single scene or object,

whereas urban-scale point clouds usually result in more

occlusion. Other approaches utilize range-view planes as

an intermediate representation for point cloud datasets col-

lected by rotating laser scanner [28, 29, 17], which is a typ-

ical sensor for autonomous vehicles. In this scenery, the

egocentric spherical representation can retain more infor-

mation in contrast to a single plane representation. How-

ever, this representation is not well-suited for UAV-based

datasets as it results in server occlusion due to the inconsis-

tency of laser direction and projection direction. Inspired by

these methods, we propose to project the point cloud onto

aerial-view plane that is perpendicular to the laser. The one-

time aerial-view projection is efficient and avoids informa-

tion loss caused by occlusion as much as possible.

Voxelization-based representation. These methods con-

vert a point cloud into a discrete representation, such as cu-

bic voxels, and then use a 3D convolution neural network

(CNN) to compute the features [39, 24]. This representa-

tion naturally preserves the neighborhood structure of 3D

point clouds but 3D CNNs are memory and computation-

intensive. These costs increase dramatically in outdoor sce-

narios due to the sparsity of points leading many empty

voxels. Although some methods use sparse convolution to

reduce these costs, the discretization unit is non-trivial to

determine [22, 5]. Furthermore, urban-level datasets often

contain heterogeneous objects, ranging from tiny bikes and

to huge buildings and streets, which makes them unsuitable

for voxelization-based methods.

Point-based representation. Point-based methods directly

process irregular point clouds by different means, e.g.

multi-layer perceptron, point convolution or graph-based

operations. MLP-based networks usually stack multiple

MLPs with a feature aggregation module in accordance to

the convolution layers with a subsequent pooling layer in

2D neural network [2, 18, 9]. Furthermore, point convolu-

tion simulates powerful 2D convolution in 3D space by uti-

lizing a parametric continuous convolution layer [27] or a

group of kernel points as reference points [25]. Point-based

methods are applicable to various datasets because they do

not rely on transforming a point cloud to other intermediate

representations. So far, there are only point-based methods

proposed for urban-level point cloud segmentation. For in-

stance, both EyeNet [33] and LGS-Net [20] utilize a point-

based network, namely RandLA-Net [9], as their backbone.

MRNet exploits multiple 3D receptive fields and LGS-Net

emphasizes the utilization of geometric information. Du

et al. [4], using KPConv [25] as the backbone, exploit a

multi-task framework to achieve both boundary localiza-

tion and semantic segmentation. Huang et al. [10] im-
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prove a transformer-based network by applying a local con-

text propagation module to ensure message passing among

neighboring local regions. Despite numerous efforts, point-

based methods remain computationally intensive. Increas-

ing the receptive field of point-based methods is challeng-

ing, whereas this can be easily accomplished in highly-

optimized 2D networks.

In summary, numerous methods have been proposed for

point cloud segmentation, but a handful of them are suitable

for urban-level point cloud segmentation. Additionally, sin-

gle representations have their limitations. For urban-level

point cloud segmentation, geometric information and large

receptive fields are equally crucial. Therefore, we propose

APNet to combine aerial-views and point-based represen-

tations. To the best of our knowledge, we are the first to

propose a hybrid method to handle urban-level point cloud

segmentation.

2.2. Hybrid Representation for Point Cloud Seg-
mentation

There are also a number of methods that combine dif-

ferent representations. One common strategy is to par-

allelize multiple networks processing different represen-

tations and combining features at different levels. SPV-

NAS [22], Cylinder3D [40] and DRINet [32] share the con-

cept of paralleling voxel-point architectures. SPVNAS [22]

introduces a sparse voxel convolution and combines voxel-

wise and point-wise features in different stages. Cylin-

der3D [40] imposes a point refinement module at the end

of the network, which sums voxel-wise and point-wise fea-

tures followed by three fully-connected layers. DRINet [32]

introduces a voxel-point iteration module to iteratively in-

teract between two features. RPVNet [30] consists of three

branches, i.e. range-view, point-wise and voxel branches.

A gated attention module generates coefficients for a linear

combination that point-wisely combines information from

three branches. These methods combine features either by

a simple addition or point-wise combination but fall short to

incorporate features from neighbour points. AMVNet [15]

addresses this issue by training a small assertion-based net-

work and feeding information from neighbours into it to

generate final predictions. However, in the small network,

only semantic predictions, i.e. class-wise probability scores,

are considered. Hence, deeper features with richer contex-

tual information are ignored. In conclusion, hybrid methods

leverage prior knowledge from different representations to

enhance features to achieve better performance. Neverthe-

less, the fusion module is often naive and the information

from neighbour points is ignored.

Therefore, in this paper, we propose a simple yet ef-

fective fusion module that takes both contextual and ge-

ometric features as input and exploits positional relation-

ships among neighbour points to generate descriptive fea-

tures. In contrast to previous methods, our approach ef-

fectively incorporates information from neighboring points

and achieves better performance on urban-level point cloud

segmentation tasks.

3. Methodology

In this section, we first present the problem statement.

Then, we discuss the different components of our APNet,

i.e. the dual-encoder and the GAF. Finally, we explain the

segmentation heads and define loss functions.

Problem statement. Given a colored point cloud

P = {(pk, ck)}Nk=1 with N point coordinates pk =
(xk, yk, zk) ∈ R

3 and colors ck = (rk, gk, bk) ∈ R
3,

the aim is to compute the corresponding semantic labels

L = {(lk)}Nk=1 for every point. We train a deep learning

model h(·|θ) with parameter θ by minimizing the differ-

ence between the prediction L = h(P|θ) and correspond-

ing ground truth label set L̂. The urban-level point cloud

datasets are obtained by UAVs.

3.1. Dual-encoder

The key idea of our approach is to split up the label pre-

diction into two different domains: an aerial (A)-branch and

a point-based (P)-branch to leverage the advantages of us-

ing different spatial contexts that corresponding 2D vs. 3D

network architectures have. The output of both branches is

then fused within a geometry-aware fusion (GAF) module

as illustrated in Fig. 2. Rather than fusing the label pre-

dictions of each branch La and Lp, the GAF operates on

intermediate feature representations Fa and Fp for a more

informed label decision process. We detail both branches in

the following paragraphs.

Aerial image branch. To obtain a pseudo aerial image of a

point cloud, we first project it to an aerial view by an ortho-

graphic projection. Assuming that the gravity direction is

aligned with the z-axis, each point pk = (xk, yk, zk) is con-

verted to a pixel pi = (ui, vi) via a mapping ρ : R3 �→ R
2,

as defined by

(ui, vi)
T = ρ(pk) =

(⌊xk

s

⌋
,
⌊yk
s

⌋)T

, (1)

where i is the index of a pixel and s is the quantization

unit, i.e. pixel size. By aggregating all 3D points into pix-

els, we obtain the initial aerial image Iinit ∈ R
H×W×3.

Note that the mapping function ρ is a many-to-one function

and we only preserve the properties, e.g. color and label, of

the highest point in the final image. Moreover, due to the

sparsity of LiDAR points, a pseudo image created from the

projection of a point cloud must be completed because, un-

like a genuine aerial image, it contains both valid and null

pixels. A pixel is considered valid if it covers a minimum
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Figure 2. Architecture overview of APNet. The network consists of a dual-encoder, a geometry-aware fusion module and three seg-

mentation heads that operate in different domains. The two representations of a sample, i.e. aerial image and down-sampled point cloud,

are fed into the dual-encoder. Their outputs are passed to the fusion module for feature aggregation. Finally, the features are sent to the

segmentation head for point-wise segmentation.

of one LiDAR point and is regarded as null otherwise. Dur-

ing the completion, valid pixels are dilated. When the eight

neighbour pixels of a null pixel have more than two distinct

values, its value is updated by the value that occurs most

frequently among its neighbouring pixels. After the com-

pletion, we obtain the input aerial image I ∈ R
H×W×3.

The same projection and completion are operated on labels.

Due to the simplicity of our method, A-branch can be

any end-to-end 2D semantic segmentation network. Its out-

put is defined as follows:

Fa = ha(I|θa) , (2)

where ha(·|θa) is the A-branch network and Fa ∈
R

H×W×C .

Point cloud branch. The original point cloud provides pre-

cise geometric information and is of importance in the ul-

timate evaluation. However, the spatial distribution of a

point cloud is not uniform and local points with the same

semantics tend to contain homogeneous information. To

ensure the points are sampled uniformly and to increase the

network’s receptive field, grid-downsampling is frequently

used [25, 9]. We follow KPConv [25] to perform grid-

downsampling on the original point cloud, which creates a

barycenter point for each non-empty grid, with the average

values of all points within the same grid serving as the new

properties of the barycenter point. The downsampled points

are denoted as

Pd = {(pk, ck)}Nd

k=1 .

Similar to the flexibility of the A-branch, the P-branch can

be easily replaced by any point-based network and is de-

noted by hp(·|θp). By passing downsampled points to the

P-branch, a point-wise feature representation is obtained:

Fp = hp(Pd|θp) , (3)

where Fp ∈ R
Nd×C .

For both the P-branch and A-branch, instead of using

ultimate semantic predictions of two base models, we use

the high-dimensional features from the intermediate layers

of two base models.

3.2. Geometry-aware Fusion Module

In point cloud segmentation, many methods [25, 9, 30]

commonly employ a preprocessing step to achieve a uni-

form point density. This is typically achieved through grid-

downsampling, wherein the point cloud is transformed into

a gird-based represetnation. During the training and val-

idation stages, only the newly generated points are pro-

cessed within the network. The postprocessing, namely up-

sampling, only occurs during the testing phase, where the

labels of original points are determined based on the pre-

dictions of their nearest neighbouring points. However, this

pipeline fails to include the features of other neighbouring

points and the geometric information of the original point

cloud throughout the training process. To address this, we

employ a skip connection to convey geometric information

of the original point cloud to the fusion module and utilize

a point convolution to gather features of neighbour points.

Our GAF module includes two parts, namely feature extrac-

tion and fusion, as illustrated in Fig. 3.

The feature extraction is performed at the downsampled

point level to reduce the computational complexity. For a

given point belonging to downsampled points pdk ∈ Pd, its

features are computed from the outputs of two branches.
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Figure 3. Geometry-aware fusion module includes feature ex-

traction and fusion. Given support points and a contextual fea-

ture map, point-wise contextual features are extracted and con-

catenated with point-wise geometric features. The concatenated

features and geometric information of both query points and sup-

port points are fed into a point convolution to aggregate geometric

context information for generating the fused output features.

Specifically, the output of the P-branch, which is in the form

of a point-wise feature and thus ready to use, is denoted as

fd
k for a specific point pdk. In the other hand, for the pixel

feature, unlike the quantization operation in generating the

aerial image, the bilinear interpolation and the precise 2D

coordinates of the point pdk, i.e. (uk, vk) = (xd
k/s, y

d
k/s),

are used to obtain pixel feature:

fa
k =

∑
u,v∈δ(k)

φ(uk, vk, u, v)F
a(u, v) , (4)

where δ(k) is the set of the four neighboring pixels of point

k and φ(·) computes the bilinear weights.

The process of feature involves the concatenation of fea-

tures derived from the two branches and a point convolu-

tion. A point convolution, e.g. KPConv [25], is defined as

follows,

fk = G(pk) =
∑

pl∈Npk

g(pk − pl)fl , (5)

where G represents the point convolution, while g(·) de-

notes the kernel function that computes the weights based

on the vector from target point pk to one of its neighbouring

points pl. fl is the concatenated feature of point pl from fea-

ture extraction module and Npk
refers to the neighbouring

points of point pk. In summary, the feature of a target point

is obtained by weighted sum the features of its neighbouring

points.

For each single point convolution, we use one point from

a pre-defined query set Pq as the target point and obtain

its features based on its neighbouring points from a pre-

defined support set Ps. Note that the neighbouring point

set, denoted as Npk
, is a subset of the support set Ps. This

subset is generated by considering the distances between

the neighbouring points and the target point pk. A com-

mon practice is to use a same point cloud, e.g. a downsam-

pled point cloud, for both the query set and support set [25],

which is denoted as the naive GAF module, as discussed in

Sec. 4.3. In this way, the entire network works at the level

of downsampled points. Nevertheless, our investigations in-

dicate that the performance is negatively affected by disre-

garding the precise geometric information of the original

points. To address this, we opt to utilise the original points

P instead of the downsampled points Pd as the query set,

which implies that we set Pq = P. The fused feature f fused
k

of point pk is obtained by f fused
k = G(pk) and the feature set

is defined as Ffuse = {f fused
k |k = 1, 2, ..N}.

In summary, the feature extraction operates at the level of

downsampled points and the feature fusion incorporates the

precise geometric information of the original points during

the training stage, which enhances the accuracy.

3.3. Segmentation Heads and Loss function

The segmentation heads are a set of convolutional lay-

ers with 1 × 1 kernel compressing the channel from a high

dimension to a low one, namely the number of categories.

The final output of the model is defined by:

Predrep = Convm1×1(F
rep) , (6)

where Predrep ∈ R
1×Nclasses is the probabilistic prediction

based on the feature f rep and rep ∈ {a, p, fused} stands for

aerial, point-wise or fused representation. Convm1×1 means

1× 1 a convolutional layer is repeated for m times.

Two class-balanced loss function is used, i.e. weighted

cross-entropy (WCE) with inverse frequency [3] and

Lovász-softmax loss [1]. The WCE loss is applied between

the output of three segmentation heads and corresponding

ground-truths:

Lrep
1 = LWCE(Predrep, L̂) , (7)

Note that although three representations share the same seg-

mentation head and the loss function, the ground-truths

L̂ are different. The pixel-wise label, grid-downsampled

point label and the label for raw points are applied to aerial,

point-wise and fused predictions respectively. The Lovász-

softmax loss is only applied to the fused representation:

L2 = LLovasz(Predrep, L̂) , (8)

Eventually, the overall loss is calculated as:

Lall =
∑

rep={a,p,fused}
αrepLrep

1 + βL2 . (9)

where α and β are the factors to adjust the scale of loss

functions.
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4. Experiments
In this section, we introduce the implementation details

of our APNet in Sec. 4.1. Then we compare the proposed

model with SOTA models on the SensatUrban dataset [7]

in Sec. 4.2. Finally, the effectiveness of all components are

analyzed in Sec. 4.3.

4.1. Experimental setup

SensatUrban Dataset. SensatUrban [7] is an urban-level

photogrammetric point cloud dataset collected by a UAV. It

covers a total of 7.64 square kilometers in three UK cities,

i.e. Birmingham, Cambridge and York, and provides anno-

tations for 13 semantic categories. Its average density of it is

473 points per square meter. For easier processing, the data

are cut into 43 blocks with a maximum size of 400 meters

by 400 meters. We follow the official split, which consists

of training/validation/testing set with 33/4/6 blocks. Dur-

ing training and evaluation, the data from different cities

are exploited mutually. We use the training set for training

and report ablation studies on the validation set. We also re-

port results on the testing set by submitting the predictions

to the leaderboard where the ground truths are unpublished

for a fair comparison. The grid size for down-sampling is

set as 0.2 meters, resulting in 92% of the original points be-

ing filtered out. The pixel size for projection is set as 0.04

meters and the image size is set as 512× 512, resulting in a

coverage of 20.48m× 20.48m.

Metrics. As official recommendations [7], the main metric

for per-category evaluation is intersection-over-union (IoU)

and its mean value (mIoU) over all classes. The IoU is for-

mulated as follows:

IoUc =
TP c

TP c + FP c + FN c
, (10)

where TP c, FP c and FN c indicate true positive, false pos-

itive and false negative predictions for class c. The mIoU is

the average IoU over all classes:

mIoU =
1

Ncla

Ncla∑
c=1

IoUc (11)

where Ncla stands for the number of classes. Additionally,

the overall accuracy is also reported. It is defined as follows:

OA =

∑Ncla

c=1 TP c

Npoitns

, (12)

where Npoints is the total number of points.

Implementation details. HRNet [26] with object contex-

tual representation [34] and a variant of RandLA-Net [9]

are chosen as the backbones for A-branch and P-branch,

respectively. These are detailed in the supplementary mate-

rials. AdamW optimizer [16] is used with a weight decay of

0.01 and a default learning rate of 0.001, while the learning

rate of the P-branch is multiplied by a factor of 5. The learn-

ing rate decreases by 5% after each epoch. The network is

trained for 200 epochs for SensatUrban, with a batch size

of 32. During the training procedure, random rotation along

z-axis, random flip along y-axis and random scale are per-

formed for both grid-downsampled points and aerial images

while the correspondences are preserved. For more efficient

training, the data in the training set and validation set are

cropped into 100m × 100m patches approximately.

4.2. Comparison with existing methods

Quantitative results. The comparison of our method and

other existing methods on SensatUrban benchmark [7] are

shown in Table 1. Remarkably, APNet surpasses all other

methods, achieving an OA of 94.0% and a mIoU of 65.2%.

Notably, APNet outperforms its backbone, RandLa-Net [9],

by an impressive margin of 12.5%, affirming the beneficial

impact of the A-branch on segmentation. Furthermore, AP-

Net excels in specific categories, ranking first in both the

traffic road and the footpath categories. Additionally, AP-

Net attains a top-three position in 8 out of 13 categories,

further validating its superior performance.

Qualitative results. Fig. 4 is a high-level visualization

to qualitatively compare the prediction of APNet and the

ground truth. As indicated by the OA, APNet predicts

most of the points correctly and performs excellently in

the two 400m × 400m blocks. Nevertheless, the primary

source of inaccuracy in this figure is from the footpath,

which presents problems due to its contextual and physi-

cal resemblance to the traffic road. Fig. 5 showcases a vi-

sual assessment of APNet against PushBoundary [4]. The

middle column, i.e. the results of PushBoundary with the

red dashed boxes, is taken directly from the original pa-

per. Even though the target regions are chosen by other

authors, our method shows comparable or superior perfor-

mance compared to PushBoundary.

4.3. Ablation studies

Branch ablations. We first compare A-branch, P-branch

and APNet. For the single branch networks, the GAF strat-

egy is not applied as the features are obtained from single

representation. The output feature from A/P-branch is di-

rectly passed to the segmentation head and generates an in-

termediate prediction. For A-branch, the final prediction

is generated through a bilinear interpolation based on four

neighbouring pixels. For P-branch, the final prediction is

obtained by coping prediction from the nearest neighbour

point within downsampled point set. As shown in Table 2,

the combined network outperforms every single branch on
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PointNet [2] 80.8 23.7 67.9 89.5 80.1 0.0 0.0 3.9 0.0 31.6 0.0 35.1 0.0 0.0 0.0

PointNet++ [18] 84.3 32.9 72.5 94.2 84.8 2.7 2.1 25.8 0.0 31.5 11.4 38.8 7.1 0.0 56.9

TangentConv [23] 77.0 33.3 71.5 91.4 75.9 35.2 0.0 45.3 0.0 26.7 19.2 67.6 0.0 0.0 0.0

SPGraph [11] 85.3 37.3 69.9 94.6 88.9 32.8 12.6 15.8 15.5 30.6 22.9 56.4 0.5 0.0 44.2

SparseConv [5] 88.7 42.7 74.1 97.9 94.2 63.3 7.5 24.2 0.0 30.1 34.0 74.4 0.0 0.0 54.8

KPConv [25] 93.2 57.6 87.1 98.9 95.3 74.4 28.7 41.4 0.0 55.9 54.4 85.7 40.4 0.0 86.3
RandLA-Net [9] 89.8 52.7 80.1 98.1 91.6 48.9 40.6 51.6 0.0 56.7 33.2 80.1 32.6 0.0 71.3

BAF-LAC [21] 91.5 54.1 84.4 98.4 94.1 57.2 27.6 42.5 15.0 51.6 39.5 78.1 40.1 0.0 75.2

BAAF-Net [19] 92.0 57.3 84.2 98.3 94.0 55.2 48.9 57.7 20.0 57.3 39.3 79.3 40.7 0.0 70.1

LGS-Net [20] 93.3 63.6 86.1 98.7 95.7 65.7 62.8 52.6 36.5 62.0 52.1 84.3 45.9 9.0 75.0

PushBoundary [4] 93.8 59.7 85.8 98.9 96.8 79.3 49.7 52.4 0.0 62.1 57.6 86.8 42.0 0.0 65.5

LCPFormer [10] 93.5 63.4 86.5 98.3 96.0 55.8 57.0 50.6 46.3 61.4 51.5 85.2 49.2 0.0 86.2

LACV-Net∗ [36] 93.2 61.3 85.5 98.4 95.6 61.9 58.6 64.0 28.5 62.8 45.4 81.9 42.4 4.8 67.7

EyeNet [33] 93.7 62.3 86.6 98.6 96.2 65.8 59.2 64.8 17.9 64.8 49.8 83.1 46.2 11.1 65.4

U-Next∗ [35] 93.0 62.8 85.2 98.6 95.0 68.2 53.6 60.4 36.8 64.0 48.9 84.9 45.1 0.0 76.2

APNet (Ours) 94.0 65.2 86.7 98.3 95.8 75.2 49.7 60.5 42.6 66.3 52.6 85.1 50.9 1.2 82.6

Table 1. Comparison with SOTA methods on SensatUrban online benchmark [7]. Our method performs often better on rare classes

which are difficult to label in one or the other domain. ∗ indicates arXiv paper. Best results are highlighted as first , second , and third .

Figure 4. The qualitative result of two blocks in the validation set of SensatUrban [8]. In each figure, the top-left sub-figure is the aerial

visualization of the original point cloud which covers a 400m× 400m area. The top-right and bottom-right sub-figures are the predictions

and ground truth respectively. Both of them follow the color bar at the bottom. The bottom-left sub-figure is an error map that presents the

difference between the prediction and the ground truth.

OA, mIoU and most of the IoUs of all categories. In cases

where APNet performs worse than single-branch networks,

the difference is negligible. Notably, P-branch outperforms

A-branch on OA, although the opposite is observed for most

categories. This is because of the imbalanced distribution

of categories in the dataset. Over 50% of the points are

attributed to the three categories - ground, vegetation, and

building, resulting in that a higher accuracy for these dom-

inant categories will mask shortcomings in other categories

for an overall metric.
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Point cloud PushBoundary [4] APNet (Ours)

Figure 5. Qualitative comparison with PushBoundary [4] on the SensatUrban [7] test set (No GT available). The figures of the

PushBoundary with the red dash boxes are directly taken from the original paper. APNet performs on par with PushBoundary in the first

example (top row) and outperforms it in the second example (bottom row).
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A-branch 89.8 55.2 71.8 91.6 94.3 70.0 22.9 47.2 46.6 65.4 45.4 81.1 20.4 0.0 61.0

P-branch 90.2 52.1 75.0 95.4 93.3 52.4 27.4 40.7 23.3 59.3 34.3 80.6 18.2 12.4 65.2

APNet (Ours) 92.3 59.2 80.5 97.4 96.7 73.0 21.8 52.3 43.4 66.1 50.7 84.8 19.9 12.3 70.9

Table 2. Ablation studies on branches. This table compares the semantic labeling performance of the aerial image branch and the point

cloud branch against the output of the geometry-aware fusion module. The benefit of the fusion module is apparent as is mostly yields

better class-wise performances then the individual branches separately.

Encoder Fusion strategy OA mIoU

A-branch N/A 89.8 55.2

P-branch N/A 90.2 52.1

Dual-encoder

Addition 91.3 56.7

Concatenation 90.7 56.7

Naive GAF 91.5 57.5

GAF 92.3 59.2

Table 3. Ablation studies on geometry-aware fusion (GAF)
module. Compared to the simpler point-wise fusion approaches

(addition, concatenation), the geometry-aware fusion includes

spatial context into the reasoning yielding improved performance.

Fusion strategy. We compare GAF module with two sim-

ple fusion strategies and the naive version of GAF in Ta-

ble 3. The addition is the most intuitive way to combine

two features. The concatenation increases the complex-

ity slightly because a subsequent MLP is necessary to re-

duce the number of channels. These two combinations are

point-wise and thus no neighbouring features are consid-

ered. Nevertheless, they outperform both single-branch net-

works. Naive GAF enhance its local adaptive capabilities

by involving neighbour features at a downsampled points

level. The proposed GAF improves the naive GAF by using

the original points as query points and achieves the best per-

formance on both OA and mIoU. Our GAF module yields

enhanced outcomes, surpassing the simple fusion strategy

by 1% OA and 2.5% mIoU, e.g. addition and concatenation.

Ablation studies illustrate the effectiveness and necessity of

each component in the proposed method.

5. Conclusion
We presented a semantic segmentation method that ex-

ploits the advantages of both point cloud-based and aerial

image-based methods in a single network architecture with

two separate domain branches. The reasoning about which

branch is more effective for which class category and spa-

tial location is learned by a geometry-aware fusion network

that combines the output of both branches into a single es-

timate. Ablation studies and comparisons to state-of-the-art

methods show clear benefits of the proposed architecture.
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