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Abstract

We address the crucial task of developing well-calibrated
out-of-distribution (OOD) detectors, in order to enable safe
deployment of medical image classifiers. Calibration en-
ables deep networks to protect against trivial decision rules
and controls over-generalization, thereby supporting model
reliability. Given the challenges involved in curating appro-
priate calibration datasets, synthetic augmentations have
gained significant popularity for inlier/outlier specification.
Despite the rapid progress in data augmentation techniques,
our study reveals a remarkable finding: the synthesis space
and augmentation type play a pivotal role in effectively cal-
ibrating OOD detectors. Using the popular energy-based
OOD detection framework, we find that the optimal proto-
col is to synthesize latent-space inliers along with diverse
pixel-space outliers. Through extensive empirical studies
conducted on multiple medical imaging benchmarks, we
consistently demonstrate the superiority of our approach,
achieving substantial improvements of 15% - 35% in AU-
ROC compared to the state-of-the-art across various open-
set recognition settings.

1. Introduction

Detecting atypical data which are characterized by se-

mantic or covariate shifts [27] compared to the training data

distribution, and deferring to experts has become a viable

approach for safe deployment of AI tools in critical applica-

tions, such as clinical diagnosis [14, 38]. To achieve this, it

is necessary to have inference-time scores that represent the

confidence of AI systems [10, 18, 17, 19, 25, 23], as well

as statistical rules that can reliably differentiate between in-
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distribution (ID) and out-of-distribution (OOD) data. How-

ever, achieving the right balance between a model’s gener-

alization performance and its ability to detect OOD data is

crucial in practice. This challenge has led to the development

of calibration techniques that enable deep neural networks

to protect against non-generalizable shortcut decision rules,

while also controlling over-generalization, thereby allowing

reliable detection of atypical samples. Popular examples

include outlier exposure [11] or variants with adversarial

learning such as ALOE [3].

Incorporating such a calibration objective into the model

training (or post-hoc fine-tuning) process necessitates the

specification of inlier and outlier data regimes. A common

approach for inlier specification involves utilizing a held-out

dataset extracted from the training distribution. However,

this approach can be infeasible in scenarios with limited train-

ing data. On the other hand, curating representative datasets

for outlier specification is not straightforward in medical

imaging applications, since the regimes of OOD data en-

compass a wide-variety of covariate (sub-population shifts,

acquisition device/protocol variations), semantic (novel dis-

eases, control groups) and even modality shifts (e.g, a chest

x-ray image presented to a classifier trained solely on skin

lesion images). Consequently, the utilization of synthetic

augmentations as a means to specify inliers and outliers has

emerged as a promising alternative[28].

Typical choices for inlier specification include geomet-

ric transforms such as rotation and translation [34] or off-

the-shelf augmentation policies such as Augmix [12], Triv-

ialAug [21], Augmax [33], ALT [8], etc. On the other hand,

for synthetic outlier specification, Sinha et al. [29] advocated

the use of pixel-space outliers synthesized via generative

models, while Du et al. [7] recently demonstrated the ef-

fectiveness of latent-space outliers obtained using a virtual

outlier synthesis (VOS) procedure. In this paper, we make

a surprising finding that any combination of existing inlier

and outlier specification from the vision literature performs

poorly in medical open-set recognition settings (Figure 1).

We posit that the generation of synthetic inliers and out-

liers should not be viewed independently, and hence the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Inlier and outlier specification for calibrating OOD detectors. We focus on energy-based OOD detectors for deep models

and explore the use of synthetic augmentations for specifying calibration data. We make a striking finding regarding the critical role of the

synthesis space in relation to the open-set detection performance. While existing approaches such as G-ODIN [15], VOS [7], and NDA [29]

can encounter challenges in various open-set recognition settings, our proposed approach consistently produces high-quality OOD detectors

without compromising test accuracy.

space in which they are synthesized needs to be optimally

chosen. While inlier specification is aimed at expanding

model generalization and thus identifying the optimal sub-

space (in the inferred feature space) for ID data, outlier

specification needs to ensure that the (diverse) subspaces cor-

responding to the synthetic outliers data do not overlap with

the ID subspaces. Building on this key insight, we propose to

perform virtual inlier synthesis in the latent space of a classi-

fier, while leveraging conventional augmentation techniques

to produce diverse, pixel-space outliers. We implement our

approach using the widely adopted energy-based OOD de-

tectors [19], and show that it can significantly improve upon

existing inlier/outlier combinations. Using empirical studies

with a large suite of medical imaging benchmarks, archi-

tectures and open-set settings (modality, semantic novelty,

hospital shifts), we find that our approach produces state-of-

the-art detection performance.

2. Problem Setup

2.1. Setup

We consider a K−way classifier Fθ trained using labeled

data D = {(xi, yi)}Mi=1, where xi is an image drawn from

PID(x), and yi ∈ YID = {1, 2, · · · ,K} is its correspond-

ing label. The goal of OOD detection is to flag samples

x̄ ∈ POOD(x) that may correspond to covariate or semantic

shifts with respect to PID(x). In this paper, we consider the

challenging setting of open-set recognition, where the OOD

data comes from classes that were not observed during train-

ing, i.e., YOOD �= YID. This encompasses two main categories:

(a) Novel classes, where the OOD data arises from the same

imaging modality as the training set but represents unseen

classes, such as new diseases or healthy control groups; and

(b) Modality shifts, referring to situations where the OOD

images originate from different image modalities or organs,

presenting entirely unrelated semantic concepts. Dealing

with this scenario proves to be highly challenging due to the

diversity of the OOD set and the tendency of deep models to

erroneously associate these semantically unrelated images

with one of the observed classes.

2.2. OOD Detector Design

A variety of OOD detection frameworks currently exist

in the literature, ranging from energy-based [19] to density-

based [17, 20] and constrastively trained detectors [26, 30].

While our approach remains agnostic to specific assump-
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tions and can be applied with any detector, we specifi-

cally focus on energy-based detectors and margin-based

calibration in this study, as they continue to demonstrate

strong performance in vision applications [37]. The free

energy function for discriminative models [19] maps an

input x to a deterministic scalar E(x; θ) that is linearly

aligned with log-likelihood log(PID(x)). Mathematically,

E(x; θ) = −T log
∑K

k=1 expFk
θ (x)/T , whereFk

θ denotes

the logit for class k and T is the temperature scaling param-

eter. We adopt the energy function to train an OOD detector

G alongside the classifier, similar to [19] where G is defined

as,

G(x; θ, τ) =

{
outlier, if −E(x; θ) ≤ τ ,

inlier, if −E(x; θ) > τ.
(1)

Here, τ is a user-defined threshold for detection. Since the

training data is expected to be characterized by low energy in

comparison to OOD, we use negative energy scores to align

with the notion that ID samples should have higher scores

over OOD samples.

In practice, it is important to calibrate G such that the dual

objective of not compromising ID performance and reliably

flagging OOD data are met. This can be formally stated as:

min
θ

E
(x,y)∈D

LCE(Fθ(x), y) + α · E
x̃∈Din

LID(E(x̃); θ)

+ β · E
x̄∈Dout

LOOD(E(x̄); θ). (2)

Here, LCE(.) is the standard cross-entropy loss. The terms

LID and LOOD (implemented as margin losses) are used to

calibrate the OOD detector to operate as expected in the

regimes of the specified inliers (Din) and outliers (Dout).

Intuitively, by specifying inliers during calibration, the

detector broadens its generalization beyond the prototypical

training examples. This enables the identification of opti-

mal subspaces within the ID manifold, allowing the detector

to learn data-specific patterns instead of trivial biases or

shortcuts. While inlier specification carries the risk of over-

generalization, the inclusion of outliers mitigates this issue

by ensuring that the subspaces of inliers do not overlap with

those of outliers. As a result, the interaction between inlier

and outlier specifications plays a crucial role in determining

the quality of the ID manifold learned during training, and

enables the detector to exhibit high sensitivity when encoun-

tering input data that falls outside the allowable ID manifold.

The success of this calibration hinges on the appropriate

specification of inliers and outliers, which is the focus of this

work.

3. Approach: Calibrating OOD Detectors
We investigate the implementation of (2) by examining

various options for specifying inliers and outliers. In this

context, we focus on the use of synthetic augmentations,

without requiring additional data curation or explicit flagging

(human supervision) of OOD data.

3.1. Augmentations for Inlier Synthesis

Data augmentation strategies are widely employed to en-

hance the generalization performance of classifier models.

Typically, pixel-space transformations are commonly uti-

lized for this purpose. In contrast, we propose an alternative

approach that leverages latent-space augmentations for inlier

synthesis.

3.1.1 Pixel-space Synthesis

In this case, inliers are generated directly in the pixel-space

by utilizing known statistical invariances. Following state-

of-the-art practices, we adopt the following strategies for

inlier synthesis:- (i) conventional image manipulations, in-

cluding random horizontal and vertical flips, as well as color

jitter; and (ii) compositional strategies such as Augmix [12],

which generate inliers by combining multiple geometric and

perceptual transformations.

3.1.2 Latent-space Synthesis

While pixel-space augmentations are known to often aid the

classifier performance, it is possible that they may adversely

impact model safety [13], e.g., outlier detection or cali-

bration under real-world shifts, due to over-generalization.

In order to systematically calibrate OOD detectors, while

controlling over-generalization, we propose to synthesize

inliers in the low-dimensional latent space of a classifier.

Formally, we assume that the model F can be decomposed

into feature extractor and classifier modules as F = h ◦ c,
and we approximate data from class k in the feature space

as p(h(x)|y = k) ∼ N (μ̂k, Σ̂). Each class is modeled

using a class-specific mean μ̂k ∈ R
d and a shared covari-

ance Σ̂ ∈ R
d×d. Here, d denotes the latent feature di-

mension and the class-specific statistics are obtained via

maximum likelihood estimation. In order to synthesize class-

specific inliers, we sample each of the K gaussians from re-

gions of low-likelihood corresponding to the tails as follows:

T = {tk|N (μ̂k, Σ̂) < δ}Kk=1. Here tk denotes the inlier

sampled from the kth gaussian distribution. The modeling

of class-specific gaussian distributions with a tied covari-

ance allows the predictive model to be viewed under the

lens of linear discriminant analysis (LDA) [17]. If p(y|h(x))
denotes the inferred posterior label distribution, we have,
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p(y = c|h(x)) =
exp

(
μ̂�

c
̂Σ−1h(x)− 1

2 μ̂
�
c
̂Σ−1μ̂c+logβc

)
K∑

k=1

exp

(
μ̂�

k Σ̂
−1h(x)− 1

2
μ̂�

k Σ̂
−1μ̂k + logβk

) ,

(3)

where βc denotes the prior probabilities. When com-

paring (3) with the standard softmax based prediction as

well as with the definition of energy, we observe that

E(x, y = c) = −μ̂�
c Σ̂

−1h(x) + 1
2 μ̂

T
c Σ

−1μ̂c − logβc. In-

voking the definition of the Gaussian density function, and

by expressing kernel parameters in terms of energy, we can

relate the energy scores for the latent space mean μ̂k and the

tail tk as

E

(
h(x) =μ̂k, y = k

)
− E

(
h(x) = tk, y = k

)
<

1

2
(tk − μ̂k)

�Σ̂−1(tk + μ̂k). (4)

In particular, we obtain (4) from (3) using the fact the

probability density of a Gaussian at its mean is greater than

the density at the tail and rearranging the obtained terms.

For simplicity, we reuse the same notation E to define the

energy for x ∈ D or equivalently h(x) in the latent space.

We find that the free energy E(h(x) = tk) can be bounded

as:

E(h(x) = tk) >− log

K∑
k=1

exp

(
− E(h(x) = μ̂k, k)+

1

2
(tk − μ̂k)

�Σ̂−1(tk + μ̂k)

)
. (5)

Our optimization in (2) attempts to minimize the free

energy for the inlier samples tk. From the expression (5),

it becomes apparent that the model is encouraged to mini-

mize the term (tk − μ̂k), i.e., push the tail samples closer to

the class-specific means and thereby improve generalization

beyond the prototypical samples. When compared to pixel-

space inliers, latent-space inliers include more challenging

examples, albeit with reduced diversity. Our empirical study

reveals that the synthesis of such inliers mitigates the need

for a comprehensive outlier dataset during calibration. In-

stead, a diverse set of corrupted outliers synthesized from ID

training samples is sufficient to guide the expansion of ID in

specific subspaces. We find that this leads to significant im-

provements in both novel class and modality shift detection

without requiring any additional dataset-specific tuning.

3.2. Augmentations for Outlier Synthesis

In addition to specifying inliers, it is crucial to expose

the OOD detector to representative outliers for effective cal-

ibration [11, 24, 31, 29, 40, 2]. However, the availability

of carefully curated and diverse outlier datasets is not al-

ways guaranteed. To address this limitation, we resort to

generating synthetic outliers.

3.2.1 Latent-space Synthesis

Following [7], we can synthesize latent-space outliers as

tail samples from class-specific gaussians in the penultimate

layer of a classifier. During model training, we enforce such

samples to be associated with maximum free energy.

3.2.2 Pixel-space Synthesis

We construct pixel-space outliers as a set of severely cor-

rupted versions of training samples. This is motivated

by the need for exposing models to rich outlier data, so

that the OOD detector can be calibrated to handle a vari-

ety of OOD scenarios. In contrast to latent-space outliers,

pixel-space outliers distort the global features of the ID

data and produce statistically disparate examples. In our

implementation, we consider two augmentation strategies,

where one of them is randomly chosen in every iteration:

(i) Augmix o Jigsaw: We first transform an image us-

ing Augmix [12] with high severity (set to 11), and subse-

quently distort using the Jigsaw corruption (divide an im-

age into 16 patches and perform patch permutation); (ii)

RandConv [35]: We used random convolutions with very

large kernel sizes (chosen from 9− 19) to produce severely

corrupted versions of the training images. We find that the

inherent diversity of this outlier construction consistently

leads to large performance gains, in particular for modal-

ity shift detection, in comparison to latent-space outliers

which offer limited diversity. Figure 2 provides examples

of synthetic outliers generated from the ISIC2019 and NCT

training data respectively. The first four rows denote ex-

amples of Augmix o Jigsaw while the remaining rows

provide examples of RandConv with large kernel sizes.

Figure 2. Examples of Pixel-Space Synthetic Outliers for
ISIC2019 (left) and Colorectal Cancer (right). We synthe-

size diverse, pixel-space outliers by severely corrupting the

training data samples using tool-box augmentations namely

Augmix o Jigsaw or RandConv.
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Figure 3. Suite of datasets considered in our empirical study. For every ID dataset, we provide the corresponding datasets used to evaluate

modality and semantic shifts along with the architectures employed for the OOD detector design.

3.3. Training

We define the loss functions in (2) as follows to imple-

ment our approach.

LID = Etk∼T

[
max

(
0, E(h(x) = tk)−mID

)]2
;

LOOD = Ex̄∼Dout

[
max

(
0,mOOD − E(x = x̄)

)]2
.

Here, LID is a margin based loss with margin parameter mID

for minimizing the energy E(.) of the synthesized inliers.

Similarly, for the outlier data, we define LOOD with margin

parameter mOOD, so that the energy for those samples is

maximized. Note, the losses can be suitably modified for the

different inlier/outlier specification. For all experiments, we

used the default hyper-parameters obtained using the higher-

resolution ISIC2019 dataset, namely mID = −20,mOOD =
−7, α = β = 0.1. Note, all hyper-parameters were chosen

to maximize the validation (balanced) accuracy, since that is

a metric that can be used when we assume no access to the

OOD settings during model training.

4. Experiments
4.1. Datasets

We use a large suite of medical imaging benchmarks

(Figure 3) and different model architectures to evaluate our

approach in open-set recognition*.

1. MedMNIST [36] is a biomedical image corpus con-

taining different imaging modalities, with all images

pre-processed into size 28× 28. In this study, we con-

sider the following datasets from the corpus: (i) Blood

MNIST, (ii) Path MNIST, (iii) Derma MNIST (iv) Oct

*Our codes are publicly available at https://github.com/LLNL/
OODmedic.

The details of the benchmarks and experiment settings used can be found in

the appendix

MNIST, (v) Tissue MNIST and (vi)-(viii) Organ(A,C,S)

MNIST.

2. ISIC2019 Skin Lesion Dataset [32, 4, 5] is a skin le-

sion classification dataset containing a total of 25, 331
images belonging to 8 disease states namely Melanoma

(MEL), Melanocytic nevus (NV), Basal cell carcinoma

(BCC), Actinic keratosis (AK), Benign keratosis (BKL),

Dermatofibroma (DF), Vascular lesion (VASC) and

Squamous cell carcinoma (SCC). All images were re-

sized to 224× 224 as a preprocessing step.

3. NCT (Colorectal Cancer) [16] contains 100, 000 exam-

ples of 224× 224 histopathology images of colorectal

cancer and normal tissues from 9 possible categories

namely, Adipose (ADI), background (BACK), debris

(DEB), lymphocytes (LYM), mucus (MUC), smooth

muscle (MUS), normal colon mucosa (NORM), cancer-

associated stroma (STR), colorectal adenocarcinoma

epithelicum (TUM).

4.2. Model Architectures

For all experiments with the MedMNIST benchmark, we

resize the images to 32× 32 and utilize the 40− 2 WideRes-

Net architecture [39]. To understand the generality of our

method across different deep models, for experiments on

ISIC2019 and NCT, we employ the ResNet-50 [9] model

pre-trained on ImageNet [6].

4.3. Evaluation Metrics

(i) Balanced Validation Accuracy; (i) Area Under the

Receiver Operator Characteristic curve (AUROC), a thresh-

old independent metric, that reflects the probability that an

in-distribution image is assigned a higher confidence over

the OOD samples and (iii) Area under the Precision-Recall

curve (AUPRC) where the ID and OOD samples are consid-

ered as positives and negatives respectively (included in the

supplement).
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Table 1. Performance evaluation. Average AUROC/AUPR for modality and semantic shift detection on the MedMNIST benchmark. We

refer the readers to Tables 6-14 in the supplement for a fine-grained characterization of the performance of different methods.

In Dist.

AUROC/AUPR for Modality (M) / Semantic Shift (S) Detection

G-ODIN VOS VOS++ NDA NDA++ Ours

M S M S M S M S M S M S

BloodMNIST 88.7/80.1 53.9/47.9 89.4/82.8 44.7/25.0 84.2/74.0 38.2/22.0 96.2/90.5 66.0/37.4 95.8/89.7 53.5/35.7 99.7/99.3 89.1/73.32

PathMNIST 84.4/92.7 51.7/20.3 77.5/84.0 39.4/12.3 71.0/81.6 71.7/36.2 96.1/98.0 37.4/11.7 61.1/78.8 57.0/26.6 98.9/99.7 71.2/30.3

DermaMNIST 85.3/70.5 69.3/79.4 64.1/44.1 67.5/75.2 85.3/75.0 72.9/82.4 95.2/82.6 51.23/57.6 80.0/65.9 69.9/80.7 96.6/88.9 75.5/82.3

OCTMNIST 49.0/71.0 47.2/53.6 50.1/70.0 55.4/57.3 68.0/87.1 52.0/63.1 92.8/91.2 51.0/61.4 94.4/95.3 75.2/76.6 99.6/99.3 78.9/79.4

TissueMNIST 82.7/92.9 55.2/55.5 72.9/93.2 46.4/48.4 60.2/89.6 28.0/39.7 81.1/91.2 42.3/55.4 70.2/89.3 58.8/67.0 96.6/98.5 83.4/87.8

OrganAMNIST 95.8/95.6 89.9/86.8 73.7/64.1 62.2/42.5 77.8/68.8 73.9/51.7 70.2/64.0 44.4/35.7 96.2/90.6 75.6/68.2 99.7/99.7 98.1/95.5

OrganSMNIST 80.3/77.3 82.0/72.6 51.5/38.0 47.0/3.0 62.1/47.3 72.0/51.8 94.0/86.9 83.9/72.6 92.9/81.2 88.1/81.7 98.2/94.7 93.9/89.3

OrganCMNIST 85.7/79.6 79.3/73.5 56.6/36.4 58.8/38.9 64.6/43.6 65.17/47.1 93.2/78.9 83.8/68.1 94.2/78.9 81.5/71.8 99.1/98.4 97.5/95.2

4.4. Training Protocols

We compare the proposed inlier/outlier specification with

the following state-of-the-art approaches: (i) VOS: This

method uses latent-space outliers from [7]; (ii) VOS++: In

this variant, we combine the VOS latent-space outliers with

pixel-space inliers generated using Augmix [12]; (iii) NDA:

This method utilizes pixel-space outliers similar to [29]; and

(iv) NDA++: This variant of NDA employs Augmix to gener-

ate pixel-space inliers in addition to the pixel-space outliers.

Furthermore, we consider another outlier exposure-free base-

line, Generalized ODIN (G-ODIN) [15] as a representative

for methods that do not employ any additional calibration

to the model itself (only fine-tunes the noise parameter as a

post-hoc step), and to highlight the fact that such a baseline

can sometimes outperform even sophisticated approaches.

Note, for all methods including ours, we fixed the architec-

ture, loss function and the training settings to be the same,

in order to isolate the impact of the augmentation design.

5. Results
5.1. Novel Class Detection on MedMNIST

In this scenario, the test samples can correspond to new

disease states or control group patients that were not en-

countered during the training phase. The subtle variations in

image statistics across classes in medical images make detec-

tion of these out of distribution samples challenging. In our

experiments, we held out a subset of classes for all bench-

marks and presented them to the models at test time. The

performance summary presented in Table 1 demonstrates

the effectiveness of our approach in detecting novel classes,

with detectors designed using our method achieving the high-

est performance across most datasets (with average gains

of 15%-28%). While the G-ODIN detector and VOS ex-

hibit competitive performance in certain cases, they exhibit

significant variance across different benchmarks.

5.2. Modality Shift Detection on MedMNIST

With the MedMNIST benchmark, we treated each dataset

as ID and evaluated the out-of-distribution (OOD) detection

performance on the remaining 7 datasets. Table 1 summa-

rizes the performance of different calibration protocols. As

observed from the AUROC scores, our approach consistently

outperforms all baselines by significant margins (10− 30%
on average), while maintaining generalizability to the ID

test set (refer to Figure 6 in the supplement for the balanced

accuracy scores, i.e., average of specificity and sensitivity).

G-ODIN and even the state-of-the-art baselines, VOS and

VOS++, underperform in this challenging setting, when com-

pared to methods that utilize pixel-space outliers.

5.3. Choice of Detector Architecture and Image
Resolution

Next, we perform rigorous evaluations on ISIC2019 Skin

Lesion and colorectal cancer histopathology benchmarks,

which contain higher resolution images (224 × 224) com-

pared to MedMNIST. Further, we also vary the architecture

of the backbone (Resnet-50 [9]) to study the generality of

our method. Similar to the previous study, we consider a

large suite of semantic (novel class) and modality shifts, and

evaluate the performance using the AUROC metric. Tables 2

and 3 present the results for the ISIC2019 and colorectal can-

cer benchmarks, respectively, encompassing various OOD

settings. In each case, the OOD scenarios are appropriately

categorized into semantic shifts (blue) and modality shifts

(red). Notably, in the case of the ISIC2019 benchmark, our

approach surpasses state-of-the-art methods, specifically G-

ODIN and VOS, by significant margins of 22% and 13% re-
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Table 2. Evaluation on the ISIC2019 benchmark. We report AUROC scores obtained with a ResNet-50 model trained on the ISIC2019

dataset. Note, we show results for both novel classes (blue), and modality shifts (red). In each case, the first and second best performing

methods are marked in green and orange respectively.

Methods
OOD Data

G-ODIN VOS VOS++ NDA NDA++ Ours

Novel Classes 62.20 75.04 68.69 65.41 68.38 74.00

Clin Skin 62.93 61.33 78.80 67.06 72.01 81.55

Derm Skin 71.93 80.53 79.27 82.73 85.5 93.9

Wilds 65.78 66.71 57.15 83.69 85.29 99.77

Colorectal 77.08 32.02 81.27 71.33 78.84 98.58

Knee 66.50 23.02 83.47 89.25 94.73 94.08

CXR 74.32 76.80 80.93 83.18 62.08 96.94

Retina 71.10 76.33 87.39 76.04 76.65 95.86

Avg. 68.98 61.47 77.12 77.34 77.94 91.84

Table 3. Evaluation on the colorectal cancer benchmark. We report AUROC scores obtained with a ResNet-50 model trained on the the

colorectal cancer dataset [16]. Note, we show results for both novel classes (blue) and modality shift detection (red).

Methods
OOD Data

G-ODIN VOS VOS++ NDA NDA++ Ours

Novel Classes 41.59 84.24 63.13 79.38 74.34 94.06

NCT 7K 76.02 78.92 62.04 80.46 63.25 96.11

WILDS 43.82 95.97 87.31 42.73 79.4 92.47

ISIC2019 79.03 65.6 85.46 98.71 65.17 99.86

Knee 95.55 95.26 58.87 96.63 44.67 99.98

CXR 95.99 99.19 67.18 99.79 71.65 99.91

Retina 96.67 81.06 95.62 99.68 54.66 100.0

Avg. 75.52 85.75 74.23 85.34 64.73 97.48

spectively. Intriguingly, for the colorectal cancer benchmark,

our approach achieves comparable detection accuracies to

NDA, particularly in scenarios involving modality shifts.

5.4. Identifying Nuanced Covariate Shifts

In this study, we demonstrate the efficacy of our approach

in detecting real-world covariate shifts on the WILDS bench-

mark [1] curated from different hospitals across patient de-

mographies. Following standard practice, we consider im-

ages from hospital 5 as the OOD data characterizing covari-

ate shift and train/validate detectors on images from all the

remaining hospitals. Figure 5 illustrates the detection per-

formance of the different methods in identifying changes in

hospital demographics. We can observe that our approach

significantly outperforms the baselines producing an im-

provement of ∼ 7 − 35% in terms of the detection rate

without compromising on balanced test accuracy. Intuitively,

our calibration protocol effectively tempers the model pre-

dictions such that it does not compromise on the balanced

accuracy on the images from the unseen hospital while ensur-

ing that the subtle changes in patient demographics (hospital

5) with respect to the training data (hospitals 1-4) can still

be accurately detected. In comparison, the baselines, par-

ticularly NDA and NDA++, exhibit higher test accuracies

but perform poorly in terms of hospital detection perfor-

mance. This indicates the inefficiency of those protocols

in effectively calibrating the model predictions under such

shifts.

6. Related Work

Out-of-Distribution detection. This is the task of identify-

ing whether a given sample is drawn from the in-distribution

data manifold or not. Such a task requires an effective scor-

ing metric that can distinguish between ID and OOD data.

In this context, much of recent research has focused on de-

signing useful scoring functions to improve detection over

different regimes of OOD data. For instance, Hendrycks et
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Figure 4. Histograms of negative energy scores. We plot the scores obtained using different inlier and outlier specifications. With

OrganAMNIST as ID, the top row corresponds to modality shift (OOD: TissueMNIST) and the bottom row shows novel classes.

Figure 5. Detecting Covariate Shifts (Change in Hospital De-
mography) on the Camelyon-17 WILDS Benchmark. (Top) We

report the Hospital Shift Detection AUROC scores for different ap-

proaches trained with a Resnet-50 backbone. (Bottom) We provide

the corresponding balanced test accuracies on the unseen hopsital.

al. [10] proposed the Maximum Softmax Probability (MSP)

score as a strong baseline for OOD detection. Subsequently,

Liang et al. [18] proposed ODIN, a scoring function based

on re-calibrating the softmax probabilities through tempera-

ture scaling and input pre-processing. On similar lines, Lee

et al. [17] utilized Mahalanobis distances accumulated from

the classifier latent spaces as a scoring metric. Ren et al. [23]

proposed the relative mahalanobis distance as an effective

score for fine-grained OOD detection. Sastry et al. [25] pro-

posed a latent space scoring metric for detecting outliers by

comparing Gram matrices. More recently, Liu et al. [19]

proposed to use the energy metric for OOD detection. The

metric is directly related to the underlying data likelihood

and is known to produce significantly improved OOD de-

tectors. Owing to the ease of adoption and success of the

energy metric in OOD detection, without loss of generality,

we adopt energy as the scoring function in this paper.

OE-free OOD Detection. The objective defined in (2) re-

quires the OOD detector to be calibrated with pre-specified,

curated outlier data. However, it is significantly challenging

to construct such datasets in practice, thus motivating the

design of ‘OE-Free’ methods. With the requirement of the

ODIN detector to be fine-tuned with pre-specified OOD data,

Hsu et al.[15] proposed Generalized ODIN (G-ODIN) as

an outlier data-free variant of ODIN, while also improving

the detection performance. On the other hand, Du et al. [7]

proposed to synthesize virtual outliers by sampling hard neg-

ative examples (i.e, samples at the class decision boundaries)

directly in the latent space of a classifier to calibrate the

OOD detector, in lieu of OOD calibration datasets. Our for-

mulation broadly falls under the class of OE-free methods

as we leverage only synthetic outliers.

7. Discussion

From the empirical results in this study, we conclude

that the space in which the inlier/outlier augmentations are

specified plays a crucial role in effectively calibrating OOD

detectors. Importantly, the inherent diversity offered by

the pixel-space outlier synthesis is essential for handling

modality shifts. This behavior is further emphasized by

the observation that both NDA-based baselines outperform

VOS approaches that synthesize latent-space outliers with

limited diversity. On the other hand, with novel class detec-

tion, we find that our approach which samples hard inliers

in the latent space is particularly effective. Figure 4 de-

picts the histograms of the negative energy scores for the

case of OrganAMNIST (ID), wherein the modality shift re-

sults were obtained using TissueMNIST. We observe that

our approach effectively distinguishes between ID and OOD

distributions (much higher scores for ID data) in both cases,

while the other approaches contain a high overlap. Overall,

this study provides an optimal protocol to construct synthetic

inliers/outliers for calibrating OOD detectors, and demon-

strates state-of-the-art performance on open-set recognition.
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