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Abstract

Out-of-distribution detection is a common issue in de-
ploying vision models in practice and solving it is an es-
sential building block in safety critical applications. Most
of the existing OOD detection solutions focus on improv-
ing the OOD robustness of a classification model trained
exclusively on in-distribution (ID) data. In this work,
we take a different approach and propose to leverage
generic pre-trained representation. We propose a novel
OOD method, called GROOD, that formulates the OOD
detection as a Neyman-Pearson task with well calibrated
scores and which achieves excellent performance, predi-
cated by the use of a good generic representation. Only
a trivial training process is required for adapting GROOD
to a particular problem. The method is simple, general, effi-
cient, calibrated and with only a few hyper-parameters. The
method achieves state-of-the-art performance on a num-
ber of OOD benchmarks, reaching near perfect perfor-
mance on several of them. The source code is available
at https://github.com/vojirt/GROOD.

1. Introduction
The problem of detection of out-of-distribution data

points, OOD in short, is important in many computer vision

applications [1, 21, 5]. One can even argue that no model

obtained by machine learning on a training set T should

be deployed without the OOD ability, since in practice it is

almost never the case that all the models input data will be

drawn from the same distribution that generated T [52]. For

undetected out-of-distribution data, the prediction will in

general be arbitrary, with possibly grave real-world conse-

quences, especially in safety-critical applications. The im-

portance and ubiquity of OOD is evidenced by the fact that

virtually the same problem has emerged in different con-

texts under different names - open set recognition, anomaly
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or outlier detection, and one-class classification.

The reasons for test data not being from the training

set distribution are diverse; they often influence the termi-

nology used. In open set recognition (OSR) [26, 49], the

semantic shift is considered, i.e. the introduction of new

classes at test time. Failures of the measurements system

generate outlier data. In anomaly detection, the presence

of out-of-distribution data is assumed rare. A domain shift,

e.g. when a classifier trained on real-world images is ap-

plied to clip art, leads to a severe data distribution change.

So far, prior art has mainly developed OOD detec-

tion models by supervised training on in-distribution (ID)

data [49, 4, 2]. We follow the recent success of self-

supervised representation model training [33, 34], we apply

it to out-of-distribution detection, our approach produces a

calibrated decision strategy and we analyze its performance

in various scenarios.

The performance of the proposed method is predicated

by the use of a good generic representation. Any good rep-

resentation should enable solving a given, a priori unknown,

downstream task. A good generic representation should en-

able solving multiple tasks without the need of fine-tuning

on the task data. To verify the goodness and generality of

tested representations, we first exploit two commonly used

simple classifiers: (i) linear probe (LP), and (ii) the near-

est mean (NM) classifier. These simple classifiers already

outperform the state-of-the-art on a broad range of OOD

detection problems, often by a large margin, however, with-

out apriori knowledge about the specificity of the OOD data

its unclear which of these simple methods (or any other

score based methods build on top of generic representation)

should be preferred.

Since the LP and NM methods perform each well on

different classes of the OOD problems, we formulate a

Neyman-Pearson task [35, 30, 31] on their combination.

We call this approach GROOD (for Generic Representation

based OOD detection). It models the in-distribution (ID)

as a 2D Gaussian in the space of LP and NM responses

and provides a robust solution to the OOD problem. It also

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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naturally results in well calibrated rejection scores, which

allow us to define a global threshold for data rejection, i.e.

OOD identification. The global threshold can be set to in-

cur user-specified pre-defined error on ID data and is cali-

brated for all classes, meaning, the pre-defined error is the

same for all classes. In contrast, most current state-of-the-

art methods work on basis of similarity scores with no sim-

ple mechanism for selecting a single threshold for OOD re-

jection. This novel approach significantly improves OOD

performance and the experiments also confirm the superior-

ity of using the generic representation over problem-specific

approaches that train or fine-tune the feature extractor on a

particular ID training set.

The GROOD does not require any information about the

out-of-distribution data, e.g. in the form of a few examples

of the anomalies, and is thus applicable to all the standard

setting of the OOD and OSR problems [49]. To summarize,

the contributions of the paper are:

• We show that using a generic pre-trained representa-

tion together with a simple classifier achieves state-of-

the-art performance on a number of OOD benchmarks.

• We formulate the OOD detection as a Neyman-

Pearson task in the space of LP and NM scores. The

operating point is selected by the allowed false nega-

tive rate for all ID classes. This results in a well cali-

brated classification score on the ID task.

• We evaluate the method on a wide range of OOD prob-

lems. The proposed method outperforms the state-of-

the-art by a large margin on most of the problems and

even saturates several commonly used benchmarks.

2. Related Work
Out-of-distribution (OOD) detection refers to the identi-

fication of test samples that are drawn from a different dis-

tribution than the underlying training distribution of a given

classification model. Hendrycks et al. [14] was one of the

first to explore this problem with modern neural networks

using maximum softmax probability (MSP) obtained from

a classification model as a detection score. While being an

classical baseline in OOD detection, MSP can output high

ID probabilities for unknown OOD samples [37]. Subse-

quent work has attempted to provide more robust OOD de-

tection by either operating on a fixed model, or performing

additional ID training or even leveraging auxiliary OOD

data. We refer an interested reader to [49] for a complete

survey on the different lines of OOD detection research and

cover only the main directions in this section.

Post-hoc methods consider a pre-trained ID classifier and

define different OOD detection scores or perform manipu-

lation of the input samples to increase the separability be-

tween the distributions of ID and OOD scores [24, 18]. As

a more robust alternative to the MSP score, [25] proposed

to use the energy of the output logits as a scoring function

showing strong improvements over MSP and more separa-

ble scores. Later, [12] showed that using maximum logit

as an OOD detection score is significantly more robust than

MSP, suggesting that the normalization of the probability

of the closed set classes is the source for the overconfident

predictions.

Of the distance based detection scores, we mention [23]

which estimates the Mahalanobis distance to the closest

class. Based on the estimated L2 distances in the learned

embedding space, [38] propose instead to use the K-nearest

neighbour (KNN) distance as a detection score. This im-

proves significantly over the Mahalanobis distance. Manip-

ulating the logits of a pre-trained ID classifier has its limits

though, which led to the second group of approaches.

Training based methods target a stronger OOD detection

performance through regularizing the training such that the

resulting classifier or representation behave differently for

ID compared to OOD inputs. Tackling the same overcon-

fident issue as in post-hoc methods, [45] proposed to train

the ID classification model while enforcing a constant logit

norm. Deep ensemble [22] combines adversarial training

with neural networks ensemble in addition to using the loss

function as a scoring rule. The computational cost of such

approach might be prohibitive for big networks.

Other work aims at regularizing the training with vir-

tual representatives of OOD input. CSI [39] utilizes con-

trastive training and apply strong augmentations to the in-

put images as an alternative to OOD data. Adversarial Re-

ciprocal Points Learning (ARPL) [6] proposes the concept

of ”reciprocal” points as a proxy for OOD samples which

are obtained by combined discriminative and metric learn-

ing. This method showed state-of-the-art OOD detection

performance, however, it requires complex training scheme

and large hyper-parameter tuning. The proposed method is

significantly more efficient and improve over ARPL with a

large margin in multiple benchmarks.

“A closed set classifier is all you need” [43] suggests

that an improved training scheme that leads to better perfor-

mance on ID data discrimination offers competitive OOD

detection quality that rivals that of OOD regularized train-

ing such as ARPL [6]. Further, [48] has evaluated a wide

range of OOD detection methods and their empirical re-

sults suggest that strong input augmentation techniques, e.g.

MixUp [40], CutMix [50] and PixMix [17] are the most ef-

fective type of training methods for OOD detection.

Recently, the focus has shifted to OOD detection based

on self-supervised pre-trained representations. A rotation

prediction head was used in [16], while [15] employs adver-

sarial pre-training and label corruption, but still needs full

network fine-tuning on the specific ID task. SSD [36] first

trains a feature extractor using contrastive self-supervised
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learning and then uses Mahalanobis distance to the class

representants found by k-means. MCM [28] builds on

CLIP [34] by measuring a distance to ”this is a photo of

a . . . ” text encoder class prototype. However, they eval-

uate only on ImageNet-1k as ID, which was shown to be

problematic [3]. Moreover, the text prompt prototypes in

this form are limited to tasks with clearly defined objects.

ZOC [11] goes further in using the CLIP text encoder by

dynamically generating semantically meaningful textual la-

bels for each image and forming the ID score as a proba-

bility of classifying it into the seen classes instead of the

generated ones.

We follow the last group of methods by using a rich rep-

resentation trained in self-supervised manner. However, we

avoid using the text encoder, build the OOD detector in for-

mally well defined way and evaluate on a wide and diverse

range of OOD problems common in literature.

3. The GROOD Method
In this section we describe the proposed Generic Repre-

sentation based OOD detection approach, GROOD in short,

which exploits a representation pre-trained on auxiliary

large-scale non-OOD-related data. The intuition behind the

method is that a generic representation is a good starting

point for the OOD detection. The proposed method also

produces well-calibrated classification scores for a given ID

task corresponding directly to the same false negative rate

for every ID class.

We expect the representation to be strong, allowing in-

and out-of-distribution data separation by a low-complexity

classifier. In particular, we investigate two such classi-

fiers, Linear Probe (LP) and Nearest Mean (NM), trained

on ID data only. The LP classifier consists of a single linear

projection layer followed by a softmax normalization (i.e.

multi-class logistic regression model). This type of clas-

sifier has been used in representation learning to test the

expressiveness of a representation [7]. The NM classifier

assigns data to the class with the nearest class mean as mea-

sured by the L2 distance; learning this classifier consists of

computation of a mean vector representation for each class.

We chose the LP and NM classifiers because of (i) their sim-

plicity – simple classifiers generalize well, do not overfit to

ID problem – and (ii) complementarity - one is based on a

discriminative score and the other on a distance metric - as

illustrated in Fig 1 and Fig 4. At the test time, when OOD

data points are detected, the LP and NM classifier responses

are simply thresholded (like in [43]) and this threshold is

varied to compute the ROC curves in the experiments.

Although each of these classifiers performs already bet-

ter then state-of-the-art methods on several benchmarks, we

show in Sec 4.5 that they are in fact complementary, each

working better on different type of problems. Further, as

shown in Sec 2, their logit/distance scores are not well cali-

brated, i.e. when setting an in-out decision threshold, the ID

classes are rejected unevenly, some producing higher false

negative rates then the others.

To solve these issues, we propose a new method, called

GROOD, which combines the outputs of the two classifiers.

The distribution of the outputs is modelled as a bi-variate

Guassian which permits addressing OOD as a formally de-

fined two-class Neyman-Pearson task [35, 30, 31] through

which calibration of the OOD detector is achieved.1

We illustrate the approach on an example OOD problem

shown in Fig 3. CIFAR10 is considered ID (class 9 shown

here) and the TinyImageNet represents an OOD dataset (see

Sec 4 for details on datasets). The figure shows in green the

ID and in red the OOD distribution of LP scores (top) and

NM similarity (right), see Sec 4.3 for the definitions. The

data are plotted as green (ID) and red (OOD) dots. The

ID distribution is specified by the desired ID classification

problem, the OOD distribution may vary depending on par-

ticular ID/OOD benchmark. Notice, that shifting the prob-

lem from a one-dimensional score (either LP or NM) to a

two-dimensional space allows us to leverage the best of LP

and NM (cf Fig 1 & 4) and leads to a better ID/OOD sepa-

ration when considering jointly all tested OOD problems.

In the proposed GROOD method we model the ID dis-

tribution as a Normal distribution. Although an approxima-

tion, we observed empirically that it holds reasonably well

over a wide range of tasks2. Of course, nothing prevents

us from using a more complex model of the distribution,

e.g. the non-parametric Parzen estimate, if needed, but the

Normal distribution assumption makes the next step in de-

signing GROOD significantly easier.

Next we formulate the ID/OOD classification problem as

a multi-class Neyman-Pearson task [35, 30, 31]. We start by

considering a single ID class. Let I be a class representing

the ID samples and O the class for OOD data. Assume

the data are sampled from a two-dimension domain X =
XLP × XNM , where XLP is the domain of LP logit scores

and XNM the domain of NM distances. The task is then to

find a strategy q∗(x) : X → {I,O} such that

q∗ = argmin
q

∫
x:q(x)�=O

p(x|O) dx

s.t. εI =

∫
x:q(x)�=I

p(x|I) dx ≤ ε

(1)

This optimization problem minimises the false ID accep-

tance rate for a particular ID class and bounds the maximal

ID rejection rate by ε. For K classes we specify K such

1We experiment with 2D space of scores only, as the amount of data

for model estimation is limited (100 or less examples in some cases).
2A breaking point would be the case of ID data where one class con-

sists of multiple clusters. In this case, the NM classifier would need to be

modified to consider several ”means”.
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Figure 1. Complementarity of the LP and NM classifiers. (a) When applied to a problem with semantic shift only, the LP classifier tends to

separate the ID and OOD datasets better. (b) For OOD problems with mixed semantic and domain shifts, NM classifier performs typically

better. (c) On some problems, both perform well. Notice that moving from a single LP or NM similarity to a two-dimensional space

already allows better separation in all cases. Compare this with detailed results in Tabs 2-5.
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Figure 2. Mis-calibration of the logit scores. The graph shows cu-

mulative distributions for ID (full line) and OOD (dashed) classes

given the LP logit scores trained on the ID data. Here CIFAR10 is

ID and TinyImageNet is OOD. Selecting a single logit threshold,

10 in this case, results in different ID class rejection rates. We call

this logits mis-calibration.

problems and use the same constant ε for all of them, so

that the same fixed rejection rate is required for all classes.

It is known [35] that the optimal strategy for a given

x ∈ X is constructed using a the likelihood ratio r(x) =
p(x|I)/p(x|O) so that q(x) = I if r(x) > μ and q(x) = O
if r(x) ≤ μ. The optimal strategy q∗ is obtained by select-

ing the minimal threshold μ such that εI ≤ ε. The problem

is solved either analytically for some simple distributions

(such as Gaussian) or numerically otherwise.

To solve this problem we still have to specify the p(x|O)
distribution. If we assume this distribution to be uniform

in X , we would decide based on the quantiles of the Nor-

mal distribution p(x|I). However, we constructed X not

from general 1D random variables, but from the classifica-

tion scores of LP and NM. It is thus reasonable to assume

that the OOD data will lie in the region where the LP score
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Figure 3. GROOD motivation diagram. Class 9 from CIFAR10

taken as ID and the TinyImageNet dataset as OOD. Two clas-

sifiers, LP and NM, produce a 2D space to which each sample

is mapped to (green or red dots for ID and OOD respectively).

Top/right axes: the marginal empirical distributions. The ID data

are modelled as a bi-variate Normal distribution (green iso-lines).

A ”general” OOD distribution is constructed as another Normal

distribution (gray iso-lines). Three possible decision strategies

for different expected ID false rejection rates in the N-P task are

plotted in black dashed lines with corresponding rejection rates

marked. Note: The proposed methods do not have access to the

OOD data, they are shown only to strengthen reader’s intuition.

and NM similarity are low.

To implement this assumption, we construct p(x|O) as

another Normal distribution with a zero mean and a diago-

nal covariance matrix with large variances. For the LP, the

zero mean assumption is motivated by the fact that in high

dimensional spaces, a random vector is likely to be close to

orthogonal to the id-class directional vectors (the weights

of the linear layer before the softmax). For the NM similar-
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ity, the choice was made empirically as a limit case for very

large L2 distance from a class mean center. The variance, in

both directions, is set so that the range of the data is a mul-

tiple of the in-distribution range, i.e. it is very broad. The

in-distribution range was robustly estimated as a 90% quan-

tile of all in-distribution data scores and the multiplicative

factor was set empirically. Both Normal distributions for ID

and OOD are plotted in Fig 3 in green and gray solid line

contours respectively. Fig 3 shows also three optimal strate-

gies (if the assumptions about normality were true) as gray

dashed decision boundaries and their corresponding ID re-

jection rates. Clearly, the strategy rejects the least confident

ID samples first.

Solving this Neyman-Pearson problem for each ID class

gives K strategies q∗k, each calibrated for the same rejection

rate. In practice, we would specify acceptable rejection rate

ε and obtain the optimal strategies for normally distributed

data. For the evaluation where we need to sweep over the

values of ε, we sample a limited set of values, find their

likelihood ratio μ and interpolate in-between.

Finally, for the ID classification we use the

argmaxk pk(x|I) of the probabilities obtained as bi-

variate Normal distributions for each class k.

4. Experiments
In this section we evaluate the proposed GROOD method

and other state-of-the-art methods on a wide and diverse

set of benchmark problems described in the OOD literature.

We select the benchmarks to cover various scenarios and to

demonstrate the generality of the proposed approach.

4.1. Benchmarks

There are several commonly used benchmarks to evalu-

ate OOD and OSR methods and most papers typically eval-

uate on their subset. In our evaluation we attempt to cover

most of the commonly used variations. We categorize the

experiments based on the presence/absence of the domain

shift (DS) and the semantic shift (SS).

No DS, only SS. For MNIST [9], SVHN [29] and CI-

FAR10 [20] datasets we perform the 6-vs-4 split [6, 48, 43].

Here six classes are selected as ID at random and the re-

maining four as OOD. The experiment is repeated five times

with different splits and the average metrics are reported to-

gether with their standard deviations.

For a bit larger CIFAR+10 and CIFAR+50 experiments,

four classes are sampled from CIFAR10 and are consid-

ered ID and another 10 (or 50) non-overlapping classes

are randomly selected from CIFAR100 [20] and used as

OOD [6, 48, 43]. Again, five trials are averaged. For

the biggest TIN-20 experiment, twenty classes are selected

randomly as ID and 180 as OOD from the TinyImageNet

dataset [41]. For the above experiments we use the same

splits as in [6] for compatibility with previous results.

Table 1. The generic representation models (CLIP, DIHT) consis-

tently outperforms the ImageNet pre-trained representation on a

range of OOD tasks. The scores are averages over many semantic-

shift-only (SS) and mixed SS and domain shift (SS+DS) tasks.

The SS experiments are the same as in Tab 2 and SS+DS as in

Tab 3. Evaluation for different network architectures and per-

dataset results are provided in the supplementary material.

arch pre-trained classif
SS only SS + DS

AUROC↑ OSCR↑ AUROC↑ FPR95↓

ViT-L/16
ImageNet LP 91.82 86.92 95.98 21.20
ImageNet NM 77.67 69.05 81.48 69.34

ViT-L/14
DIHT LP 93.62 89.91 99.27 2.68
DIHT NM 88.44 81.80 99.15 4.26

ViT-L/14
CLIP LP 94.35 91.10 97.01 8.73
CLIP NM 85.05 79.26 98.06 8.62

Finally, to test this type of settings to its limits, we eval-

uate on the fine-grained class splits from the Semantic Shift

Benchmark [43]. Here three splits are given: easy, medium

and hard, with increasing semantic shift overlap with ID

classes. This overlap is determined from a set of detailed

class attributes. We use the splits for the CUB [44] (birds),

StanfordCars [19], and FGVC-Aircraft datasets [27].

DS and SS mixed. Another common experimental set-

ting is to consider CIFAR10 as ID and use other datasets

as OOD [25, 6, 38, 43]. In this case there is an

explicit SS and an implicit DS. We evaluate against

MNIST [9], SVHN [29], Textures [8], Places365 [53],

CIFAR100 [20], iNaturalist [42], TinyImageNet [41] and

LSUN datasets [46].

DS only. A special kind of shift is when the classes stay the

same, but the image domain changes. For this experiment

we adopt the benchmark from [6] based on DomainNet

dataset [32]. The challenge is to distinguish between pho-

tos of objects from 173 classes (ID) and clipart/quickdraw

images from the same classes (OOD). The benchmark also

contains an OOD part with real images from different 173

classes (SS task).

4.2. Evaluation Metrics

There seems to be no consensus, which metrics to re-

port for OOD detection. The most commonly used is the

AUROC metric, which measures the ability to distinguish

OOD data from ID data. Often this is the only metric re-

ported even though it does not show, how well the method

performs on the ID classification task. For ID classifica-

tion people report either the ID accuracy, FPR95 or OSCR

score. In the tables in Sec 4 we report the most commonly

used metric for particular OOD problem.

Assuming a binary ID vs OOD classification problem,

the AUROC measures the area under the true positive (TP)

– false positive (FP) rates curve, where the ID data is con-

sidered be the positive class. We adopt the evaluation code

from [43, 6].
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Figure 4. Results of LP and NM classifiers and the proposed GROOD method on various OOD tasks. Every datapoint on x-axis corresponds

to one type of experiment (e.g. CIFAR10 vs. MNIST). The figure illustrates the complementarity of LP and NN and shows that the proposed

GROOD method is better choice without a priori knowledge about the type of OOD data. The results show (a) AUROC and (b) FPR at

95% TPR metric. SS and DS refers to semantic and distribution shift respectively.

Table 2. Comparison with the state-of-the-art – OOD problems with semantic shift only. For the description of the measures see Sec 4.2.

AUROC ↑
from MNIST SVHN CIFAR10 CIFAR+10 CIFAR+50 TIN

Deep KNN [38] [48] 97.50 — 86.90 — — 74.10

DeepEnsemble [22] [48] 97.20 — 87.80 — — 76.00

Pixmix [17] [48] 93.90 — 90.90 — — 73.50

OpenHybrid [51] [43] 99.50 94.70 95.00 96.20 95.50 79.30

MLS [43] [43] 99.30 97.10 93.60 97.90 96.50 83.00

ARPL+CS [6] [6] 99.70±0.10 96.70±0.20 91.00±0.70 97.10±0.30 95.10±0.20 78.20±1.30

GROOD ours 96.88±0.47 76.14±1.14 97.76±0.43 98.88±0.38 98.31±0.25 94.18±0.94

The FPR at 95% TPR (FPR95) metric measures the

false positive rate at 95% true positive rate on the same bi-

nary problem as the AUROC measure.

The Open-Set Classification Rate (OSCR) [10, 6] mea-

sures the trade-off between the ID classification accuracy

and OOD detection accuracy. It is computed as area under

CCR(θ)-FPR(θ) curve where CCR(θ) is the correct clas-

sification rate defined as

CCR(θ) =
|{x ∈ Tk| argmaxj p(j|x) = k ∧ p(k|x) ≥ θ}|

|Tk|
,

(2)

where Tk is the sub-set of the ID training data belonging to

the class k, and FPR(θ) is the false positive rate defined as

FPR(θ) =
|{x ∈ U|maxk p(k|x) ≥ θ}|

|U| , (3)

where U is the set of OOD data available at the test time.

Finally, the ACC measures the accuracy on the ID clas-

sification problem.

4.3. Low-Complexity Classifiers

As we argue for a good and general enough representa-

tion as the basis for the OOD detection, we use only sim-

ple low-complexity classifiers (i.e. letting the representation

play the essential part in the decision). In particular, we use

the Linear Probe (LP) and the Nearest Mean (NM) classi-

fiers. The LP classifier is trained on the ID data only. We

use the training code from [34]. As an OOD detection score

we use the Maximum logit [43]. The NM classifier’s means

are also estimated on the ID data only. The NM similarity is

computed from the NM L2 distance dNM as 1/(1+ dNM ).

4.4. Power of a Good Representation

We start by investigating the effect of different pre-

trained representations on various OOD problems. We con-

sider three rich representations: one trained with full su-

pervision on the ImageNet1k classification task, and two

self-supervised representations, CLIP [34] and DIHT [33].

The ImageNet pre-trained representation proved to be

a strong baseline for many problems in computer vision.

We use the ViT-L/16 model pre-trained on ImageNet1k

available in the PyTorch Torchvision library and use its

penultimate layer as a feature extractor. It produces 1048-

dimensional feature vectors.

The CLIP/DIHT representations have shown outstand-

ing performance on various zero-shot classification prob-

lems [34, 33] demonstrating their versatility. From the point

of view of OOD detection, what makes the representation

appealing is that it was trained on image-text pairs instead of

a fixed set of classes. This, together with the self-supervised

training possibly allows the model to extract very rich rep-

resentation of the visual world. This makes it a good candi-

date for separating ID classes from OOD data irrespective

of the type of semantic and distribution shift if these shifts

are covered by natural language and represented sufficiently

by the training data. The CLIP and DIHT models (we are

using only the image encoder) produce 768-dimensional
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Table 3. Comparison with the state-of-the-art – OOD problems with mixed semantic and domain shifts. The method marked with ‡ was

trained by us. The measures are described in Sec 4.2.

FPR at 95% TPR ↓
/

AUROC ↑

from SVHN MNIST Textures Places365 CIFAR-100 iNaturalist TIN LSUN

Deep KNN [38]
[48] 33.32 / 95.13 50.08 / 91.63 46.01 / 92.77 43.78 / 91.82 52.49 / 89.55 — 46.66 / 91.41 —

[38] 2.40 / 99.52 — 8.09 / 98.56 23.02 / 95.36 — — — 1.78 / 99.48

LogitNorm [45] [48] 5.30 / 98.86 4.75 / 98.82 30.94 / 94.30 31.17 / 94.76 46.99 / 91.13 — 36.34 / 93.90 —

UDG [47] [48] 61.91 / 92.50 39.32 / 93.81 43.97 / 93.56 42.44 / 93.58 55.33 / 90.38 — 42.48 / 93.33 —

DeepEnsemble [22] [48] 37.03 / 94.95 41.65 / 94.34 48.39 / 92.59 50.20 / 91.06 54.31 / 89.76 — 48.93 / 91.35 —

Pixmix [17] [48] 13.70 / 98.01 49.72 / 91.78 8.07 / 98.83 38.51 / 94.03 47.12 / 91.81 — 36.47 / 94.31 —

ARPL+CS [6] ‡ 53.20 / 90.64 42.44 / 94.13 51.84 / 90.68 47.42 / 90.72 57.11 / 88.52 56.02 / 89.73 53.40 / 88.61 46.32 / 91.85

SSD [36] [36] — / 99.6 — — / 97.6 — / 95.2 — / 90.6 — — — / 96.5

GROOD ours 0.00 / 99.97 0.20 / 99.74 0.09 / 99.96 1.05 / 99.78 13.41 / 97.32 0.00 / 100.00 11.11 / 95.97 0.00 / 100.00

Table 4. Comparison with the state-of-the-art – OOD problems with a semantic shift (Real-B column) and domain shift only (next four

columns). For the description of the measures see Sec 4.2.

ID: Real-A(0 . . . 172) [ AUROC ↑ / OSCR ↑ ]

from Real-B Clipart-A Clipart-B Quickdraw-A Quickdraw-B

ARPL+CS [6] 75.20 / 61.90 72.70 / 59.40 82.90 / 66.60 86.70 / 69.00 87.50 / 69.50

GROOD ours 91.50 / 83.54 71.84 / 65.20 93.31 / 85.19 89.91 / 81.98 91.11 / 82.83

feature vectors.

We have also considered smaller ImageNet and CLIP

models, but they perform consistently worse, please refer

to supplementary materials for smaller models results.

For all representations, we train the LP and NM classi-

fiers and test over a range of tasks. We obtain consistent

relative performance over different OOD tasks hence we re-

port only the average metrics. We refer to supplementary

materials for full results. Tab 1 reports the average perfor-

mance on the studied benchmarks. Our results show that

self-supervised representation works better irrespective of

the classifier and the type of OOD shift. We chose the CLIP

representation in the following experiments.

4.5. Complementarity of LP and NM

Fig 4 shows that the LP and NM classifiers are comple-

mentary, each performing well on different types of OOD

data. This observation motivated the proposed method.

Without a priori information, GROOD is able to use effi-

ciently the information provided by both LP and NM and in

most cases achieve performance of the better one.

Fig 1 further illustrates LP and NM scores distributions

for different ID and OOD datasets. We observed that for

OOD tasks where ID and OOD classes are from the same

domain (e.g. 6-vs-4 experiment on MNIST) and are thus

close to each other in the considered representation, LP

tends to work better by finding a suitable linear projec-

tion where the ID classes can be well separated whereas

the NM classifier struggles distinguishing small distances in

the high-dimensional representation (Fig 1a). When the ID

and OOD classes are from rather distant domains (e.g. CI-

FAR10 and Places365), the NM method works better as the

L2 distance starts to be discriminative enough (Fig 1b). And

there are some problems (e.g. CIFAR10 vs SVHN) where

both classifiers produce similarly good separation between

ID and OOD classes (Fig 1c).

4.6. Mis-calibration of the Logit Scores

Another issue revealed in our experiments is mis-

calibration of the maximum logit (or probability) ap-

proaches [43, 14, 24, 13]. We demonstrate this in Fig 2.

When a logit score threshold is selected (10 in the figure), it

produces different false negative (FN) rates for each class.

This is in contrast with GROOD method, where the thresh-

old is imposed directly on the class FN rate. This allows

to specify an allowed FN rate while minimizing the FP rate

(i.e. the number of OOD data classified as ID). This qual-

ity is important in safe-critical applications where certain

classes are reported as OOD more often or in social-related

applications where having uneven FN rates on ID classes

may lead to unwanted biases.

4.7. GROOD vs State-of-the-Art

Finally, we compare GROOD with state-of-the-art meth-

ods on an extensive range of benchmarks. See the results in

Tab 2-5. In all the tables we compare against a selection of

best performing methods collected from literature and indi-

cate the respective source publication. For comparison with

many other methods reported earlier and with worse results

see the benchmark papers [48, 49, 43].

Tab 2 and Tab 3 summarize the most common bench-

marks used in literature, the first one with the semantic

shift only and the other with mixed semantic and domain

shifts. Compared to state-of-the-art methods, GROOD out-
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Table 5. Comparison with the state-of-the-art – OOD problems with fine-grained semantic shift. Particularly difficult cases, included to

highlight the limitations of the CLIP pre-trained representation (possible future work). For the description of the measures see Sec 4.2.

CUB [Easy / Hard] SCars [Easy / Hard] FGVC-Aircraft [Easy / Hard]

from ACC AUROC OSCR ACC AUROC OSCR ACC AUROC OSCR

ARPL+ [43] 85.90 83.50 / 75.50 76.00 / 69.60 96.90 94.80 / 83.60 92.80 / 82.30 91.50 87.00 / 77.70 83.30 / 74.90

MLS [43] 86.20 88.30 / 79.30 79.80 / 73.10 97.10 94.00 / 82.20 92.20 / 81.10 91.70 90.70 / 82.30 86.80 / 79.80
GROOD ours 90.12 91.69 / 72.83 82.49 / 65.38 96.82 89.74 / 85.16 86.79 / 82.31 70.8 78.42 / 54.18 58.40 / 42.62

performs all of them by a large margin on most of the OOD

problems. Especially on the mixed semantic and domain

shift problems in Tab 3, our approach basically solves all

the benchmarks.

The proposed method is the most effective on more com-

plex problems like CIFAR variants and TIN and struggles a

bit on the 6-vs-4 SVHN problem in Tab 2. We attribute this

mainly to the dataset ground truth construction. The images

do not contain the single digit stated in the GT label but

also “some distracting digits to the sides of the digit of in-

terest”3). For CLIP which was trained on many images con-

taining text (with full text label) all digits in the image in-

fluence the representation. The performance drop does not

happen for MNIST dataset with a single digit per-image,

which supports our analysis. Since methods that train the

representation on ID data do not suffer from this phenom-

ena, these issues can be potentially alleviated by fine-tuning

the representation or using more complex classifiers.

GROOD is also very efficient on the problems with do-

main shift only as shown in Tab 4. Here our method again

outperforms the current state-of-the-art significantly, show-

ing the ability to distinguish data even along such distribu-

tion shifts like real-image vs clipart vs quick draw. There is

still a space for improvement on the Clipart-A split which

is very similar to the ID Real-A dataset (same classes, pho-

tos vs complex clipart). This is though difficult even for

ARPL+CS which is trained on the ID data.

Finally, to test the limits of the proposed method we eval-

uated GROOD on the Semantic Shift Benchmark problems

with very fine-grained semantic shift in Tab 5. Although

the class separation is often very subtle, our method per-

forms comparably to state-of-the-art. The Easy/Hard splits

in SCars and FGVC-Aircrafts datasets (in contrast to CUB)

are not based on strictly visual attributes, but on attributes

like the year of production or an aircraft variant. They do

not seem to correspond to differences captured by the CLIP

representation. This is more pronounced in case of the air-

planes where for instance the overall shape do not change

between production years (as oppose to cars). We see this

as a border case and a weakness of the benchmark4 and a

3http://ufldl.stanford.edu/housenumbers
4“...open-set bins of different difficulties in Stanford Cars are the most

troublesome to define. This is because the rough hierarchy in the class

names may not always correspond to the degree of visual similarity be-

tween the classes”[43].

possible future direction of research.

Overall, the experiments demonstrate how using a pow-

erful representation leads not only to a state-of-the-art ID

classification as demonstrated earlier [34], but provides a

classifier with very strong cues for OOD detection as well.

5. Conclusions

In this paper we propose a novel approach to OOD detec-

tion which uses a generic pre-trained representation instead

of training a discriminative classifier on the ID classes.

We model the classification scores of the LP and NM

classifiers for the ID classes as a multivariate Guassian and

show that this permits addressing OOD detection as a for-

mally defined two-class Neyman-Pearson task. Compared

to traditional logit (or distance) thresholding, the solution to

this task leads to naturally calibrated OOD detection score

connected directly to the same false negative rate on all ID

classes. Moreover, the resulting GROOD method leverages

the strengths of both used classifiers leading to consistent

performance over all considered benchmarks.

The proposed GROOD method was compared to the

state-of-the-art methods on a wide and diverse range of

OOD problems with various types and strengths of semantic

and domain shifts. It effectively solves the mixed semantic

and distribution shift benchmarks and achieves the best per-

formance on most of the other considered problems.

The only observed limitations are related to the interac-

tion of the annotation in SVHN dataset with the CLIP rep-

resentation, and very fine-grained classification of airplanes

which goes beyond visual attributes.

The simplicity of the adaptation of the GROOD method

to a novel problem – only a multi-class logistic regression

and finding the mean of each class is needed for training –

makes the process fast.

We suggest that the proposed method combined with a

generic representation is suitable for most OOD tasks based

on natural images; with GROOD many of the standard

benchmarks are saturated and no longer stimulate further

progress. A recently introduced NINCO dataset [3] may be

a possible direction, but is left as a future work.
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