A. Metrics Definitions

In this section, we provide the definitions and formulas
of metrics used for evaluation in this paper. Let the samples
be represented by [(x1,v1), (2, y2), ..., (TN, yn)], where
N is the total number of samples. z; is the input and y; is
the corresponding label, having values between 1 and K.

Accuracy. This gives the fraction of samples that were
correctly identified by the network.

L
acc = Z 1[argmax(p(yn|Tn)) = Yn)

n=1

where, p(yn |%,) is the predicted probability that the sample
T, belongs to the class y,. A higher accuracy indicates
better performance.

Expected Calibration Error. ECE is a measure of pre-
dictive probability calibration error. The output probability
is divided into a histogram of B equally spaced bins. The
expected calibration error gives the difference between the
observed relative frequency (accuracy) and the average pre-
dicted frequency (confidence).

B
ECE = Z %\acc(b) — conf(b)|
b=1

where 1y is the number of samples in bin b, IV is the total
number of samples, acc(b) and conf(b) are the accuracy
and confidence of bin b. A lower ECE score means that
the accuracy and confidence are aligned, indicating better
calibration.

Negative Log Likelihood. NLL calculates the negative
log-likelihood for the predicted class probability. While it
is generally used for optimization using cross-entropy loss,
it is also commonly used to evaluate the prediction uncer-
tainty. A lower NLL score is preferred.

N
1
NLL = — ;
N ;log(p(yn\xn))

Area Under Receiver Operating Characteristic
Curve. AUROC indicates the ability to separate ID and
OOD samples. To calculate this metric, the predicted un-
certainty is used to determine if a sample is ID or OOD.
This can be considered as a binary classification problem.
The area under the plot between the true positive rate and
the false positive rate gives the AUROC value. Higher AU-
ROC value means better separation between ID and OOD.

Area Under Precision-Recall Curve. AUPR, like AU-
ROC measures the ability to separate ID and OOD samples.
Considering ID and OOD separation as a binary classifica-
tion problem, the area under the plot between precision and
recall values give the AUPR score.

B. Experimental details
B.1. CIFAR10 vs. CIFAR100/SVHN

CIFARI10 [25] consists of 10 classes. We split the orig-
inal training set consisting of 50000 samples into train and
validation set, in the ratio of 80:20. The validation set was
used for hyperparameter tuning. The test set consists of
10,000 samples, used for inference. For OOD analyses, we
use the test set of SVHN and CIFAR100, which consists of
26,032 and 10,000 samples respectively. The OOD images
are normalized the same way as train images during infer-
ence.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. Af-
ter training MAPLE , the number of classes were 12, and
hence, the final layer has a dimension of 12, followed by
softmax. We trained the model for 200 epochs. We used an
SGD optimizer with a learning rate of 0.05. The momen-
tum was set to 0.9 and weight decay of 1le~%. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
GTX 1080Ti with a batch size of 64. The dimension of the
reduced features from PCA is 12.

B.2. CIFAR100 vs. CIFAR10/Tiny ImageNet

CIFAR100 [25] consists of 100 classes. We split the
original training set consisting of 50000 samples into train
and validation set, in the ratio of 80:20. The validation set
was used for hyperparameter tuning. The test set consists
of 10,000 samples, used for inference. Additionally, infer-
ence and ID metrics were also calculated for the corrupted
version (CIFAR100-C [20]). For OOD analyses, we use the
test set of Tiny ImageNet and CIFAR100, which consists of
10,000 samples each. The OOD images are normalized the
same way as train images during inference.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. Af-
ter training MAPLE , the number of classes were 118, and
hence, the final layer has a dimension of 118, followed by
softmax. We trained the model for 200 epochs. We used an
SGD optimizer with a learning rate of 0.05. The momen-
tum was set to 0.9 and weight decay of le~*. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
GTX 1080Ti with a batch size of 64. The dimension of the
reduced features from PCA is 34.

B.3. ImageNet vs. ImageNet-O

The ImageNet dataset [40] consists of 1,000 classes with
1,281,167 train, 50,000 validation and 10,000 test images.
For OOD analysis, ImageNet-O [19] is used, which con-
sists of 200 classes and 2000 images. The OOD images are
normalized the same way as train images during inference.

The ResNet-50 [18] was used for training. The feature
embedding layer has a dimension of 640. After training

MAPLE , the number of classes were 1223, and hence, the
final layer has a dimension of 1223, followed by softmax.
We trained the model for 300 epochs. We used an Adam
optimizer with a learning rate of 0.01. The training was
performed using PyTorch on a 2 24Gb NVIDIA GeForce
RTX 3090 with a batch size of 64. The dimension of the
reduced features from PCA is 66.

B.4. Diatoms

The diatom dataset consists of 9895 individual RGB im-
ages of size 256 x 256, belonging to 166 classes [49]. We
divide it into ID dataset consisting of 130 classes (7874 im-
ages) and the remaining 36 classes as OOD (2021 images).
70% of the ID images were used for training, 10% for val-
idation and 20% for testing. While training, horizontal and
vertical flips were used for data augmentation.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. After
training, there were a total of 158 classes, hence the output
layer consists of 158 neuron with a softmax activation. We
trained the model for 100 epochs with an Adam optimizer.
The learning rate was 2¢ % and batch size 4. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
1080Ti. The dimension of the features after PCA reduction
was 31.

B.5. Hyperparameter Tuning

Our training depends on the following hyperparameters:
(1) Frequency of epochs p - After every p epochs, vali-
dation is performed to obtain the new cluster assignments
using X-Means. (2) False negative ratio threshold ¢ - ¢
is a threshold used to decide the class features to be clus-
tered. From the normalized confusion matrix obtained dur-
ing the validation step, the classes having false negative
greater than ¢ are clustered using X-Means. (3) Maximum
number of clusters - This is a parameter of X-Means, that
specifies the upper bound to the number of clusters that X-
Means can generate for each class.

To find the optimal value of these parameters, a grid
search was performed. For the grid search, the values of
hyperparameters used were: False negative ratio thresh-
old t € {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0},
frequency of validation epochs p € {5,10, 15,20} and
maximum number of clusters that X-Means can generate
{83,5,7,10}.

From the grid-search analysis, the best performance was
obtained when ¢t = 0.3, p = 10 and maximum num-
ber of clusters=5 for CIFAR10, CIFAR100 and the Diatom
datasets. For ImageNet, ¢ = 0.2, p = 20 and maximum
number of clusters=5.

B.6. Loss Functions

For our training, we use the Cross-Entropy Loss and the
Triplet Loss.

B.6.1 Cross-Entropy Loss

To estimate the cross-entropy loss, the final layer of the
model is passed through a softmax layer to obtain proba-
bility values. Cross-entropy loss increases proportional to
the difference between the predicted probability and the ac-
tual probability (typically 1) of the ground truth class. The
cross-entropy loss is given by:

K
»Ccross»entropy = - Z Yi 10g(pz) (7)
=1

where K is the total number of samples, y; is the binary
one-hot encoding value corresponding to ground truth class,
which equals 1, and p; is the probability predicted by the
network.

B.6.2 Triplet Loss

To estimate the triplet loss, we use the feature embedding
obtained from the penultimate layer of the classification net-
work. Triplet loss tries to minimize the distance of intra-
class data points, while maximizing the inter-class distance.
Consider three input samples, which are feature embed-
dings extracted: anchor 7, positive x;, and negative z,.
x,, and ;, belong to the same class while z7, belongs to a

different class. The triplet loss is given as:
Luipter = max{|[ay, — @[] — [lag — 23]+, 0} (8)
The final objective is
Liotar = Leross-entropy + Liriplet 9

C. Algorithm

The proposed method is summarized in Algorithm 1 and
Algorithm 2. Algorithm 1 provides the steps using in train-
ing MAPLE . Algorithm 2 summarizes the procedure for
estimating uncertainty from MD. At regular intervals of the
training process, validation is performed, and the train fea-
ture representations are clustered using X-Means. The time
complexity for X-Means is O(log K), where K is the num-
ber of clusters. The train features are reduced in dimension
using PCA, which has a complexity of O(nd?+d?>), where
n is the number of train data and d is the feature dimen-
sion. Mahalanobis distance calculation requires calculating
mean and the covariance matrix, which has a complexity
of O(nd’) and O(d'®), where d’ is the PCA reduced feature
dimension.

Note that the operations such as the PCA covariance cal-
culation and eigenvalue decomposition, and inverse covari-
ance calculation for MD is to be performed only once, at the
end of the training. During inference, the calculated mean
and inverse covariance matrix can be used to calculate the
Mahalanobis distance for all the test points.

Algorithm 1: MAPLE training

Data: Ground truth labels y € {1,2,...k},
Input samples & € RP,
Train input samples Tirain = {Tn i,
Train dataset Dyrain = {(Tn, yn) }N_1,
Validation dataset Dyq; = { (20, y0) }M_,
Initialize: n. = k,p = 10, =

0.3, max_clusters =5
Model : f?:RP — R¢
for epoch = 1 to max-epochs do
Train f% with Dypain and n. classes and loss
giVCIl by Ltotal = Lc’r‘ossfent'ropy + Ltriplet
if epoch%p==0 then
mfﬁ«,-ain = f0 (wtrain)
Get softmax predictions on D,,q;
if n. > k, remap pseudo-labels to original

class labels

Compute confusion matrix
for i=1to k do

if false_negative_ratio(i) > t then
Cluster using X-Means.
X-Means(xy,. , ;.. (1), max_clusters)

K < total number of clusters obtained from
all the classes

n. =K

Update Dy,.q4in With pseudo-labels from
clustering

D. Additional Experiments

In this section, we provide results for additional evalua-
tion of MAPLE .

D.1. Accuracy based on prediction confidence

We evaluate the accuracy of prediction when selecting
samples with predictive confidence above a given thresh-
old. In other words, classification is performed only when
the network’s confidence is above a threshold. This is rep-
resentative of real-life applications where a network’s pre-
diction is considered only when the confidence is high. We
consider three probability thresholds: 0.50, 0.80 and 0.90.
For all samples with predictive probability above these val-
ues, we report the classification accuracy. Table 8 gives the
results on the test set of CIFAR10 [25] dataset.

Algorithm 2: MAPLE Prediction

Data: Train feature embeddings x},. ...

Input: Test sample &

Compute the reduced dimensional train features:
Ztrain = g(w;,rain)

Compute individual class means and shared
covariance fi., 3

He = NLC Zi!yiic Zi

%= % 2 Zi:yizK(zi — pe) (20 — pie)”

Get reduced dimensional feature for &:
z=g(f((2))

Compute Mahalanobis distance:
MD(&) = /(2 — 1) TS (2 - o)

Get the prediction probabilities:
P]\{D =1- Cdf(Xi/)(MDQ)

Predicted class = argmax(Pysp)

Compute uncertainty u = cdf(x?) (M D?)

Method acc@.50 acc@.80 acc@.90
MC Dropout [13] 0.962 0.976 0.988
Deep ensemble [26] 0.967 0.987 0.995
DUQ [46] 0.950 0.977 0.982
SNGP [31] 0.959 0.978 0.985
DUE [45] 0.962 0.974 0.979
MAPLE 0.958 0.989 0.995

Table 8. Accuracy on CIFAR10 with different confidence levels.
MAPLE achieves top accuracy at confidence levels of 0.80 and
0.90.

Results. MAPLE achieves the best accuracy at confi-
dence values of 0.80 and 0.90 on CIFAR10. Overall, on
CIFAR10, MAPLE has competitive accuracy with the other
approaches. This shows that even though MAPLE is com-
putationally efficient, it can achieve the same level or better
performance as the other methods.

D.2. Gaussian test

In Section 3.1, it was theoretically shown that X-Means
creates clusters of feature points that are Gaussian. In this
section, we empirically test this. A commonly adopted
method to check for multivariate Gaussian is to use a
quantile-quantile plot, where an observed quantile is com-
pared with a theoretical one. If the samples are Gaussian,
their squared MD follows a x? distribution. Thus, we use
M D2, of the samples feature embeddings as our observed
quantile and compare with theoretical x? quantiles.

For our test, we use the reduced feature embeddings,
Zirain, from a standard classifier network and MAPLE .
The M D2 of samples are calculated and plotted with x>
quantiles with d’ degrees of freedom, where d’ is the dimen-
sion of feature embeddings. We measure the error, which
is the mean absolute difference between the two quantiles,

to test which method generates feature embeddings that are
closer to a Gaussian. In the ideal situation, this value should
be zero. The larger the error, the greater is the deviation
from a Gaussian distribution.

Table 9 shows the errors computed on feature embed-
dings from CIFAR10 and CIFAR100 dataset. From the re-
sults, MAPLE’s error is reduced by over 50%, which shows
that the feature representations of MAPLE are more Gaus-
sian than when using a standard DNN classifier.

Method CIFAR10 CIFAR100
Standard CNN 3.540 4.479
MAPLE 1.395 1.982

Table 9. Mean absolute error between squared MD and ? dis-
tribution. The lower the error, the more Gaussian are the samples.
MAPLE’s training generates sample distributions that are approx-
imately Gaussian, fitting with the theoretical framework for MD
calculation.

E. Extended Ablation Analyses
E.1. MAPLE evaluated on different backbones

MAPLE is tested on three networks: Wide ResNet 28-
10 [51], ResNet-18 [18] and EfficientNet-BO [44]. Table 10
gives the quantitative metrics for evaluation on CIFAR10
vs. SVHN and CIFAR100. While it is expected that the
accuracy depends on the architecture used, the calibration
and OOD detection are also influenced by the architecture.
Wide ResNet, which has more number of parameters than
the other two architectures, learns better feature representa-
tions for discriminating each class. As the model parame-
ters decrease, there are overlapping feature points between
different classes, which explains the lower accuracy and
worse calibration and OOD metrics.

SVHN CIFAR100

Architecture Accuracy T ECE | | AUROC1T AUROC 1
Wide ResNet 28-10 [51] 0.954 0.012 0.996 0.926
ResNet-18 [18] 0.945 0.029 0.979 0.886
EfficientNet-BO [44] 0.902 0.035 0.942 0.893

Table 10. MAPLE evaluated on different architectures. The
metrics improve as the model parameters increase, suggesting that
the network learns better discriminative feature representations,
thereby improving the performance.

E.2. Evaluation of different clustering methods

We analyse the performance of MAPLE on CI-
FAR10 when clustering is performed using K-Means, G-
Means [52] and X-Means [37]. The value of K in K-Means
is set to 3. Tab. 11 shows the results obtained. Based
on the results, X-Means yields the best performance. K-
Means and G-Means causes overclustering, which leads to

worser performance on OOD detection. Using X-Means,
we choose the optimal number of clusters, which performs
superior to the others.

SVHN CIFAR100
Clustering method || #Classes Accuracy? ECE] | AUROCT AUROCYT

K-Means 30 0.952 0.154 0.871 0.850
G-Means 67 0.910 0.266 0.710 0.627
X-Means 12 0.954 0.012 0.996 0.926

Table 11. Metrics for different frequency of validation epoch
#Classes refers to the total number of output classes obtained after
clustering. K-Means and G-Means lead to overclustering, whereas
using X-Means, the optimal number of clusters are generated lead-
ing to better performance.

E.3. Effect of maximum number of clusters

Tab. 12 shows the results when the maximum number of
clusters that can be generated for every class by X-Means is
varied, along with different values of false negative ratio ¢
for CIFAR10. For ¢ > 0.5, none of the classes are clustered,
and hence we do not include them. From the results, when
the maximum number of clusters are low, MAPLE fails to
capture all the within-class variances, whereas higher val-
ues result in overclustering. With the maximum number of
clusters as 5, MAPLE achieves the best performance.

E.4. Effect of frequency of validation epochs.

Tab. 13 summarizes the metrics for CIFAR10 when the
number of epochs after which the validation and cluster re-
finements are performed is varied. A low value of valida-
tion epochs does not give the network enough time to learn
representations for the new clusters generated. Whereas,
with larger number of epochs, the number of cluster refine-
ments are low. In both these situations, the network does not
identify the optimal clusters. MAPLE gives the best results
when the validation is performed every 10 epochs.

Max. number SVHN CIFAR100
of clusters t | #Classes Accuracy? ECE|l AUROCT AUROCYT

0.1 14 0.9542 0.012 0.996 0.925

3 0.3 10 0.9540 0.014 0.972 0.919

0.5 10 0.9533 0.012 0.958 0.917

0.1 18 0.9534 0.013 0.964 0.918

5 0.3 12 0.9541 0.012 0.996 0.926

0.5 10 0.9535 0.012 0.955 0.915

0.1 18 0.9537 0.013 0.959 0.894

7 0.3 13 0.9545 0.012 0.992 0.921

0.5 10 0.9531 0.013 0.944 0911

0.1 26 0.9519 0.014 0.909 0.863

10 0.3 22 0.9521 0.013 0.918 0.886

0.5 11 0.9534 0.012 0.952 0.908

Table 12. Effect of maximum number of clusters per class
on MAPLES’s performance. A high value of cluster num-
bers causes overclustering whereas a low value does not generate
enough clusters. A value of 5 results in optimal number of clusters
for MAPLE to learn meaningful representations.

SVHN CIFAR100

Validation epochs || #Classes Accuracy? ECE| | AUROCT AUROCYT

5 16 0.895 0.025 0.914 0.876
10 12 0.954 0.012 0.996 0.926
15 12 0.955 0.012 0.987 0.922
20 10 0.953 0.013 0.968 0.917

Table 13. Metrics for different frequency of validation epoch
#Classes refers to the total number of output classes obtained af-
ter clustering. With lower validation epochs, the clustering is too
frequent for the network to learn meaningful representations. At
lower frequency, the number of cluster refinements are not suffi-
cient.

F. Proof of squared Mahalanobis Distance fol-
lowing a x? distribution

In this section, we derive the proof that the squared Ma-
halanobis distance follow a 2 distribution with d’ degrees
of freedom, where d’ is the dimension of the feature vectors
used to calculate MD. A 2 distribution with d’ degrees of
freedom is defined as the distribution of a sum of the squares
of d’ independent standard normal random variables.

The squared Mahalanobis distance of Z and the mean
vector ji of a Multivariate Gaussian distribution is given as

D*=(Z - @i)"'="Y(Z - i) (10)

3. is the covariance matrix, which is symmetric. By
property of matrices, the matrix inverse and it’s square root
are also symmetric. Thus,

D*=(Z - @S %73 (Z — i)

(ztz-n) (shz-p) an

Let W = ¥7% and X = (Z — [i). The whitening
transform is given as Y = WX and W is also called the
Mahalanobis whitening matrix. Eq. 11 can be written as

D*=Y"Y
=Y

p
= v (12)
i=1

(Z — i) ~ N(0,%), and so Y has zero mean. The
covariance of Y is given as

(13)

The covariance of Y is an identity matrix, which means
that the elements from Y are drawn from an independent
standard Gaussian distribution i.e., Y; ~ N(0,1).

From the definition of the X2 distribution, we can infer
that D? follows a 2 distribution with d’ degrees of free-
dom.

