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Abstract

Self-training approach recently secures its position in
domain adaptive semantic segmentation, where a model
is trained with target domain pseudo-labels. Current ad-
vances have mitigated noisy pseudo-labels resulting from
the domain gap. However, they still struggle with erro-
neous pseudo-labels near the boundaries of the semantic
classifier. In this paper, we tackle this issue by proposing a
dual-level interaction for domain adaptation (DIDA) in se-
mantic segmentation. Explicitly, we encourage the different
augmented views of the same pixel to have not only simi-
lar class prediction (semantic-level) but also akin similar-
ity relationship with respect to other pixels (instance-level).
As it’s impossible to keep features of all pixel instances
for a dataset, we, therefore, maintain a labeled instance
bank with dynamic updating strategies to selectively store
the informative features of instances. Further, DIDA per-
forms cross-level interaction with scattering and gathering
techniques to regenerate more reliable pseudo-labels. Our
method outperforms the state-of-the-art by a notable mar-
gin, especially on confusing and long-tailed classes. Code
is available at https://github.com/RainJamesY/DIDA

1. Introduction

Semantic segmentation, aiming at assigning a label for

every single pixel in a given image, is a fundamental task

in computer vision.Learning with synthetic data (e.g., from

virtual simulation [29] or open-world games [28]) has rev-

olutionized segmentation tasks over the past few years,

which effectively saves time and labor from the onerous

pixel-level annotations. However, the existence of do-

main shifts between the rendered synthetic data and real-

world distributions severely reduces the models’ perfor-

mance [46, 21, 22]. To mitigate this problem, Unsuper-

vised Domain Adaptation (UDA) is explored to generalize

the network trained with labeled source (synthetic) data to

unlabeled target (real) data.

*Corresponding author

Figure 1: Intuition behind DIDA. (a) The semantic classifier

trained on the source domain can be viewed as class feature cen-

ters, which possess a natural weakness in classifying pixels near

or across the category boundaries thus producing erroneous and

noisy semantic pseudo-labels. (b) In DIDA, we utilize instance-

level discrimination with proposed instance loss to adjust noisy

pseudo-labels. By simultaneously considering the semantic-level

and instance-level information with cross-level interaction, we re-

set the classification boundaries for more robust pseudo-labeling.

Existing Work: Most of the existing works on self-training

UDA [47, 35, 46] generate target domain pseudo-labels

based on the semantic-level class predictions of the network

for future self-training. To step further, a very recent work

DAFormer [11] utilizes a Transformer encoder and a multi-

level feature fusion decoder architecture, and designed three

training strategies to stabilize training as well as avoid over-

fitting, which achieved state-of-the-art performance.

One problem of the existing methods is that they still

preserve a large number of noisy pseudo-labels, especially

those near the decision boundaries (Figure 1(a)). This is

because they only obtain the pseudo-labels through the se-

mantic classifier and eliminate the unreliable pseudo-labels

via selecting a confidence threshold, which is rather an em-

pirical process varying across tasks, models, and datasets

[48]. It is extremely difficult to formulate such selection as

a mathematical function, making it hard to optimize. Fur-

thermore, the presence of confusing (e.g., analogous and ad-

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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jacent/overlapping) categories leads to an open issue known

as “overconfidence” [47], which significantly degrades the

performance on these categories (Table 1 and 2).

Our Work: To alleviate the aforementioned limitations, in

this paper, we propose to leverage Dual-level Interaction

for Domain Adaptive (DIDA) semantic segmentation. In-

spired by previous work [30] that the fine-grained instance-

level discrimination could be conducive to adjusting noisy

semantic-level pseudo-labels, especially those around clas-

sifier boundaries, in DIDA, we simultaneously consider

the semantic-level and instance-level consistency regular-

ization. Specifically, we encourage different (weakly and

strongly) augmented views of the same pixel to have not

only consistent semantic class prediction but also akin sim-

ilarity relationship towards other pixels (instance-level dis-

crimination) to provide additional instance-feature consis-

tency beyond the semantics. As a result, we adjust the dis-

tribution of semantic pseudo-labels with proposed instance

loss and reset the classification boundaries (Figure 1(b)).

In the semantic segmentation task, the main challenge

of introducing instance-level discrimination is that features

of pixel instances (instead of image-wise instances in clas-

sification tasks ) can cause tremendous extra storage (e.g.,

50 billion instances for the GTA5 dataset). To overcome

this issue, we design a labeled Instance Bank (IB) to selec-

tively deposit instance features rather than keeping the en-

tirety. We dynamically update our IB via our class-balanced

sampling (CBS) and boundary pixel selecting (BPS) strate-

gies. By doing so, DIDA enriches the fine-grained instance-

level pseudo-labels with long-tailed and analogous cate-

gories for future self-training, and thus the model becomes

more at ease in dealing with such tricky categories. Differ-

ent from previous methods that naively calculate on seman-

tic pseudo-labels [35, 46, 11] or incorporate instance infor-

mation by simply adding loss components [21, 23, 38], we

further present scattering and gathering techniques to inter-

act predictions from both levels, thus generating less noisy

training targets.

Considering the strong similarity among fine-grained

computer vision tasks, our framework shows prominent ap-

plicability to other self-training scenarios.

Our key contributions are summarized as follows:

• We propose DIDA, a novel framework that exploits

both semantic-level and instance-level consistency

regularization for better noise adjustment. To the best

of our knowledge, in the task of UDA for semantic seg-

mentation, we are the first attempt that allows the in-

formation (the pseudo-labels) of two levels to calibrate

and interact with each other.

• We design a labeled instance bank to overcome the is-

sue of storage in incorporating the instance-level infor-

mation and devise class-balanced sampling and bound-

ary pixel selecting strategies to enhance the perfor-

mance on long-tailed and analogous categories.

• The proposed DIDA notably outperforms the previous

state-of-the-art. On GTA5 → Cityscapes adaptation,

we improve the mIoU from 68.3 to 71.0 and on SYN-

THIA → Cityscapes from 60.9 to 63.3. Especially,

DIDA shows outstanding IoU results on the confus-

ing classes such as “sidewalk” and “truck” as well as

long-tailed classes such as “train” and “sign”.

2. Related Work
Domain Adaptation for semantic segmentation. Multi-

ple methods have been proposed to bridge the domain gap

between synthetic data and real ones. Compared to adver-

sarial training methods that align distributions of source and

target domain at different levels, i.e., input-level [31, 9],

feature-level [10, 3], and output-level [39, 37], the self-

training approaches obtain more competitive results. By

generating target domain pseudo-labels and iteratively re-

fining (self-training) the model using the most confident

ones [1, 12, 18, 48], the model’s performance is further im-

proved. However, the naive generation of target domain

pseudo-labels is error-prone, causing the network to con-

verge in the wrong direction. Therefore, several works were

proposed to “rectify” the erroneous pseudo-labels on the

semantic-level [15, 42, 14, 32]. Following this trend, DACS

[35] used data-augmented consistency regularization [2] to

mix source and target images during training. ProDA [46]

employed correction of pseudo-labels with feature distances

to prototypes. Lukas et al. [11] referred to the UDA strat-

egy from DACS [35] and demonstrated state-of-the-art per-

formance using Transformer as the backbone. There also

exist works that exploit instance information, for example,

Liu et al. devised a patch-wise contrastive learning frame-

work, BAPA-Net [23] encouraged prototype alignment at

the class-level, CLUDA [38] incorporated contrastive loss

using target domain semantic pseudo-labels. However, the

above methods either solely focused on semantic pseudo-

label rectification or naively incorporated instance informa-

tion by additional loss components. In contrast, our method

introduces instance consistency regularization as an auxil-

iary classifier to produce pseudo-labels with different noisy

patterns and further adjusts pseudo-labels of the two levels

with interactive techniques.

Consistency Regularization. Consistency Regularization

is first explored in Semi-supervised Learning (SSL) [2, 33]

and is recently adapted to Unsupervised Domain Adapta-

tion (UDA) [45, 25, 7, 27, 20, 19]. The core idea of Consis-

tency Regularization is to encourage the model to produce

similar output predictions for the same input/feature with

different perturbations, e.g., the input perturbation meth-

ods [6, 45, 16] randomly augment the input images with

different augmentation degree and the feature perturbation

4528



[26, 13] is generally applied by using multiple decoders and

supervising the consistency between the outputs of different

decoders. As our dual-level interaction method mainly ex-

plores the intrinsic pixel structures of an image, we optimize

our model from a batch of differently augmented target in-

put.

3. Method

3.1. Preliminaries

In this section, we introduce the preliminary semantic-

level self-training method for UDA [48, 35, 11]. Given

the source domain images Xs = {xs}ns

j=1 with segmen-

tation labels Ys = {ys}ns

j=1, a neural network is trained

to obtain useful knowledge from the source and is ex-

pected to achieve good performance on the target images

Xt = {xt}nt

j=1 without the target ground truth labels. In

the following sections, we use i to note the i-th pixel in an

image and j to note the j-th image sample in datasets from

each domain.
In a typical UDA pipeline, we first train a neural network

h with labeled source data. The network h can be divided
into h = f ◦g, where f(·) is a feature extractor that extracts
a feature map m = f(xs) from a given source image xs,
and g(·) is the fully connected pixel level classifier which
is employed to map m into semantic predictions, written as
ps = g(m). Afterward, the source domain samples are di-
rectly optimized with a categorical cross-entropy (CE) loss:

Lsrc = −
H×W∑
i=1

C∑
c=1

y(i,c)
s log(p(i,c)s ), (1)

where p
(i,c)
s represents the softmax probability of pixel x

(i)
s

belonging to the c-th class. A similar definition applies to

p
(i,c)
t . Since the naive network h = f ◦g trained with source

data does not generalize well to the target domain owing to

the domain gap, the self-training approaches first assign se-

mantic pseudo-labels to the images from the target domain

and then train h with the pseudo-labeled images. A conven-

tional method is to use the most probable class predicted by

h as the semantic pseudo-labels: small

ŷ
(i,c)
t =

⎧⎨
⎩

1, if c = argmax
c′

p
(i,c′)
t ,

0, otherwise
(2)

Evidently, this “brute force” strategy suffers from the
noisy-label problem [35, 46]. This is because the pixels near
the decision boundary are likely to be assigned with wrong
pseudo-labels. A typical method to mitigate this problem is
to set a confidence threshold τ to filter target sample pix-
els whose largest class probabilities in the pseudo-labels
are larger than τ [35, 11]. In this way, the unsupervised
semantic-level classification loss on the target domain can

be defined as:

Ltgt = −
H×W∑
i=1

C∑
c=1

�

(
max ŷ

(i,c)
t > τ

)
log(p

(i,c)
t ). (3)

Unfortunately, an open problem of the existing threshold-

based methods is that it is extremely difficult to find a “per-

fect” threshold that can exclude all noisy labels. This is be-

cause the selection of threshold is rather an empirical pro-

cess [48], which varies between tasks and datasets. Thus

it is challenging to formulate it as a general mathematical

function, making this problem hard to optimize. In this pa-

per, we address this problem from a totally different view-

point: seeking the regularization of the semantic pseudo-

labels from the instance-level perspective.

3.2. Instance-Level Discrimination

For this component, we view each pixel instance as a

distinct class of its own and adjust our model to distinguish

between “individual” instance classes.

Firstly, we generate the source domain image-wise fea-

ture map ms ∈ R[H×W ]×D (D is the channel size of the

extracted feature). Noticeably, ms consists of H × W
corresponding pixels, and each pixel possesses an embed-

ding es with shape [1 × 1] × D, es ∈ ms. As men-

tioned earlier, it is impossible to store all extracted pixel-

level features in the memory, thus we selectively store some

of them in the memory bank B (see updating strategy in

Sec. 3.4). We denote the embeddings of pixels deposited

in the bank B (obtained from source domain image) as

{ek : k ∈ (1, . . . ,K)}. Likewise, mA
t and mα

t are feature

maps obtained from strongly-augmented and weakly aug-

mented target samples, where eAt ∈ mA
t and eαt ∈ mα

t

are used to represent instance embeddings. The source do-

main features in the bank serve as our auxiliary “instance

classifier” that goes beyond the limitation of the semantic

decision boundary.
Under the non-parametric softmax formulation [43], for

strongly augmented target pixel instance x
A(i)
t with embed-

ding eAt , we use the cosine similarity cos sim(u,v) =
uTv/‖u‖‖v‖ to calculate its instance-level similarity with

each sample in B, as the instance-level prediction of x
A(i)
t :

ŷ
(i)
ins = [qA1 , . . . , q

A
k′ , . . . ]

where qAk′ =
exp

(
(eAt )

T ek′/tp
)

∑K
k=1 exp ((e

A
t )

T ek/tp)
,

(4)

where tp is temperature, a hyperparameter that controls
the flatness of the distribution. This equation measures the

probability of target pixel-level instance x
(i)
t being recog-

nized as k′-th source instance in our memory bank B, acting
as “discriminate” in Figure 2. A similar calculation from the

weakly augmented pixel-level sample x
α(i)
t can be defined
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Figure 2: Overview of DIDA framework. The black stream of data augmentation and feature extraction process produces feature

maps from an identical batch of input images. The blue and red streams are the semantic-level and instance-level self-training process,

respectively, which can be viewed as consistency regularization on both levels produce the Ltgt and Lins. DIDA adopts class-balanced

sampling (CBS) and boundary pixel selecting (BPS) to filter useful source instance features and deposit them into the labeled instance

bank (IB) (Sec. 3.4). We use the source instance features (stored in IB) as the “instance classifier” and discriminate between source and

target instances to produce instance pseudo-labels (Sec. 3.2). The pseudo-label regeneration (bottom middle) calibrates pseudo-labels from

the two levels (with different channel sizes), then regenerates less noisy pseudo-labels to replace the naive ones (Sec. 3.3). During each

iteration, the source domain training process of Lsrc and the self-training process of two levels start simultaneously and obtain the summed

overall training objective Loverall.

as the instance-level pseudo-label:

y
(i)
ins = [qα1 , . . . , q

α
k′ , . . . ],

where qαk′ =
exp

(
(eαt )

T ek′/tp
)

∑K
k=1 exp ((e

α
t )

T ek/tp)
,

(5)

Then, this naive instance-level pseudo-label will be used to
adjust the semantic-level pseudo-label during the following
pseudo-label regeneration process. Finally, an additional
CE loss function is then introduced to minimize the differ-
ence between ŷ

(i)
ins and y

(i)
ins:

Lins = −
H×W∑
i=1

y
(i)
ins log

(
ŷ
(i)
ins

)
(6)

Finally, our overall UDA objective Loverall is calculated

as the weighted sum of each loss component as Loverall =
Lsrc + Ltgt + λinsLins , where λins is the parameter con-

trolling the weight of instance loss.

3.3. Pseudo-label Regeneration

As we mentioned earlier, the naive semantic-level

pseudo-labels are glutted with noises. To further improve

the quality of the pseudo-labels, we creatively propose the

pseudo-label regeneration to exhaustively utilize the labeled

information and introduce a way to calibrate semantic pre-

dictions and instance predictions so that they could interact

with and adjust each other. During the regeneration, our key

objective is to align the semantic-level and instance-level

predictions which possess different channel sizes.

For an input weakly augmented target image xα
t (bot-

tom row of Figure 2), we first extract its image-wise fea-
ture map mα

t , then we obtain its semantic predictions using

our pixel-level classifier pαt = g(mα
t ), p

α
t ∈ R[H×W ]×C .

For a single pixel within mα
t , we denote its semantic pre-

diction as zt ∈ R[1×1]×C and calculate its instance-level
similarity predictions via Eq. (5) as qα ∈ R[1×1]×K . Gen-
erally, K is much larger than C since at least one instance
is needed for each semantic category. We then calibrate zt

with qα by scattering zt into K dimensional space, denoted

as zsc ∈ R[1×1]×K

zsck = ztj , if label (qαk ) = label
(
ztj
)
, (7)

where label(·) is the function that returns the ground truth

label. For example, label(qαk ) means the label for the kth

element in the instance bank and label
(
ztj
)

stands for the

jth semantic category for the “softmaxed” prediction.

The regeneration of instance pseudo-labels is expressed

as the scaling between new and old instance-level predic-

tions:

q̂k =
qαk z

sc
k∑K

k=1 q
α
k z

sc
k

. (8)
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Figure 3: Intuition behind pseudo-label regeneration. After we

calibrate the predictions obtained from the two levels, we compare

the highest possibility in each level. If the most possible predic-

tions are similar within the two levels, the regenerated pseudo-

label will become sharper in the most confident category. In con-

trast, if the predictions of two levels disagree with each other, they

will check and balance the interacted pseudo-labels, resulting in a

much flatter distribution.

We adopt the newly calibrated q̂ to replace the old yins in

Eq.(6).
Furthermore, to interact the semantic-level with instance

information, we gather q into C dimensional space by sum-
ming over instance predictions with shared labels

qgai =

K∑
j=0

�
(
label

(
zti
)
= label

(
qαj

))
qαj (9)

Now we may further adjust the semantic pseudo-label by
smoothing zt with qga, written as:

ẑi = φzti + (1− φ)qgai , (10)

where φ is a hyper-parameter that balances the weight of

semantic and instance information. Similarly, the adjusted

ẑ will replace the old semantic pseudo-label ŷt in Eq. (3).

Note that the pseudo-label regeneration of two levels starts

simultaneously since we use copies of old yins and ŷt for

regeneration. By doing so, the dual-level information is

subtly interacted with and follows the protocol that the dis-

tributions of two levels are always expected to agree with

each other, as illustrated in Figure 3.

3.4. Instance Bank and Updating Strategies

As mentioned above, with designed bank size K and em-

bedding size D, we construct a feature bank Bf ∈ RK×D

and a label bank Bl ∈ RK×1 to keep instance-level infor-

mation: the extracted instance embeddings and their corre-

sponding ground truth labels. Different from domain adap-

tation for classification where features of all images can be

stored, for the segmentation task, we strictly control the

bank size and meticulously scheme its updating strategies.

Our key observation which motivates us to carefully de-

sign the updating strategy is that the long-tailed class dis-

tribution of source data (see supplementary material for de-

tails) will result in a strong bias towards common classes

(e.g., “road”, “sky”) instead of classes with very limited

pixels (e.g., “sign”, “light”) and those only appear in a

few samples (e.g., “bike”, “rider”). In addition, most pix-

els of an entity are actually redundant and less determinant

to the segmentation performance than those around object

boundaries. To address these two issues and make the de-

posited instance feature embeddings more representative,

we proposed two strategies, i.e., class-balanced sampling

and boundary pixel selecting.

Class-Balanced Sampling (CBS). Before saving instance-

level embeddings to B, we set the same proportions of la-

beled place-holders for each class, i.e., Holders = K
C . The

feature bank is initiated offline with randomly selected in-

stance embeddings but updated online through our selecting

strategies. We have also experimented with different bank

sizes K and different distributions of classes within, please

see more details in our experiment and analysis (Sec. 4.3).

Boundary Pixel Selecting (BPS). We first generate bound-

ary masks Ms for each annotated source sample through

Algorithm 1, then the boundary pixel maps Es are easily

calculated by Ys ∗Ms.

Algorithm 1: Boundary Mask Generation

Input : Ground truth label Y l
s of size H ×W

Output: Boundary mask Ml of image l
Initialization: All-zero matrix Ml of size H ×W ,

receptive field R of size 3× 3, threshold σ ← 2
for i ← 0 to H do

for j ← 0 to W do
Initiate ClassCount ← 0
Current ← pixel Y[i, j] (Current is the

position of current pixel)

ClassCount← Count of different classes

within Current receptive field R
if ClassCount > σ then

M[i, j] ← 1

For the c-th class, we take the average of embeddings
matching Ec

s as embcb. To balance our selection, we adopt
K-means clustering [24] on the non-edge instances and
pick out the centroid embeddings embcθ of the c-th clus-
ter. Together, the averaged instance feature embeddings
embavg ∈ R1×C between embb and embθ are what we
need to update the feature bank during each update interval
u with ema smoothing [34]:

embu ← ω · embu−1 + (1− ω)embavg (11)

Here ω ∈ [0, 1) is a momentum coefficient. Unlike ProDA

[46] which calculates target domain prototypes on the se-

mantic pseudo-labels, our BPS obtains representative pro-
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totypes from the source domain to perform instance-level

discrimination. Particularly, if the current image does not

contain a certain class of instances, we skip updating all

embeddings belonging to this class for once.

4. Experiments

4.1. Implementation Details

Training. We use the mmsegmentation framework1 with

backbone [44], which is pre-trained on ImageNet. Strictly

following DAFormer [11], we utilize Rare Class Sampling,

Thing-Class ImageNet Feature Distance, and Learning Rate

Warmup with the same settings for its hyper-parameters. In

accordance with [35], we apply color jitter, Gaussian blur,

and ClassMix as data augmentations. Our model is trained

on a batch of two 512×512 random crops for 40k iterations.

Datasets. We conduct our experiments on the two widely-

used UDA benchmarks, i.e., GTA5 [28] → Cityscapes [5]

and SYNTHIA [29] → Cityscapes [5]. We report the re-

sults of 19 shared categories for GTA5 and 16 common

categories for SYNTHIA with Cityscapes. Noted that we

use an identical set of hyper-parameters for both datasets

(K = 300, λins = 1, tp = 0.1, τ = 0.968, φ = 0.9,

ω = 0.999, u = 50).

4.2. Comparison with the SOTA methods

Table 1 and 2 demonstrate the effectiveness of our pro-

posed method in UDA. It outperforms all other baselines

developed in the recent three years and presented in top-tier

conferences and journals.

Results of GTA5 → Cityscapes. For GTA5→Cityscapes

adaptation (shown in Table 1), DIDA achieves the best IoU

score in all 19 categories, and it attains the state-of-the-art

mIoU score of 71.0, surpassing the second-best method [11]

by a large margin of 2.7. This can be ascribed to the fur-

ther exploration of instance-level information and pseudo-

label regeneration. Owing to the boundary pixel select-

ing strategy, our model learns to accurately distinguish be-

tween adjacent and analogous instances (e.g., “sidewalk”

and “road”, “truck” and “bus”), thus promoting the segmen-

tation performance significantly (“sidewalk” by 7.8 percent

and “truck” by 6.4). It is also worth mentioning that DIDA

shows prominent advantages in handling the long-tailed cat-

egories, such as improving the IoU score of “train” by 8.7,

and “sign” by 6.7.

Results of SYNTHIA → Cityscapes. As displayed in

Table 2, we still observe significant improvements over

competing methods on the more challenging SYNTHIA →
Cityscapes benchmark. Specifically, DIDA tops over 14

among all 16 categories while achieving the best mIoU per-

formance of 63.3, outperforming the second-best method

1https://github.com/open-mmlab/mmsegmentation

(a) Bank Size (b) Update Interval

Figure 4: Results of varying K and u.

DAFormer [11] by 2.4. It is worth noticing that DIDA’s ca-

pability to distinguish between analogous pairs works par-

ticularly well on the SYNTHIA→Cityscapes benchmark.

Similarly, on confusing classes like “road” and “sidewalk”,

DIDA improves the baseline [11] model’s performance by

a significant margin (road by 6.1, sidewalk by 13.0). These

results also reveal the strength of our DIDA among some of

the hardest categories, e.g., “fence”, “sign”, and “motor”.

4.3. Analysis of Instance Feature Selection

The success of our DIDA largely lies in the introduc-

tion of instance-level discrimination, which can be ascribed

to our meticulously designed dynamic memory bank and

the proper selection of more informative source domain in-

stances. Herein, we analyze how the bank size and different

updating schemes can affect the effectiveness of DIDA.

Choice of Bank Size. As a general rule of thumb, the more

instance features are stored, the model’s performance im-

proves. We present results of varying different bank sizes K
in Figure 4(a), which validates this claim. Note that when

K surpasses 300, the consumption of storage increases to

more than 23 GB, which pushes the GPU memory to its

limit (24GB for a single RTX 3090 GPU). By limiting the

bank size, our model is both friendly in memory occupa-

tion and efficient in adaptation. In the evaluation and the

following ablation studies, our bank size K is set to 300.

Updating Strategies. This part includes experiments of up-

date interval u, sampling strategy, and selecting strategy.

Specifically, we sweep over [25, 50, 100, 200, 500] for up-

date interval u. It’s obvious in Figure 4(b) that u = 50
achieves the top result, while u = 25 results in the worst.

This is consistent with what MoCo [8] points out: a quickly

changing feature bank leads to a dramatic reduction in per-

formance. For updating features in the bank, we investi-

gate no update (NU), random sampling (RS), inverted long-

tail sampling (ILS), and class-balanced sampling (CBS).

We also use AVG, KM, and BPS to represent average, K-

means clustering, and boundary pixel selecting strategies.

Please be aware that RS results in the long-tail distribution

of classes and ILS leads to a “polar” condition of long-tail

distribution (the original “head” becomes the new “tail”).
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Table 1: Comparison with state-of-the-art (SOTA) methods for UDA from GTA5 [28] → Cityscapes [5] adaptation. The results for DIDA

are averaged over 3 random seeds. † means we report the ProDA [46] and CPSL [17] results without further distillation for fair comparison.

Noted that we use gray to highlight 9 long-tailed classes, and symbols [�◦•] stand for analogous pairs. The best and second-best results

are highlighted in bold and underline font, respectively.
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GTA5 → Cityscapes

DACS [35] WACV’21 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

BiMAL [36] ICCV’21 91.2 39.6 82.7 29.4 25.2 29.6 34.3 25.5 85.4 44.0 80.8 59.7 30.4 86.6 38.5 47.6 1.2 34.0 36.8 47.3

UncerDA [41] ICCV’21 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6

BAPA-Net [23] ICCV’21 94.4 61.0 88.0 26.8 39.9 38.3 46.1 55.3 87.8 46.1 89.4 68.8 40.0 90.2 60.4 59.0 0.00 45.1 54.2 57.4

DPL-Dual [4] ICCV’21 92.8 54.4 86.2 41.6 32.7 36.4 49.0 34.0 85.8 41.3 86.0 63.2 34.2 87.2 39.3 44.5 18.7 42.6 43.1 53.3

UPLR [40] ICCV’21 90.5 38.7 86.5 41.1 32.9 40.5 48.2 42.1 86.5 36.8 84.2 64.5 38.1 87.2 34.8 50.4 0.2 41.8 54.6 52.6

ProDA† [46] CVPR’21 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 1.0 45.4 53.8 53.7

SAC [1] CVPR’21 90.4 53.9 86.6 42.4 27.3 45.1 48.5 42.7 87.4 40.1 86.1 67.5 29.7 88.5 49.1 54.6 9.8 26.6 45.3 53.8

CPSL† [17] CVPR’22 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7

CaCo [12] CVPR’22 93.8 64.1 85.7 43.7 42.2 46.1 50.1 54.0 88.7 47.0 86.5 68.1 2.9 88.0 43.4 60.1 31.5 46.1 60.9 58.0

DAFormer [11] CVPR’22 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

DIDA (Ours) – 97.3 78.0 89.8 55.9 52.6 53.3 57.9 66.1 90.0 50.0 93.1 73.2 44.8 93.4 80.9 84.7 73.8 58.6 63.5 71.0

Table 2: Comparison with state-of-the-art (SOTA) methods from SYNTHIA [29] → Cityscapes [5] adaptation. mIoU* denotes the mean

IoU over 13 classes excluding “wall”, “fence”, and “pole”.
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SYNTHIA → Cityscapes

DACS [35] WACV’21 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 48.3 54.8

BiMAL [36] ICCV’21 92.8 51.5 81.5 10.2 1.0 30.4 17.6 15.9 82.4 84.6 55.9 22.3 85.7 44.5 24.6 38.8 46.2 53.7

UncerDA [41] ICCV’21 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6

BAPA-Net [23] ICCV’21 91.7 53.8 83.9 22.4 0.8 34.9 30.5 42.8 86.6 88.2 66.0 34.1 86.6 51.3 29.4 50.5 53.3 61.2

DPL-Dual [4] ICCV’21 83.5 38.2 80.4 1.3 1.1 29.1 20.2 32.7 81.8 83.6 55.9 20.3 79.4 26.6 7.4 46.2 43.0 50.5

UPLR [40] ICCV’21 79.4 34.6 83.5 19.3 2.8 35.3 32.1 26.9 78.8 79.6 66.6 30.3 86.1 36.6 19.5 56.9 48.0 54.6

ProDA† [46] CVPR’21 87.3 44.0 83.2 26.9 0.7 42.0 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 51.9 62.0

SAC [1] CVPR’21 89.3 47.2 85.5 26.5 1.3 43.0 45.5 32.0 87.1 89.3 63.6 25.4 86.9 35.6 30.4 53.0 52.6 59.3

CPSL† [17] CVPR’22 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 83.3 69.6 29.1 89.4 52.1 42.6 54.1 54.4 61.7

CaCo [12] CVPR’22 87.4 48.9 79.6 8.8 0.2 30.1 17.4 28.3 79.9 81.2 56.3 24.2 78.6 39.2 28.1 48.3 46.0 53.6

DAFormer [11] CVPR’22 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4

DIDA (Ours) – 90.6 53.7 88.5 45.7 8.5 50.5 56.8 56.1 87.8 91.5 74.6 49.6 88.1 62.7 56.2 64.3 63.3 70.1

Results are shown in Table 3.

Table 3: Ablation on sampling and selecting strategies

Sampling mIoU Selecting mIoU

NU 68.6 RS 69.5

RS 69.5 AVG 69.7

ILS 69.0 KM 69.6

CBS 71.0 BPS 71.0

4.4. Ablation Studies

All ablation studies are conducted on the GTA5 →
Cityscapes dataset. See more in supplementary material.

Smooth Parameters. Table 4 reveals the effect of gather-
ing smooth parameters φ in Eq.(10). It indicates that the

best proportion of semantic information locates at 0.9. We

consider the extreme conditions as well: φ = 1 equals

taking the original semantic pseudo-label for Eq.(3), while

when φ = 0, the Ltgt oscillates and fails to converge.

Table 4: Results of different smooth parameters φ

φ 0 0.8 0.9 0.95 1.0

mIoU fail 70.2 71.0 70.3 69.0

Pseudo-label regeneration Strategies. We also tried dif-

ferent combinations to find out the most suitable regener-

ation strategy to regenerate instance-level pseudo-label q̂
and semantic-level pseudo-label ẑ. As observed from Ta-

ble 5, applying smoothing to ẑ and scaling to q̂ obtains the

top result. While there is very little difference from apply-

ing smoothing to the pseudo-labels from both levels (also

achieves 70.9 mIoU), another smoothing parameter is then

introduced in the process. Therefore, we prefer the scaling

for q̂ to keep a simpler framework
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Figure 5: Visualized ablation of Sampling strategies.

Table 5: Results of different interacting strategies φ

ẑ
q̂ Smoothing Scaling

Smoothing 70.9 71.0
Scaling 70.5 70.3

EMA Momentum. Table 6 shows mIoU performance with

different ema momentum ω in Eq.(11). It performs rea-

sonably from 0.9 to 0.999, demonstrating that a relatively

slow-updating (i.e., larger momentum) instance bank is ef-

fective. Under the extreme condition ω = 0, the instance

bank is purely updated with newly selected instance fea-

tures, and the performance reduces dramatically. When

ω = 1, it equals to “No Update” as conducted in the analy-

sis of “Sampling Strategies”.

Table 6: Results of different ema momentum ω

ω 0 0.9 0.99 0.999 1.0

mIoU 68.9 70.3 70.6 71.0 69.4

Qualitative ablation on the Effectiveness of Sampling
Strategies. Figure 5 presents the results of (1) baseline,

(2) baseline with instance loss & interaction (pseudo-label

regeneration) but the instances are randomly selected, and

(3) DIDA, on segmenting an image containing “confus-

ing” entities. We observe that the naive introduction of

instance loss & interaction is helpful for common classes

(e.g., “fence” and “vegetation” in red box), but lacks refine-

ment on long-tailed/boundary pixels (the long-tailed classes

of “truck” and “train” with some proportions of overlap-

ping, in the yellow box), while CBS&BPS help to distin-

guish between the long-tailed and overlapping categories

(a more explicit segmentation of “pole” from “train” and

“truck” from “train”, in yellow & gray boxes). Please see

more visualization results in our supplementary material.

Effect of each component. As displayed in Table 7, when

considering additional instance-level similarity discrimina-

tion, we improve the baseline [11] by 0.9, revealing the ef-

fectiveness of our constructed feature bank. By applying

updating strategies CBS and BPS, we explore the dominant

factors of segmentation performance and witness a 0.6 gain.

Finally, we introduce the pseudo-label regeneration (p.l.-

reg.) to allow semantic-level and instance-level information

to calibrate and balance each other, this mechanism leads to

a further boost by 1.2. It’s worth noticing that when apply-

ing pseudo-label regeneration with randomly selected fea-

tures to update the bank (i.e., w/o CBS&BPS), the perfor-

mance gain is only 0.5. This is consistent with our previous

assumption: a long-tailed distribution of instance features

reduces the quality of regenerated pseudo-labels.

Table 7: Ablation of each proposed component.

ID Lins CBS BPS P.L.-Reg. mIoU

baseline − − − − 68.3

I � − − − 69.2

II � � − − 69.6

III � � � − 69.8

IV � − − � 69.7

V � � � � 71.0

5. Conclusion
We propose a novel UDA framework, DIDA, which for

the first time performs intrinsic interactions between se-

mantic and instance pseudo-labels for better noise adjust-

ment. Unlike previous approaches, DIDA considers both

semantic-level and instance-level consistency regularization

simultaneously. To tackle the issue of large storage con-

sumption, we instantiate a dynamic instance feature bank

and update it with carefully designed strategies. Addition-

ally, our presented techniques of “scattering” and “gather-

ing” facilitate interaction between the two levels and enable

the regeneration of more robust pseudo-labels. Extensive

experiments demonstrate DIDA’s superiority over previous

methods. DIDA obtains significant IoU gains on confus-

ing and long-tailed classes while achieving state-of-the-art

overall performance. Discovering DIDA’s potential in other

visual tasks is a promising direction, which will be our fu-

ture work.
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