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Abstract

The key to out-of-distribution detection is density estima-
tion of the in-distribution data or of its feature representa-
tions. This is particularly challenging for dense anomaly
detection in domains where the in-distribution data has
a complex underlying structure. Nearest-Neighbors ap-
proaches have been shown to work well in object-centric
data domains, such as industrial inspection and image clas-
sification. In this paper, we show that nearest-neighbor ap-
proaches also yield state-of-the-art results on dense novelty
detection in complex driving scenes when working with an
appropriate feature representation. In particular, we find
that transformer-based architectures produce representa-
tions that yield much better similarity metrics for the task.
We identify the multi-head structure of these models as one
of the reasons, and demonstrate a way to transfer some
of the improvements to CNNs. Ultimately, the approach is
simple and non-invasive, i.e., it does not affect the primary
segmentation performance, refrains from training on exam-
ples of anomalies, and achieves state-of-the-art results on
RoadAnomaly, StreetHazards, and SegmentMeIfYouCan-
Anomaly.

1. Introduction

Deep learning models can achieve remarkably good per-

formance on a large number of tasks. However, when these

models are evaluated on data outside of the training dis-

tribution, their performance usually deteriorates substan-

tially [23]. Even worse, the models often do not realize

that they are out of distribution and make wrong predictions

with high confidence [20]. For the safe deployment of ma-

chine learning systems in the open world, where there is no

control over the distribution of the input data, the ability of a

model to detect out-of-distribution (OoD) samples becomes

crucial. Since such a system should be able to identify all
unforeseen deviations from the training data, it cannot learn

the distribution of the novel samples, but must base its deci-

Image Ground truth OoD scores

Figure 1: Our approach uses a combination of conventional

parametric anomaly detection and k-nearest-neighbors. The

resulting anomaly scores can be used to identify semantic

anomalies and obstacles (orange in the ground truth) in road

scenes and achieve state-of-the-art anomaly detection per-

formance on common benchmarks such as RoadAnomaly,

StreetHazards, and SegmentMeIfYouCan-Anomaly.

sion on a model of the inlier distribution. This makes nov-

elty detection a particularly challenging task, with an in-

creasing number of research contributions in the last years.

In this work, we focus on segmentation datasets for au-

tonomous driving, and we aim to detect and localize objects

of unknown categories in the image. This requires spatially

resolved outputs, rather than an accumulated decision for

the whole image. Moreover, driving scenes comprise di-

verse patterns and multiple objects (see Figure 1), which

makes modelling this complex inlier distribution challeng-

ing. The problem has been approached by several works

already [29, 50, 55, 18], and a number of accepted evalua-

tion benchmarks exist [22, 4, 7].

Inspired by the success of non-parametric nearest-

neighbor methods in the scope of industrial anomaly de-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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tection [11, 44, 45] and image recognition [49], we in-

vestigate if and how these approaches can be modified to

detect anomalous objects in driving scenes. The settings

are very different. In industrial inspection, objects are ob-

served under similar conditions, which limits the scope of

the in-distribution data, which is advantageous for nearest-

neighbors. In OoD image recognition, while the data is

more diverse than in industrial inspection, it is still object-

centric, and decisions can be based on the global embedding

vector. Novelty detection in driving scenes must deal with

diverse in-distribution data and decisions must be made

locally. Segmentation embeddings are local, and there-

fore spatially correlated, have high intra-class diversity, and

are known to be prone to false positives at class bound-

aries [29]. Consequently, non-parametric approaches ap-

pear unfit to model the in-distribution data effectively, and

indeed to the best of our knowledge no successful nearest-

neighbor approach has so far been proposed in this setting.

Motivated by recent work showing the outstanding prop-

erties of attention-based representations [5, 37, 60], we ap-

ply k-nearest-neighbor based OoD detection on the repre-

sentations produced by transformers models for semantic

segmentation. As a key insight of this work, we find that

transformer representations are a game changer for dense

anomaly detection in driving scenes, outperforming their

convolutional counterparts and state-of-the-art approaches.

In particular, we find that the multiple heads of the trans-

former architecture play an important role. We show further

evidence of the benefit of multiple heads by extending the

idea to CNNs, improving their performance on OoD detec-

tion. We see a connection between this finding and the the-

oretical argument that nearest-neighbor approaches should

fail in high-dimensional features spaces (“curse of dimen-

sionality”). Nearest-neighbor approaches have been shown

to work well in other settings [45, 49], but in complex road

scenes they need the right representations to succeed.

To summarize, our contributions are the following:

• We show that k-nearest-neighbors (kNNs) with deep

supervised segmentation features can achieve state-

of-the-art performance on all common benchmarks

(StreetHazards, RoadAnomaly, SegmentMeIfYouCan,

FS Lost&Found), at a favorable computational trade-

off and without training on out-of-distribution data.

• In contrast to [49], we investigate and find major differ-

ences in the performance of several feature encoders.

We find attention-based models to be substantially and

consistently superior to CNNs.

• We investigate the effects of the “curse of dimension-

ality” on the performance of kNNs and identify the

multi-head design of transformers as a key to their suc-

cess, demonstrating its beneficial effects on CNNs too.

2. Related Work
2.1. Out-of-Distribution (OoD) Detection

In computer vision, detecting anomalous patterns is a

task with several applications. One is visual inspection in

industrial manufacturing, with the goal of identifying pro-

duction defects [2, 64]. In this scenario, many examples of

healthy items are easily available, whereas the distribution

of the possible faults is unknown. The aim is to identify the

presence and location of the defect [11, 44, 45].

A more academic evaluation setting for OoD detection

is image classification [25, 61, 58], where the normal data

distribution is divided into classes, which can in turn have

nuanced appearances and subtypes. The goal is to reliably

identify images that do not belong to the semantic classes of

a training set, such as CIFAR10 [31] or ImageNet [13]. For

this purpose several scoring functions have been proposed,

mostly based on discriminative parametric models [32, 62,

27, 48, 26, 53, 41], optionally aided by the use of third-party

outliers (outlier exposure) [24, 35, 38, 30].

While anomalous image recognition is an essential re-

search problem, safety-critical real world applications such

as autonomous driving deal with complex multi-object

scenes and require accurate localization of unrecognized

objects [22, 4, 7]. This is the setting we address in this

work, where we aim to identify the individual pixels that

correspond to unknown entities. As in image recognition,

the data includes several semantic categories; however, each

sample does not correspond to a whole object but to part of

an object in relation with its context. Novelty detection in

semantic segmentation has been studied less, most meth-

ods rely on scoring functions operating on the output of

pre-trained segmentation models [22, 29, 15, 6, 33]. Re-

cent approaches [19, 42] make clever use of the mask trans-

former architecture [9] for segmentation, which decouples

mask and class predictions, for improved OoD detection.

A trend in recent works for dense OoD detection is to

use of outlier exposure [8, 50, 18], mentioned above.

2.2. OoD Detection with k-Nearest-Neighbors

Unknown patterns in the inference data can be detected

by retrieval and comparison with available in-distribution

samples. The particular nature and structure of the in-

distribution data determines the difficulty and scalability of

the task, i.e. how many in-distribution samples are needed

to effectively represent the data distribution and distinguish

it from anomalous entities, and how easy it is to compute a

suitable feature representation.

Retrieval based approaches are very successful at detect-

ing defects in products [11, 44, 45, 64], precisely because

they can rely on abundant images of healthy samples with

little variation in appearance [2]. These methods use various

types of learned deep features in combination with kNNs.
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A kNN-based method has recently been proven success-

ful in the image recognition setting, too [49]. Here the

training data is more diverse, sometimes featuring 1k cat-

egories, but methods can rely on class labels and object-

centric, single-instance images, which help the feature ex-

traction process [43]. The evaluation setting in this line

of research often uses different datasets for in- and out-of-

distribution samples [27, 49].

In dense out-of-distribution detection, each pixel is a

sample and a potential anomaly. High correlation with sur-

rounding context further complicates the task, since anoma-

lous pixels are correlated to nearby in-distribution pix-

els [22, 29]. The outliers are not from another dataset,

but part of the scene, coexisting and interacting with the

in-distribution objects. The training data ontologies have

fewer categories [12, 22], but higher intra-class variation.

Results for an embedded kNN approach similar to ours are

reported in [4], but without the right representation choice

its performance is inferior to most baselines.

3. Deep Neighbor Proximity for OoD Detection
At the core of our approach for out-of-distribution de-

tection are deep k-Nearest-Neighbors. As illustrated in Fig-

ure 1, our method relies on the computation of distances

between feature representations produced by the encoder of

a semantic segmentation network. At test time we collect

the distances between the local representation maps of the

test sample and a library of reference features obtained from

the in-distribution dataset – i.e. the training set for the seg-

mentation network.

More formally, consider a matrix of in-distribution ref-

erence features as R ∈ R
N×C , where N is the number

of reference features and C is the dimensionality of each

feature vector. The computation of R will be described

in Sections 3.2 and 3.3. For a test image, we extract the

feature representation T ∈ R
H·W×C , and “flatten” it in

the spatial dimensions H,W . We first compute the matrix

D ∈ R
H·W×N of distances between each possible combi-

nation of samples t and r in the feature sets:

di,j = dist(tj , ri) ∀ j ∈ {1..H·W}, i ∈ {1..N} (1)

where dist is the euclidean distance. Then, for each test

feature j we compute the OoD score as the average of the

distances to the closest k neighbors:

sN
j =

1

k
· min
D′

i⊂Di

|D′
i|=k

∑

d∈D′
i

d, (2)

and successively reshape them into the original feature

shape, to obtain: SN ∈ R
H×W .

Although different distance functions were tried, L2 was

found to perform best. See Appendix for details.

3.1. Out-of-Distribution Scores

The distances obtained with the procedure described

above can be directly used as anomaly scores, however they

can also be combined with those obtained from the model

predictions (i.e. parametric scores).

In order to combine SN with the parametric scores SP,

we first bring them to the same resolution, by upsampling

SN to the original image size. Subsequently, we simply

scale both to the same range using their respective extrema

estimated on the training set:

SN = SN/maxSN
train (3)

SP = (SP −minSP
train)/(maxSP

train −minSP
train) (4)

and finally compute the combined scores:

SC = SN + SP. (5)

In the following text, we will use the abbreviations DNP

(Deep Neighbor Proximity) and cDNP (combined Deep

Neighbor Proximity) to refer to the approaches and results

based on SN and SC respectively.

In terms of parametric scores we considered all the best

options in recent literature for dense OoD detection. While

more results are available in the Appendix, here we report

those obtained with LogSumExp operator, which performed

slightly better. LogSumExp can be interpreted as an energy

functional built on a discriminative model’s logits [16, 50].

3.2. Model Architectures and Feature Extraction

To assess the versatility of our method, we apply it to

four different feature extraction architectures: ResNet [21],

ConvNeXt [36], MiT [57] and ViT [14].

ResNet and ConvNeXt are both CNNs consisting of a

cascade of 4 computational stages. We can extract convo-

lutional features at the end of each stage. Earlier stage fea-

tures have higher resolution but less semantic content. Both

are designed such that the 3rd stage contains more internal

layers than the others stages.

MiT is also a hierarchical 4-stage architecture, but it

uses alternating multi-head self-attention blocks and con-

volutional layers. Here we can test the representations from

the output of each stage, as above, but also the internal fea-

tures of the self-attention mechanism: queries, keys, and

values.

ViT is a “pure” transformer, as it is entirely composed of

self-attention blocks that output a constant number of patch

features, corresponding to a constant resolution. For this

architecture we test the features taken from the output of

different transformer blocks, as well as the queries, keys,

and values produced by the attention mechanism.

In practice we use the networks above as encoders in se-

mantic segmentation models, and thereby learn the feature
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embeddings as part of the standard supervised segmenta-

tion training procedure. For ResNet and ConvNeXt we use

UPerNet [56], for MiT we use SegFormer [57], and for ViT

we use Segmenter [47] and SETR [63], following estab-

lished practices in semantic segmentation literature.

Feature Selection: For each encoder architecture there

are many choices of features to extract for computing neigh-

bor distances, from different depth levels to different func-

tional layers. We evaluate the ones described above for each

model type, so as to identify the most suitable for the task,

and present the results in Section 4.3.

3.3. Reference Feature Subsampling

In order to have a tractable amount of reference features

we sub-sample the representations obtained from the train-

ing set. For this stage we evaluate three options: random

sub-sampling, greedy coreset reduction (GCS), and per-

class greedy coreset reduction (PC-GCS). GCS has been

used by PatchCore [45], and consists in a greedy selection

procedure aiming to find the subset of R with the closest

solution to the nearest neighbor problem. In [45], GCS is

found to greatly outperform random sampling.

PC-GCS is our proposed variant of GCS applied sepa-

rately to each category present in the segmentation dataset.

PC-GCS makes sense in this setting because industrial in-

spection images, on which PatchCore is originally applied,

are single-class and less diverse in appearance than the seg-

mentation data we use. An application to coherent sub-

components, such as semantic categories, is closer to its

original intended scenario. PC-GCS also preserves the bal-

ance between classes of the original dataset.

4. Experiments

Our evaluation investigates the influence of: the choice

of features (4.3), subsampling strategy (4.7), and number

of neighbors (4.9). Section 4.4, shows how our proposed

nearest-neighbor-based approaches (Section 3.1) perform in

comparison with the parametric baseline, and finally how

they compare with current state-of-the-art approaches in

Section 4.5. Unless otherwise stated, we use N = 100k

reference features, and k = 3 neighbors.

4.1. Evaluation Benchmarks and Metrics

Several benchmarks for the evaluation of dense OoD per-

formance exist, and while they all revolve on semantic seg-

mentation data for autonomous driving, they are quite dif-

ferent in nature.

StreetHazards [22] is a synthetic dataset and bench-

mark, featuring 12 in-distribution categories in the anno-

tated training/validation sets, and 250 diverse OoD ob-

jects, annotated as one category in the test set. Its size

(1500 test images), variety of OoD objects and locations

makes it an important benchmark for research. Road-
Anomaly [34] is a benchmark made of images downloaded

from the web, which features objects, such as animals or ve-

hicles, with categories alien to the typical driving ontology

e.g. Cityscapes [12] or BDD100k [59]. SegmentMeIfYou-
Can - Anomaly [7] is an extension of RoadAnomaly, con-

taining mostly images for which the OoD ground truth is

undisclosed. Fishyscapes Lost&Found [4] is a benchmark

for the detection of road obstacles (e.g. lost cargo, small

objects), originally designed as an extension of Cityscapes.

Models trained on Cityscapes are used for all bench-

marks, except for StreetHazards, which comes with its own

training set. Our ablation experiments use RoadAnomaly

and StreetHazards. We use the same model checkpoints for

all Cityscapes-based benchmarks.

The most important metric for the task at hand is the Av-

erage Precision (AP), which is a holistic metric, averaged

over several threshold values. Secondly, we report the False

Positive Rate at 95% True Positive Rate (FPR95), which

measures the performance at a high detection threshold -

relevant for safety critical applications.

4.2. Training the Feature Extractors

We follow standard training procedures for each of our

semantic segmentation models, optimizing for the cross

entropy objective using exclusively the respective training

dataset. We use the mmsegmentation [40] framework

and adhere to the default optimization settings when avail-

able (see Appendix). For comparability we select network

snapshots based on segmentation performance – i.e. after

full convergence – even though this might negatively impact

OoD detection results. In fact, OoD detection performance

is observed to vary greatly over the epochs, and tends to

reach its peak before full convergence of the segmentation

loss, before declining again due to overconfidence [20].

All encoders are initialized with the respective publicly

available ImageNet [13] pre-trained parameters. For fair

comparison, on our ViT models we use the DeiT [51]

weights, instead of the original ones trained on a larger

undisclosed dataset.

4.3. Choosing the Best Reference Features

The efficacy of our approach with different feature rep-

resentations is evaluated here, as anticipated in Section 3.2.

For both CNN architectures, we observe the best suited rep-

resentations are those extracted at the third stage (out of

four). These features likely strike the right balance between

resolution and semantic abstraction.

For the transformer encoders, MiT and ViT, which in-

clude self-attention layers, from which query, key and value
representations can be extracted, as well as “end-of-the-

block” representations [52]. Our results in the Appendix

indicate a clear superiority of the self-attention features,
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RoadAnomaly StreetHazards
Model Method AP↑ FPR95 ↓ AP ↑ FPR95 ↓

UPerNet
ResNet50

LogSumExp 28.58 62.98 23.87 19.31
DNP 27.81 54.72 15.30 25.88
cDNP 33.55 42.14 25.09 14.30

UPerNet
ConvNeXt-T

LogSumExp 40.04 59.43 15.79 25.19
DNP 40.89 40.02 20.30 18.66
cDNP 46.74 41.72 26.55 13.94

SegFormer
MiT-B2

LogSumExp 69.62 27.74 16.11 25.33
DNP 72.59 18.38 37.33 20.44
cDNP 77.92 15.97 37.44 16.75

Segmenter
ViT-S

LogSumExp 56.39 34.54 18.16 28.94
DNP 79.47 19.75 45.69 18.37
cDNP 79.78 18.18 43.89 15.69

Table 1: Comparison between the the parametric (Log-

SumExp) baseline, DNP, and their combination cDNP, for

four encoder/decoder architectures, on RoadAnomaly and

StreetHazards. Best results per model are underlined, best

overall are bold. DNP/cDNP always outperform LogSum-

Exp, cDNP is the best approach overall.

which perform approximately equally and outperform the

block features by ∼20% and ∼55% for ViT and MiT re-

spectively. Based on performance, we choose the last layer

representations for both transformer-based encoders.

In the following sections, we will use the keys as de-

fault features for transformer backbones, in accordance with

other works [46], but we observed no clear superiority of

one over the other.

4.4. Comparing Parametric Scores, DNP, and cDNP

The three out-of-distribution scores defined in Sec-

tion 3.1, i.e. the model’s own parametric scores (LogSum-

Exp) and the nearest-neighbor based approaches: DNP and

cDNP are compared in Table 1 for the four feature extrac-

tors on RoadAnomaly and StreetHazards. Consistently for

all benchmarks, architectures, and metrics, cDNP performs

better than its two component scores LogSumExp and DNP.

However, the extent of its superiority changes for different

architectures and is much greater for the attention-based en-

coders, particularly for ViT.

In fact, while LogSumExp is better than DNP for

ResNet, for the other models the performance of DNP –

the pure kNN method – is superior to that of LogSumExp,

and performs almost as well as cDNP in the case of ViT.

The performance gains of cDNP are particularly noticeable

in terms of FPR95, where they are substantial for all archi-

tectures.

4.5. Comparison to the State of the Art

A comparison with the current state-of-the-art on Road-

Anomaly, StreetHazards, SegmentMeIfYouCan (SMIYC)

Anomaly, and Fishyscapes Lost&Found is shown in the Ta-

bles 2(a-c).

While our comparison is focused on methods that do

not use outlier exposure for training (OE) – as this tech-

nique breaks the interpretation of out-of-distribution data

as completely unknown – for completeness we include re-

sults for PEBAL [50] and DenseHybrid [18], two recent ap-

proaches based on OE. Other notable results are those of

M2F-EAM [19], and the concurrent RbA [42]: both clev-

erly exploit the Mask2Former segmentation model.

Along cDNP-Segmenter-ViT-B and cDNP-ConvNeXt-

S, we include results for cDNP-SETR (based on ViT-L) We

added the last model to show that the approach can work

with different encoder sizes and segmentation heads, and

we used an official snapshot, to test the method with high

accuracy off-the-shelf parameters.

On RoadAnomaly, StreetHazards, and SMIYC-

Anomaly – whose ground truth is undisclosed, cDNP

performs best, followed by RbA and M2F-EAM.

In Table 2(c) we report results for Fishyscapes

Lost&Found-test. This benchmark focuses on road obsta-

cles which are smaller and with less semantic variation.

In this case we also include our method’s results using a

model trained with outlier exposure, following the protocol

described in [8]. Here cDNP outperforms the other methods

in terms of AP, but has a higher FPR95.

The results on Fishyscapes Lost&Found identify a po-

tential limitation of our method in its current formulation,

i.e. comparatively worse performance in detecting very

small anomalies. This is due to the lower resolution of the

transformer patches and kNN scores. The Appendix has re-

sults for SMIYC-Obstacle, another benchmark with small

obstacles.

4.6. Qualitative Results

Qualitative examples of our method on RoadAnomaly

and StreetHazards, using Segmenter-ViT-B are shown in

Figure 2. In both cases, the anomaly score-maps show the

superiority of the kNN-based scores compared to the para-

metric ones: cDNP has both fewer false negatives (it marks

most anomalous locations) and false positives (especially at

class boundaries and for distant objects).

More examples from both datasets, including results

from both ViT-B and UPerNet-ConvNeXt-S are shown in

Figure 3. Here the benefits of the combined scores over

parametric ones and DNP can be seen, especially for Con-

vNeXt. While ViT generally performs better than Con-

vNeXt, the example in the third row is an exception.

A qualitative comparison with the RbA [42] approach is

shown in Figure 4. More qualitative results can be found in

the Appendix.

4.7. Reference Feature Subsampling Methods

Here we discuss the results on the choice of the sub-

sampling method: random, GCS, PC-CGS, which are sum-
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RoadAnomaly StreetHazards
Method OE AP FPR95 AP FPR95

DML[6] 37.0 37.0 14.7 17.3
MOoSe[15] 43.6 32.1 15.2 17.6
PEBAL[50] � 62.4 28.3 - -
DenseHybrid[18] � - - 30.2 13.0
M2F-EAM[19] 66.7 13.4 - -
RbA[42] 78.5 11.8 - -

cDNP-Segmenter-B 85.6 9.8 46.2 14.9
cDNP-SETR-L 85.9 13.8 - -

(a)

SMIYC-Anomaly
Method OE AP FPR95

Resynth. [34] 52.3 25.9
PEBAL[50] � 49.1 40.8
NFlowJS[17] 56.9 34.7
ObsNet[3] 75.4 26.7
M2F-EAM[19] 76.3 93.9
DenseHybrid[18] � 78.0 9.8
RbA[42] 86.1 15.9

cDNP-Segmenter-B 88.9 11.4

(b)

FS-Lost&Found
Method OE AP FPR95

M2F-EAM [19] 9.4 41.5
NFlowJS 39.4 9.0
DenseHybrid[18] � 43.9 6.2
PEBAL [50] � 44.2 7.6
FlowEneDet 50.2 5.2
GMMSeg [33] 55.6 6.6

cDNP-Segmenter-B 62.2 8.9
cDNP-Segmenter-B � 69.8 7.5

(c)

Table 2: Comparison with the state-of-the art on RoadAnomaly (a), StreetHazards (a), SMIYC-Anomaly (b), and

Fishyscapes-Lost&Found-test (c). OE denotes the use of outlier exposure, according to each specific approach. Best re-

sults without OE are shown in bold. Our approach performs best overall, except for Lost&Found, where it has higher FPR95.

Image Ground truth Param. cDNP Image Ground truth Param. cDNP

Figure 2: Qualitative results for Segmenter-ViT-B on RoadAnomaly (left) and StreetHazards (right). OoD objects are indi-

cated in orange in the ground truth. It can be observed how cDNP scores are better markers for anomalous entities than the

parametric ones. The latter also wrongly mark object boundaries and distant objects as anomalous, more often than cDNP.

Image Ground truth Param.-CNXT DNP-CNXT cDNP-CNXT Param.-ViT DNP-ViT cDNP-ViT

Figure 3: Qualitative results with UperNet-ConvNeXt-S (CNXT) and Segmenter-ViT-B. The top two examples are from

RoadAnomaly, followed by two StreetHazards ones. The score maps show how the combination of parametric scores and

DNP ones is an improvement over both, mostly through the removal/filtering of false positives. In the first and second row,

ViT is clearly outperforming ConvNeXt, whereas in the last row it is the other way around.

marized in Figure 5 for ConvNeXt-T and ViT-S on Road-

Anomaly. We evaluate for different values of N : 1k, 10k,

100k, and 1 million for random only, due to the prohibitive

pre-processing costs of the coreset approaches. Each setup

is evaluated with three random seeds.

The ranking between the methods changes with the ar-

chitecture and the number of reference samples, but all

methods are similarly competitive given enough features.

The performance does not saturate with 1M reference sam-

ples, however the inference costs in that regime make the

approach less attractive. Throughout the following experi-

ments we use PC-GCS, based on its results and faster pre-

processing times than GCS.

4.8. Computational Costs

A major point of concern with k-nearest-neighbors is the

computational cost due to the distance computations and

search on large feature sets. This depends on two major

factors: the number of reference features N , and the net-

work architecture, which determines the test feature res-

olution H·W and channel size C. We estimate the run-

time for each k-nearest-neighbors distance computation us-

ing the IndexFlat exact search index provided by the

faiss [28] library, on an NVIDIA RTX 2080Ti card.
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Image Ground Truth RbA cDNP (Ours)

Figure 4: Qualitative comparison between cDNP and RbA.

The scoremaps from the latter have sharper contours, due

to the mask based inference: this can lead to more accurate

detection of smaller objects (fourth example), but also to

stark false negatives/positives (first three examples). Both

methods fail, albeit differently, on the last example.

Figure 5: Results of different subsampling methods for

ConvNeXt and ViT on RoadAnomaly. On the x-axes are the

number of samples, on the y-axes the performance of DNP.

All sampling methods perform well given enough reference

features, with a slight superiority of PC-GCS.

Figure 6: Percentage performance gains in terms of AP

(cDNP vs. parametric) over nearest-neighbors search time.

For each of the four architectures, three reference set sizes

are considered: N∈{103, 104, 105}.

The trade-off between the performance gain brought by

our approach (cDNP) over the best performing parametric

scores (LSE) and runtime is shown in Figure 6. The x-

axis shows the average kNNs search runtime, for images of

1280×720px. We compare all architectures with reference

feature set sizes 1k, 10k, 100k on RoadAnomaly.

ResNet50 is the most expensive architecture, due to its

comparatively high feature size and resolution, while MiT,

which has the lowest feature resolution, is the least expen-

sive. MiT yields the same relative AP gain as the CNNs,

but its absolute performance is much better, as per Table 1.

ConvNeXt and ViT have the same cost, but the latter offers

the highest AP gain in return.

4.9. Impact of the Number of Neighbors

The number of selected neighbors (k) is an important

hyperparameter for any kNN-based approach, and typically

depends on the size of the reference set [49] and on the

source of the features. An overview of the optimal k val-

ues for our ConvNeXt-T and ViT-S models is presented in

Figure 7, which shows that for k > 3 the performance of

both models decreases.

The choice of k=3 gives a near-optimal value and en-

sures a more robust distance expectation (Equation 2).

Figure 7: Effect of the number of neighbors (k) on DNP

scores for ConvNeXt-T and ViT-S, on RoadAnomaly. The

optimal k value depends on the number of reference fea-

tures N for ViT, but the difference is marginal.

5. Feature Dimensionality and Partitioning
A known limitation of non-parametric pattern recogni-

tion approaches, such as kNNs, is that they scale poorly to

high dimensional problems. The term “curse of dimension-

ality” refers to the observation that, as the data dimension-

ality increases, the data space becomes more sparsely popu-

lated and the distance to the nearest sample approaches the

distance to the farthest one [54, 1]. This section investigates

the effect of this phenomenon in our setting and evaluates

the role it plays in the large performance gap between differ-

ent feature extractors observed in the previous experiments.

Section 5.2 explores the multi-head design as one of the

reasons for the success of transformer features, and finds

that a similar partitioning strategy can be used to boost OoD

detection performance in CNNs.

Lower-order distance functions have also been tested to

mitigate the curse of dimensionality, although with mixed

success [1, 39]. See results in Appendix.

5.1. Curse of Dimensionality

The results in Section 4 leave no doubt that the repre-

sentation size does not prevent the use of nearest neighbors.
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Figure 8: Density histograms of parametric scores and kNN

distances, which do not collapse under the curse of dimen-

sionality and show better ID/OoD separation.

This is confirmed in Figure 8, where we compare the distri-

butions of kNN distance and parametric scores. Although

the kNN distances do not collapse on a single value, it is

still possible that their high dimensionality impairs perfor-

mance. This would partially explain the performance dif-

ference between feature extractors reported in Table 1.

To investigate this, we trained versions of UperNet-

ConvNeXt-T and Segmenter-ViT-S varying the size of the

features used for kNNs. Interestingly, according to the

results reported in Figure 9, ConvNeXt features benefit

greatly from a reduced dimensionality, whereas ViT repre-

sentations work best at the default size. This is despite the

fact that the default feature size is the same in both cases.

5.2. Feature Groups and kNNs

One major difference between ConvNeXt and ViT is that

the latter computes its representations in a multi-head fash-

ion, with each head being able to attend to different portions

of the input and being responsible for a specific group of

feature dimensions. This results in a functional partitioning

of the representations.

We hypothesize that this design choice affects represen-

tation learning and impacts how the features behave with

kNNs. We propose an ablation study in which the overall

feature dimensionality is fixed to its default value (384), but

the number of independent feature groups changes.

We achieve feature partitioning in ConvNeXt by using

depthwise-separable convolutions [10], these divide the in-

put features into equally sized groups, and process them in-

dependently into separate outputs before concatenating.

The results of the ablation study are shown in Figure 10,

and show that the two networks behave similarly. For both

architectures a clear optimal number of groups exists: for

ViT-S it happens to coincide with the default number of

heads, whereas for ConvNeXt it’s three. Fewer groups re-

sult in a drastic performance reduction, whereas the perfor-

mance with more groups decreases more slowly, likely as a

result of reduced representational power per group.

6. Conclusion
In this work we presented combined Deep Neigh-

bor Proximity (cDNP), an approach for dense out-of-

distribution detection based on k nearest neighbors, which

Figure 9: Effect of feature size on OoD detection perfor-

mance using kNNs. The default size is the optimal for ViT,

but smaller features perform better for ConvNeXt.

Figure 10: Effect of the number of groups (ConvNeXt) and

heads (ViT) on OoD detection performance using kNNs.

The behavior is similar for the two architectures, although

the optimal number of feature groups is different.

is simple, cost-effective, and achieves state-of-the-art per-

formance on common driving-focused anomaly detection

benchmarks. The method is easily combined with standard

parametric scores for a performance boost, but also deliv-

ers exceptional standalone performance when paired with

attention-based models. We conducted a thorough compar-

ative study to verify that the approach performs well on var-

ious datasets and is robust to parameter changes.

The large boost in performance we discovered with

transformer-based representations is in line with the good

feature clustering properties of transformers [5, 37, 60].

We believe that the self-attention mechanism, based on

similarity between feature tokens, is a major reason for

these advantageous feature properties in similarity-centric

approaches, although this is hard to prove. We found clear

evidence that the multiple heads have a positive influence

on the similarity metric, and we were even able to transfer

this advantage to CNNs via corresponding group structures.

Our results indicate that this effect is tied to the “curse of

dimensionality”, which – although not catastrophically –

harms the performance of k-nearest-neighbors. A deeper

understanding of these effects holds the promise of princi-

pled progress in the field.

A limitation of the current approach is its lower reso-

lution, which depends on the encoder architecture and can

harm performance in the presence of very small anomalies.

Upsampling strategies or alternative architectures can be ex-

plored for whenever small-sized objects matter.
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