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Abstract

Deep learning’s utility in applications like medical di-

agnosis, autonomous driving, and natural language pro-

cessing often hinges on the accurate estimation of uncer-

tainty. Yet, conventional methods for uncertainty estimation

face challenges, including high computational cost, difficul-

ties with scalability, or poor interpretability. This paper

presents a novel approach to uncertainty estimation using

Attribute Prototype Networks (APNs), a method designed

for learning robust and interpretable data representations.

By leveraging prototype similarity scores, we propose a

straightforward way to quantify the uncertainty of predic-

tions, providing explainability and introducing a new tech-

nique for detecting out-of-distribution samples based on the

distance to the nearest prototype. Our experiments demon-

strate that this method offers valuable uncertainty informa-

tion across several datasets. Our research opens up a new

avenue for uncertainty estimation in deep learning, provid-

ing a simpler and more explainable solution.

1. Introduction

Uncertainty estimation is a crucial task for many appli-

cations of deep learning, such as medical diagnosis, au-

tonomous driving, and natural language processing.

However, most existing methods for uncertainty estima-

tion have some drawbacks, such as computational complex-

ity, scalability issues or poor explainability. Several ap-

proaches have been explored in the existing literature.

Gaussian processes (GPs), valued for their probabilistic

non-parametric modeling, encounter limitations, especially

for large datasets [1]. The high computational cost arises

from the cubic time complexity (O(n3)) due to the inver-

sion of the covariance matrix. Further, they suffer from

the ’curse of dimensionality’, especially when dealing with

high-dimensional data.

Bayesian methods, popular choices for applications in

machine learning and data science, offer a probabilistic

framework for modeling uncertainty [2]. These methods

allow for the integration of prior knowledge and observa-

tions, yielding predictive distributions that inherently quan-

tify uncertainty. However, the complexity of interpret-

ing the high-dimensional prior and posterior distributions

presents a challenge. As a result, extracting actionable in-

sights from Bayesian models can be particularly challeng-

ing for complex, high-dimensional problems [3]. More-

over, Bayesian methods often necessitate a reimplementa-

tion with a framework such as Pyro [4], making their inclu-

sion into existing classification pipelines difficult.

As another alternative, variational inference is a

method of approximate Bayesian inference that has also

been applied to deep learning problems, including the es-

timation of uncertainty [5]. One specific application is in

the realm of Bayesian neural networks, where variational

inference is used to learn the posterior distribution over the

network’s weights. [6] showed that Dropout CNN after ev-

ery weight is equivalent to variational approximation of the

Bayesian Neural network with Bernoulli distribution prior.

It averages over T forward passes through the network at

test time (as opposed to upscaling the weight by the dropout

ratio in the conventional dropout at test time). It is the

Monte Carlo estimation of the predictive distribution and

is therefore called MCDropout.

The ensemble neural networks (ENN) approach re-

quires training several models with different models, archi-

tectures or initializations [7]. This approach is based on the

assumption that data for which a prediction is uncertain a

different model may come to a different result.

Conformal prediction is a model agnostic approach to

measuring confidence by providing a set or range of pre-

dictions given a confidence threshold. It uses additional,

previously unseen samples to measure the conformity of

the model with its previous predictions [8]. Conformal
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prediction can be applied to outlier detection[9], image

classification[10] and question answering[11].

Despite these various methods, existing techniques of-

ten struggle to capture the uncertainty of out-of-distribution

(OOD) samples and lack sufficient explainability [12]. For a

more comprehensive review of these techniques, the reader

is referred to [13].

Prototype networks (PNs) are a recent approach for

learning interpretable and robust representations of data.

PNs use prototypes to capture the salient features of differ-

ent classes or attributes, and measure the similarity between

inputs and prototypes to make predictions. This paradigm

of using prototypes for salient image parts is explored in

various publications [14] [15] [16]. Prototypes have also

been applied to semantic segmentation [17].

In [18] uncertainty is calculated by the closest exponen-

tial distance to predetermined centroids for every class in a

class-weighted feature space. These centroids can be seen

as prototypes. While also not explicitly calling them pro-

totypes, a similar distance based idea is used in [19] where

an exponential distance measure is applied to logits of one-

vs-all classifiers to calculate uncertainty. Finally, the LDU

(latent discriminant deterministic uncertainty) method [20]

uses cosine similarity to trained prototypes before an un-

certainty estimation layer and loss, because they argue that

distance measures (L1/L2) lead to instabilities in training

[20].

Attribute prototype networks (APNs) are an example

of PNs that follows this principle and efficiently uses hu-

man attribute annotations. Attributes are properties of a

class which are semantically meaningful, an attribute could

be if that this bird has a yellow beak. Hence, the attribute

prototypes are also meaningful. They have been applied to

various tasks, such as zero-shot learning [21] and any-shot

learning [22] in image classification. However, there is a

lack of research on the use of APNs for uncertainty estima-

tion.

We argue that by way of providing prototypes for mean-

ingful attributes, APNs can provide a interpretable way to

quantify the uncertainty of predictions by using similarity

scores to these attribute prototypes. The contributions of

this paper are as follows:

• We propose a straightforward and novel method for

uncertainty estimation based on APNs.

• We show that our method provides valuable uncer-

tainty information and how these scores provide ex-

planatory power. We also analyse the calibration of

the uncertainty estimates.

• We further introduce a novel technique for detecting

OOD samples based on the distance to the nearest at-

tribute prototype.

We strongly believe that our method will offer a new per-

spective on uncertainty estimation contributing to more in-

terpretable deep learning applications. Thus, our goal is not

to beat the SOTA calibration scores on benchmark datasets,

but we want to show the direct benefit of attribute informa-

tion.

The rest of this paper is organized as follows. In the

next section we will explain how the similarity to prototypes

is calculated, followed by Section 3 with datasets, models

and metrics. Then we provide results in Section 4 showing

how well we capture uncertainty information on different

datasets and how the OOD detection works. Because of it’s

importance, the explainability part is set in an extra Section

followed by a conclusion, in which we discuss advantages,

limitations and future work.

2. Methodology

The similarity measure s(x, pi) is the cornerstone of our

approach. The similarity function quantifies the resem-

blance between an input x and a prototype pi in the feature

space. This function plays a crucial role in defining the no-

tion of proximity that underlies our uncertainty estimation

method. We define s(x, pi) as the cosine similarity between

the feature representation of x and the prototype pi, formu-

lated as:

s(x, pi) =
〈f(x), pi〉

||f(x)||2||pi||2
(1)

where f(x) is the feature extractor output for input x,

〈., .〉 denotes the dot product, and ||.||2 represents the L2

norm. The cosine similarity scales the dot product of f(x)
and pi by their magnitudes, ensuring that the similarity

score is not influenced by the scale of the features or the

prototypes. The result is a value bounded between -1 (com-

pletely dissimilar) and 1 (perfectly similar), providing a

clear interpretation of the similarity scores.

The proximity function can be defined in terms of the

similarity measure. The proximity of an input x to the pro-

totypes is given by:

proximity(x) = max
i

s(x, pi) (2)

where i varies over the total number of prototypes. The

proximity score represents the maximum similarity of x to

any prototype. This provides a measure of confidence in

the classification. The closer the proximity score is to 1,

the more confident we are about the class prediction, hence

the lower the prediction uncertainty. In our implementation

(described in Section 3.2 and illustrated in Figure 1) the fea-

ture vector f(x) has a spatial dimension of 7x7 indexed by

u and v which allows a rough localization of activations. To

take this into account, we calculate the maximum similarity

for each spatial element. Hence,
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Similarity

(224x224x3)

Figure 1: The calculation of confidence with an Attribute-Prototype model.

proximityu,v(x) = max
i

max
u,v

s(xu,v, pi) (3)

where u and v are the index variables for possible spatial

dimensions of f(x) as shown in Figure 1.

For a more intuitive confidence measure we normalize

the proximity (0 = not confident, 1 = highly confident):

p(x) =
proximity(x) + 1

2
(4)

The general assumption of our Out-of-Distribution

(OOD) detection approach is that images with low confi-

dence, i.e., very high uncertainty are less likely to be from

the same distribution as the training images. As for OOD

detection, we introduce the concept of a threshold τ . Inputs

with proximity scores less than this threshold are considered

uncertain or potentially OOD. Since the confidence is in the

range of 0 to 1, a reasonable choice for τ might be a small

positive number in this range, allowing for a tolerance of

inputs with very low similarity to all prototypes. Formally:

OOD(x) =

{
1, if p(x) < τ

0, otherwise
(5)

where OOD(x) = 1 denotes an OOD sample and

OOD(x) = 0 denotes an in-distribution sample. Note that

OOD detection is also called anomaly detection or outlier

detection, depending on applications.

3. Experimental setup

3.1. Datasets

We evaluate our method on three widely used datasets:

CUB-200-2011 (CUB) [23], SUN Attribute (SUN) [24],

and Animals with Attributes 2 (AWA2) [25]. These datasets

are selected for their diverse nature and the availability of

attribute information, which is crucial for our Attribute Pro-

totype Networks (APNs). The CUB dataset contains 11,788

images of 200 bird species, each associated with a set of at-

tributes. The SUN dataset consists of 14,340 images from

717 categories, each with a unique set of attributes. The

AWA2 dataset includes 37,322 images of 50 animal classes,

each associated with 85 attributes.

3.2. Models

Generalized Zero-Shot Learning (GZSL) is a machine

learning paradigm that extends Zero-Shot Learning (ZSL)

with the goal of recognizing instances from both seen and

unseen classes [26]. Seen classes are those for which train-

ing data is available, enabling supervised learning models

to infer the relationships. In contrast, unseen classes re-

fer to categories without training examples; these must be
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inferred indirectly via shared attributes or other indirect in-

formation [27]. The key challenge in GZSL is to minimize

the bias towards seen classes while improving recognition

performance on unseen classes, which often leads to the so-

called ’domain shift’ problem [28]. This approach has a

wide range of applications, particularly in areas such as ob-

ject and activity recognition, where it is unrealistic to obtain

labeled data for all possible classes [29].

We use attribute prototype models by [21] trained on the

dataset explained in Section 3.1. Our model is based on

a pretrained ResNet-101 [30] backbone and designed for

GZSL. It provides us with a 2048 element prototype vector

for every attribute defined in the dataset which helps in pre-

dicting labels of either seen or unseen classes. For our ex-

periments we use models trained on the Generalized Zero-

Shot Learning task. For comparison against other baselines

of uncertainty estimation please refer to future work in Sec-

tion 6.

In Figure 1, we illustrate the architecture during infer-

ence including feature and prototype dimensions for an im-

age from the CUB dataset.

3.3. Metrics

Calibration refers to the agreement between predicted

uncertainties and true outcomes. We use several calibra-

tion metrics, which focus on different aspects of calibration

error and the Out-of-Distribution (OOD) detection accuracy

to evaluate our method:

Expected Calibration Error (ECE): ECE is a popular

metric for evaluating the calibration of a model [31] [32].

It measures the average discrepancy between the model’s

confidence and the accuracy of its predictions. To calcu-

late ECE, we first sort the predictions by their confidence

into M bins. Then, for each bin Bm, with samples per bin

|Bm|, we calculate the absolute difference between the bin’s

accuracy acc(Bm) and the average confidence conf(Bm),
that are defined as follows:

acc(Bm) =
1

|Bm|

∑
i∈Bm

1(ŷi = yi)

where 1(.) is the indicator function of all correctly

classified samples; ŷi and yi denote the predicted and true

class label for a given sample i.

and

conf(Bm) =
1

|Bm|

∑
i∈Bm

p(i)

where p(i) denotes the confidence for a sample i.

In all of the following metrics a lower deviation between

accuracy and confidence indicates a lower error. In an ideal

case the discrepancy between accuracy and confidence is

zero, meaning that in all of the metrics a lower score in-

dicates a lower error and hence a better calibration of the

model.

The ECE is the weighted average of these differences,

with the weights being the number of samples per bin. It is

defined as follows:

ECE =
M∑

m=1

|Bm|

n
|acc(Bm)− conf(Bm)|

with n denoting the number of samples. Lower ECE

values indicate better calibration. If the classifiers are

perfectly calibrated, the ECE score is 0.

In scenarios where it is imperative to have a reliable con-

fidence measure this is achieved by minimizing the maxi-

mum possible deviation between accuracy and confidence.

For this purpose the so called Maximum Calibration Er-

ror (MCE) is defined as follows (see [33] and [31]):

MCE = max
m∈{1,...,M}

|acc(Bm)− conf(Bm)|

To account for the multi-class setting the authors in [34]

proposed the Static Calibration Error (SCE) which per-

forms binning for each class probability. It computes the

calibration error within each bin followed by an averaging

across all bins:

SCE =
1

K

K∑
k=1

M∑
m=1

Bmk

n
|acc(Bmk)− conf(Bmk)|

where K denotes the total number of classes and Bmk

denotes the number of predictions for a particular bin m for

a class label k.

While ECE, MCE and SCE rely on static and equally

sized bin intervals, the Adaptive Calibration Error (ACE)

[33] relies on a binning with adaptive intervals working on

the premise that each bin contains an equal number of pre-

dictions. The motivation for such an adaptive interval bin-

ning emerges from the need to focus on regions in the prob-

ability distributions where the majority of predictions are

performed, rather than regions that contain lower number

of predictions. ACE is computed as follows:

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(Brk)− conf(Brk)|

where r denotes the calibration range, that refer to the in-

tervals within which the predicted probabilities of a model
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Table 1: Accuracy values in % for GZSL based on pre-

trained models by [21]

Dataset
Accuracy

Unseen Seen

SUN 40.3472 35.1163

AWA2 58.5871 79.4288

CUB 64.4873 70.6856

Table 2: Calibration metrics on seen classes. All metrics are

calculated with 10 bins.

Dataset ECE MCE SCE ACE

SUN 0.0646 0.7060 31.9606 0.0724

AWA2 0.2030 0.6240 2.7877 0.2108

CUB 0.0275 0.8260 8.2269 0.0442

Table 3: Calibration metrics on unseen classes. All metrics

are calculated with 10 bins.

Dataset ECE MCE SCE ACE

SUN 0.0329 0.6357 1.3612 0.0340

AWA2 0.0214 0.6502 0.4179 0.0498

CUB 0.0831 0.8202 2.2845 0.0832

are expected to reflect the true likelihood of an event occur-

ing. Furthermore R denotes the number of ranges.

Out-of-Distribution (OOD) Detection: We evaluate the

OOD detection capability of our model by measuring its

accuracy in identifying OOD samples. We consider sam-

ples from one dataset as in-distribution and samples from

another datasets as OOD. For example, when evaluating on

the AWA2 dataset, we consider AWA2 as in-distribution and

SUN as OOD. We calculate the OOD detection accuracy

as the proportion of correct OOD/in-distribution classifica-

tions.

4. Results & Discussion

4.1. Uncertainty Metrics

Let us delve into the evaluation of the uncertainty es-

timation by analyzing calibration metrics. Our goal is to

show how we capture uncertainty estimation with our con-

fidence score and give the reader an impression on how re-

sults across the three datasets CUB, AWA2, and SUN can

look like. For CUB 312 , for AWA2 85 and for SUN 102

attribute prototypes are detected.

As per Table 1, the baseline accuracies for Generalized

Zero-Shot Learning (GZSL) obtained from pretrained mod-

els [21] show varying results across datasets. For the unseen

case, SUN exhibits the lowest accuracy of 40.35%, while

AWA2 and CUB have higher accuracies of 58.59% and

64.49%, respectively. When examining the seen classes,

AWA2 shows a distinct increase in accuracy to 79.43%,

while the CUB dataset maintains a relatively high accuracy

of 70.69%, and the accuracy for SUN is lower with 35.12%.

These results serve as our performance baseline and match

the results reported in [21]. The strong differences in ac-

curacy are an advantage for our evaluation as it allows us

to see how well our uncertainty method performs with at-

tribute prototype predictors of varying strength.

To assess the calibration quality of the novel uncertainty

estimation method, we use four metrics: Expected Cali-

bration Error (ECE), Maximum Calibration Error (MCE),

Static Calibration Error (SCE), and Adaptive Calibration

Error (ACE). A definition of these metrics is given in Sec-

tion 3.3. Calibration refers to the agreement between pre-

dicted uncertainties and true outcomes. Ideally, for predic-

tions made with a confidence of x%, the proportion of cor-

rect predictions should be close to x%.

Table 2 and Table 3 show the calibration metrics for the

seen and unseen classes. For the seen classes, the ECE

scores vary across the datasets: they are relatively low for

SUN and CUB, suggesting that the confidence levels of the

model for these datasets are reasonably consistent with its

accuracy. However, the AWA2 dataset shows a higher ECE

score, indicating some discrepancy between the model’s

confidence and its accuracy. The MCE scores highlight

the presence of miscalibration under some circumstances,

as indicated by relatively high maximum calibration errors,

except for the AWA2 dataset which has the lowest MCE

scores. Which means that while the average error is high,

the maximum error is lower. This underlines the necessity

for a combination of calibration metrics.

When we look at the unseen classes (Table 3), we notice

that the ECE scores for the SUN and CUB dataset remain

low, similar to the seen case. The MCE score are slightly

lower in this scenario, indicating that the model’s worst-

case calibration is better for unseen data. For the AWA2 it

is the opposite, the ECE score are much lower and the MCE

score remains on the same level. Indicating that the calibra-

tion is better on average, but the maximum calibration error

remains the same.

However, when we look at the SCE, a more holistic cali-

bration measure accounting for the calibration of individual

prediction scores, we observe high values in both seen and

unseen cases, especially for the SUN and CUB datasets in

the seen classes. High SCE scores may suggest that the

model’s miscalibration is pervasive across all confidence

levels, not just the extremes, which shows potential for us-

ing calibration methods such as Temperature scaling [31] or

Isotonic Regression [35].

Finally, the ACE scores by way of adaptive interval bin-
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(a) CUB (b) SUN (c) AWA2

Figure 2: Calibration curves for seen classes with GZSL models. The size of the dots indicates the number of datapoints in

the respective bin.

(a) CUB (b) SUN (c) AWA2

Figure 3: Calibration curves for unseen classes with GZSL models. The size of the dots indicates the number of datapoints

in the respective bin.

ning provide a different view on the prediction scores, fo-

cusing on the majority of predictions.

They remain quite low in both seen and unseen cases for

the CUB and SUN dataset. For the AWA2 dataset it shown

the same trend as in the ECE scores. This suggests that

the model’s calibration quality is robust to such a change in

interpretation.

In conclusion, the novel uncertainty estimation method

generally demonstrates adequate calibration in terms of

ECE and ACE. Furthermore, the method shows room for

improvement in dealing with worst-case scenarios (MCE)

and in maintaining a consistent calibration across all confi-

dence levels (SCE).

For a visual confirmation we offer the calibration curves

which show accuracy vs. average confidence in 10 bins in

Figure 2 and 3. For the CUB dataset we can confirm the

very good calibration, the blue dots are almost on the perfect

calibration line confidence matching accuracy, while for the

SUN and AWA2 dataset we see still good values and but

not as good calibration. The large difference in ECE scores

between seen and unseen classes for the AWA2 dataset is

clearly visible. We suspect that the generally higher accu-

racy for the CUB dataset also lead to better attribute proto-

types.

4.2. Out-of-Distribution Detection

In Figure 4 we show the cumulative distribution of the

confidence values of the GZSL trained on the AWA2 dataset

applied to the AWA2 dataset. For these in-distribution data

points, we see a clear S-curve of values between 0.55 and

0.70. In Figure 5 we show the previous AWA2 model ap-

plied to the SUN dataset, thus the OOD case. Again we

4575



Figure 4: CDF of the confidence values of a AWA2 model

applied on AWA2 data (seen classes)

Figure 5: CDF of the confidence values of a AWA2 model

applied on SUN data (seen classes)

see an S-curve, however this time between 0.50 and 0.58.

There is only a very small overlap of the curves between the

CDFs in Figure 4 and Figure 5. Thus, we can set a thresh-

old value τ = 0.57 and get an almost perfect separation

of OOD and non-OOD samples, which results in ca. 97%

OOD detection accuracy. For the SUN/CUB model/dataset

combinations we observed a similar separation.

Overall we can conclude that our method of directly es-

timating the confidence from the distance to attribute proto-

types is an effective method for OOD detection.

5. Explainability

In Eq. 3, we calculate the proximity using the maximum

proximity over all attribute prototypes. This calculation

serves to enhance the explainability of the uncertainty or

confidence. To do this, we first analyze which individual

attribute prototype is closest to our image.

Consider an example image of a bird called Forster’s tern

from the CUB dataset (Table 4). The image is classified as

a ’Forsters Tern’ (class 146) using the GZSL model by [21]

with a confidence of 0.7876.

Next, we calculate the proximity for each of these closest

attributes across each spatial dimension of the feature vec-

(a) Input image (b) has leg color::orange

(c) has head pattern::capped (d) has underparts color::white

Figure 6: Confidence scores as a normalized heatmap for

TOP 3 closest prototype attributes (see Table 4) for an im-

age of a Forster’s tern bird from the CUB dataset.

tor. Afterward, this proximity is converted into a confidence

score, ranging from 0 to 1. Subsequently, we overlay this

mask onto the original image, adjusting the color scaling for

clarity as shown in Figures 6b to 6d.

As we can observe in Figure 6, the determined attributes

align with the visual aspects of the image and are entirely

appropriate for this bird species. We can see that the net-

work correctly identifies the bird’s orange leg color and the

capped head. This means that attribute prototypes provide

a method for interpretable results and with our method this

transfers to an interpretable uncertainty.

Table 4: Attributes and Confidence for an image of a

Forster’s tern from the CUB dataset in Figure 6a.

Attribute Name Confidence

has leg color::orange 0.7876

has head pattern::capped 0.6938

has underparts color::white 0.6792

has belly color::white 0.6755
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6. Conclusion

The results show that the attribute prototypes can be used

for uncertainty estimation, but there are also limitations to

this approach. We want to conclude this article by listing

these advantages and limitations.

Advantages:

• Interpretability and explainability: The proximity

measure directly correlates to how similar the input is

to known prototypes, making it relatively easy to inter-

pret compared to some other uncertainty measures like

ENN where we receive only the uncertainty.

• Straightforward: As this approach is integrated

within a deep learning framework, it scales well with

high dimensional data and large datasets. It is direct

and straightforward. If attribute prototype information

is available it can be easily evaluated. Compared to

other approaches such as Ensemble or MC methods

that require multiple models and or multiple evalua-

tions this is a considerable advantage.

• OOD detection: This method allows not only for un-

certainty estimation but also for OOD detection by set-

ting a threshold on the proximity value.

• Different working principle: The working principle

of our method is different to other uncertainty esti-

mation methods that relying on logits, stochastic pro-

cesses, ensembles etc. This means that a combination

with these methods is plausible in future work.

Limitations:

• Threshold dependence: The choice of the threshold

for OOD detection could be problem-dependent and

may require careful tuning.

• Prototype dependence: The effectiveness of this

method heavily relies on how well the prototypes can

capture the characteristics of the classes. If the pro-

totypes are not representative enough, the proximity

measure may not effectively estimate uncertainty.

• Competitiveness needs validation: Our method

shows good results on three datasets. Nevertheless, we

believe that comparing it with other non-APN methods

will be valuable. Hence we would like to compare with

other methods [18] and [20] as well as OOD-detection

algorithms [36] by adapting them to attribute prototype

data in future work.

Because of these advantages we believe our novel

method will offer a new perspective towards more inter-

pretable deep learning applications of uncertainty estima-

tion.
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