
Improving Replay Sample Selection and Storage for Less Forgetting in
Continual Learning

Daniel Brignac
University of Arizona

Tucson, Arizona
dbrignac@arizona.edu

Niels Lobo
University of Central Florida

Orlando, Florida
niels@cs.ucf.edu

Abhijit Mahalanobis
University of Arizona

Tucson, Arizona
amahalan@arizona.edu

Abstract

Continual learning seeks to enable deep learners to train
on a series of tasks of unknown length without suffering
from the catastrophic forgetting of previous tasks. One ef-
fective solution is replay, which involves storing few previ-
ous experiences in memory and replaying them when learn-
ing the current task. However, there is still room for im-
provement when it comes to selecting the most informative
samples for storage and determining the optimal number of
samples to be stored. This study aims to address these is-
sues with a novel comparison of the commonly used reser-
voir sampling to various alternative population strategies
and providing a novel detailed analysis of how to find the
optimal number of stored samples.

1. Introduction
Deep learning has revolutionized the field of computer

vision, achieving human-like capabilities of image under-

standing and perception. Unlike humans, however, deep

learners consistently struggle to adopt new knowledge

while maintaining performance on previously learned tasks.

This is the problem known as catastrophic forgetting [25]

in which a learner’s performance significantly diminishes

as it acquires knowledge for new tasks. This motivates the

study of continual learning [30, 38] to address the problem

of catastrophic forgetting.

In continual learning, a learner is presented with a se-

quence of tasks of unknown length where the only data

available is that of the current task at hand. As new tasks

arrive, we wish to learn each new task while preserving the

knowledge learned from previous tasks. During inference,

we may be presented with data from any of the previously

learned tasks, thus the retention of previous knowledge is

imperative when adapting to new tasks.

The inference stage primarily comes in three flavors:

task-incremental learning (task-IL), domain-incremental

learning (domain-IL) and class-incremental learning (class-

IL) [39]. Task-IL and domain-IL are generally considered

the easier scenarios as we are either given the task-ID at

test time in task-IL, or we must only solve for the current

task at hand in domain-IL. Class-IL is significantly more

challenging as we must infer for all tasks seen so far with-

out the revealing of a task-ID. Because of this, class-IL has

become a primary focus of recent continual learning works

[3, 27, 5, 36].

Replay [29, 32, 4] is a commonly used approach to rem-

edy the problem of catastrophic forgetting in both class-IL

and task-IL. The concept of replay draws inspiration from

Complementary Learning Systems theory of humans which

posits that recent experiences stored in the hippocampus de-

velop connections to the neocortex that become ingrained

over time to eventually be encoded in long-term memory

[24, 13]. As such, when replay is employed in artificial

learners, a small amount of previously learned data is stored

in memory to then be “replayed” during the training of the

current task to emphasize the previously encoded connec-

tions of the learner and thus avoid forgetting.

When using replay methods, it is important to have a

small canonical set of exemplars stored in memory that ef-

fectively capture the underlying class distributions of the

dataset. Thus, the selection of which samples to store is

a non-trivial task. Previous replay methods rely on reser-

voir sampling [32, 4, 1, 5, 2] to populate memory with past

data. As reservoir sampling is a random sampling method,

this could lead to the storage of redundant and potentially

insignificantly informative data points in memory causing

replay methods to not perform to their maximal capability

as recently demonstrated in [37, 43].

There is also no consensus regarding how many samples
should be stored to be used for replay. Naturally, as we

store more samples in memory, we expect performance to

increase, however, as this number grows, we start to deviate

from the constraints of continual learning where we seek

to store minimal information. There must exist some small

optimal number of samples to be stored to make maximum

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3540

use of replay methods.

In this work we study the two questions which samples
to store, and how many samples should be stored in mem-

ory by comparing the commonly used approach of reser-

voir sampling to three other memory population strategies.

We show through extensive empirical evaluation that reser-

voir sampling leads to greater forgetting when compared

with more strategic population approaches. We additionally

detail two methods to address the question of how many

samples should be stored based on an analysis of signifi-

cant eigenvectors and eigenvalues. We proceed to show that

memory populated according to these two criteria leads to

overall more competitiveness and better performance of all

population strategies.

2. Related Works
Continual learning methods can generally be grouped

into three categories: (i) regularization methods, (ii) ar-

chitectural methods and (iii) replay methods. Regular-

ization methods introduce a new loss term meant to pe-

nalize significant drift from previously learned parameters

[19, 22, 17, 41]. Architectural methods seek to adapt exist-

ing network architectures such that various portions of the

model contain global and/or shared knowledge while others

contain task-specific knowledge [26, 44, 35, 33, 27]. His-

torically, regularization methods and architectural methods

underperform when compared directly to replay methods

further motivating the study of and improvements to replay.

In replay methods, we are allowed to store some small

subset of data in a memory buffer and selectively “replay”

samples from this buffer when training on the current task to

maintain previous task performance. Earlier works include

[23] and [10], both of which use the memory buffer as a

constraint on gradient updates to ensure that loss remains

low on the buffer samples. These gradient-based methods

for replay in general show poor performance when com-

pared to experience replay methods [29, 32, 4, 1, 9, 7, 5].

In experience replay, it is common practice to store any of

the raw data sample, the label, the logits, or a combination

of all three. All the the aforementioned experience replay

methods select the samples to be stored by some random

sampling method, such as reservoir sampling or uniform

sampling, leading to the potential storage of insignificant

data.

A number of previous works suggest to either popu-

late the memory buffer with some fixed arbitrary number

of samples as new classes are encountered or to empiri-

cally find optimal buffer size for a desired task performance

[1, 31]. These methods for expanding the buffer are rooted

in heuristics and thus not necessarily optimal further moti-

vating the study for optimal growth of the buffer for learning

new tasks.

3. Methodology

Algorithm 1 Memory Buffer Population

Input: T , Dt,M, buffer size (if not dynamic), populate ∈
{reservoir, herding, GSS, IPM}, training-strategy

M← ∅
for t in T do

for minibatch in Dt do
ifM = ∅ then

train(Dt) according to training-strategy

if populate ∈ {resrvoir, GSS}, then
M← populate(minibatch, buffer size)

else
train(Dt ∪M) according to training-strategy

if populate ∈ {resrvoir, GSS}, then
M← populate(minibatch, buffer size)

if populate ∈ {herding, IPM}, then
M← populate(Dt, buffer size)

Consider a sequence of T tasks where each task has

an associated dataset Dt = {(xt
i, y

t
i)} for each t ∈

{1, 2, ..., T } and i = 1, ..., Nt where xt
i denotes the ith

sample of the tth task, yti its associated ground truth la-

bel, and Nt the number of samples in task t. We assume

each task t contains a unique, non-overlapping set of classes

drawn from an i.i.d distribution. In our continual learning

formulation, we seek to sequentially learn each Dt in an

offline setting while maintaining performance on every Dk

for k < t by employing a memory bufferM which is popu-

lated according to a specific population strategy. For t = 1,

we train only on Dt and for t > 1, we train on Dt ∪M.

Since we are primarily concerned with strategic buffer

population, the training method in which we perform con-

tinual learning is agnostic of the memory buffer population.

Thus, we can use any training strategy along with any buffer

population strategy studied herein. We give an overview of

each population strategy studied and then present a novel

scheme to identify how many samples per class should be

stored inM.

We make a note of the distinction between fixed mem-

ory buffers and dynamic memory buffers. A fixed memory

buffer refers to a buffer M that is fixed in the amount of

data it can hold (e.g., a fixed buffer size of 200 can contain a

maximum of 200 data samples) while a dynamic buffer may

grow in size as new classes are encountered. We denote the

size of the fixed buffer as |M|. Traditionally, fixed memory

buffers are used whenever replay methods are employed. To

the best of our knowledge, we are the first to consider dy-

namic memory buffers as discussed in Section 3.5. When

the buffer is not described to be either fixed or dynamic,

the method is agnostic of buffer type. An overview of our

3541

described approach is given in Algorithm 1.

3.1. Reservoir Sampling

In reservoir sampling [40], we are presented with a

stream of data in which we randomly sample from the

stream and store each sample inM. If a sample is selected

to be stored when M is saturated, we then randomly re-

place a sample inM with the current selected sample to be

stored.

In practice, reservoir sampling tends to favor the storage

of samples from earlier encountered tasks. This causes the

minimal storage of samples from downstream tasks and an

overall unbalanced fixed buffer leading to greater forgetting,

particularly when the fixed buffer size is small.

In addition to favoring the storage of earlier encountered

task data, reservoir sampling has no mechanism to differ-

entiate between whether a selected sample to be stored is

informative or redundant. This leads to the potential stor-

age of insignificant data which in turn can diminish the

network’s previously learned decision boundaries [3]. This

motivates the study of memory buffer population strategies

that can always store the next most informative sample and

mitigate forgetting.

3.2. The Herding Algorithm

A natural first choice of substitute to reservoir sampling

is the herding algorithm as proposed in iCaRL [29] which

is an extension of Welling’s herding in [42]. Herding seeks

to store samples that best represent the sample’s class mean

in feature space. In this sense, the herding algorithm can

be thought of as a greedy mean preserving scheme as each

selected sample is the closest to its learned class mean.

Formally, for a learned class mean μc in D-dimensional

feature space and a mapping from image space to feature

space given by φ : xt,c
i → R

D where c denotes the class

label of image xt
i, herding seeks to find the sample xt,c

i to

add to the class exemplar set Pc in memory bufferM that

minimizes the distance to μc as

argmin
xt,c
i

∣∣∣∣∣∣

∣∣∣∣∣∣
μc −

1

K

⎛
⎝φ(xt,c

i) +
K−1∑
j=1

φ(pj)

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣
2

(1)

where K denotes the number of samples to be stored for

class c and pj denotes a sample j belonging to Pc.

Because herding relies on the well learned features for

each class to store samples, herding should be performed at

the conclusion of each task. This makes herding most suit-

able for the offline continual learning scenario in which we

are allowed multiple iterations throughDt before moving to

the next subsequent task.

3.3. Gradient Sample Selection

Gradient sample selection (GSS) is taken from [2] where

the objective is to optimize the loss on current task data

while maintaining minimal loss on previous task data. To

ensure that loss remains low on previous tasks, GSS seeks

to maximize the diversity of the buffer M by selecting

samples whose gradient angle is maximal compared to all

other samples currently stored (i.e., maximizing gradient

direction variance). This formulation involves solving a

quadratic integer programming of polynomial complexity

w.r.t. the buffer size thus, a greedy formulation of GSS is

used instead.

In the greedy method, GSS maintains a score ri for each

sample i in the buffer based on the maximal cosine similar-

ity of the current sample with the other samples in the buffer

given by

ri = max
i

〈gi, G〉
||gi||2||G||2

(2)

where gi and G denote the gradients of the current sample i
and the set of samples stored inM respectively.

While GSS aims to select and store samples based on

maintaining maximum variance of gradient direction, there

is still a randomness component in determining samples to

potentially be replaced. When a sample is selected and

deemed appropriate for replacement, there is no guarantee

that this is a least informative sample, as determined by

GSS, and could thus potentially lead to greater forgetting.

In addition, GSS has no mechanism for class balancing as

samples are randomly added and replaced which can further

hinder performance.

3.4. Iterative Projection and Matching

Iterative projection and matching (IPM) [16] is drawn

from active learning in which we seek to find the most in-

formative data points for training. Here, we adopt IPM to

select the most informative data points for storage in M
to address the shortcomings with reservoir sampling while

also maintaining a balanced buffer similar to the strategy

used in herding.

Let Ac ∈ R
Nc×D denote the matrix of features

φ(xt
1), ..., φ(x

t
Nc

) ∈ R
D where Nc denotes the number

of samples in class c, D the dimension of features, and

φ : R
H×W×C → R

D a mapping from image space to

feature space (i.e., the learned network). The nth row in

Ac is formed by φ(xt
nc
)T . We seek to reduce Ac to some

AR ∈ R
K×D where K is the number of samples to be

stored from class c.
Let T ⊂ {1, ..., Nc} with |T | = K be the set of selected

samples. Then, we can project the rows of Ac onto the span

of the selected rows indexed by T . We denote this operation

as ωT (Ac). As done in [11], we can now cast the replay

3542

sample selection problem as the optimization problem

argmin
|T |=K

||Ac − ωT (Ac)||2F (3)

where || · ||F is the Frobenius norm. This problem is NP-

Hard however as we must search all subsets T over Ac [46].

Thus, we use the IPM [16] algorithm to approximate 3.

We can express ωT (Ac) as a rank-K factorization UV T

where U ∈ R
Nc×K and V T ∈ R

K×D and modify 3 by

recasting it as two sub-problems [16, 15]

(u, v) = argmin
u,v

||Ac − uvT ||2F s.t. ||v|| = 1 (4)

m(1) = argmax
m
|vTρ| (5)

where ρ = φ(xt
nc
)/||φ(xt

nc
)||2, m(1) is the index of the first

selected data point, and (xt
i, y

t
i)m(1) is the selected point to

be stored in memory.

IPM also relies on the well learned features of each class

for best performance in sample selection and thus must be

performed at the conclusion of a task. This also makes IPM

most suitable for the offline continual learning scenario.

Similar to herding, we again store |M|/s samples per

class for a balanced and saturated buffer and preserve the

most informative samples, as determined by IPM, by delet-

ing the most recently added samples to each class when new

data is encountered and must be stored to the fixed buffer.

3.5. Dynamic Memory Buffers

Traditionally, when replay methods are used, it is com-

mon for the buffer size to be fixed [32, 5, 4]. This fixed

buffer size does not take into account the underlying com-

plexity of the data and more specifically, each class within

the data. To account for such dataset specific complexi-

ties, we allow the buffer to be dynamic, where we add K
samples of class c to the buffer using two algorithm ag-

nostic 1 methods we refer to as intracluster variance and

Kaiser criterion described below. This idea is motivated by

providing a guideline for determining the number of sam-

ples needed to represent the data manifold and the different

classes within it as opposed to arbitrarily choosing a fixed

buffer size.

Intracluster Variance. We assume that the number

of images necessary for replay depends on the complexity

of the underlying manifold of the data. It is well known

that relations between the data points on the high dimen-

sional manifold are preserved when the data is embedded

into a lower dimension via norm preserving transformations

[6, 12]. For example, the dominant eigenvectors (or princi-

pal components) of the space in which the images lie is an

1Algorithm agnostic refers to each population strategy as each strategy

will choose different subsets of samples bounded by each studied dynamic

buffer criterion.

(a) (b)

Figure 1: (a) Average intracluster variance for varying num-

ber of clusters. (b) Average change in intracluster variance

for varying number of clusters.

example of one such transformation. In fact, the number

of eigenvectors needed to represent the data is an indication

of the complexity of the manifold, and therefore provides

some indication of the number of images required for re-

play. Another method for estimating the complexity of the

manifold is by forming clusters in the data and by observ-

ing the change in the average intracluster variance for each

cluster.

Assume that the data is grouped into K clusters, each

with Nj images. Specifically, let xi,j for 1 ≤ i ≤ Nj ,

1 ≤ j ≤ K represent the ith training image of the jth

cluster. The variance of any given cluster is given by

σ2
j = 1

Nj

∑Nj

i=1(xi,j − μj) where μj = 1
Nj

∑Nj

i=1 xi,j is

the mean of the respective cluster. The average variance of

all clusters is then simply σ2
K = 1

K

∑K
j=1 σ

2
j . The premise

is that each cluster represents a local region on the manifold

where the data is concentrated. As K increases, each clus-

ter becomes more and more compact and their variance σ2
j

for 1 ≤ j ≤ K decreases. This causes the average vari-

ance σ2
K to also decrease as shown in Figure 1a using the

CIFAR10, CIFAR100 and Tiny-ImageNet datasets [20, 21]

and the k-means clustering algorithm. In fact, the change

in variance ΔK = σ2
K+1 − σ2

K also tapers asymptotically

as K is allowed to increase. Figure 1b shows this behavior

and the rate at which the average variance decreases.

We observe that increasing the number of clusters be-

yond the knee of the curve, 100 for both CIFAR10 and CI-

FAR100 and 160 for Tiny-ImageNet, provides diminishing

gains in terms of decreasing the variance of each cluster.

We assume that each cluster is as compact as possible, and

the cluster mean is a good representation of the data that

lies within the cluster. Therefore, we choose the number of

clusters where the knee of the curve (found using the Knee-

dle algorithm [34]) in 1a and 1b occur as an indication of

the number of representative samples that are required to

adequately represent the data manifold.

With this estimate of the number of samples needed for

proper representation of the underlying data manifold, we

populate the buffer with K samples per class. This allows

3543

Dataset Mean Min. Max
CIFAR10 248± 27 215 290

CIFAR100 50± 8 28 69

TinyImageNet 59± 9 41 94

Table 1: Kaiser Criterion stats for number of samples re-

quired for each class.

for the buffer to maintain its class balanced properly and

avoid biased sampling from the buffer when training.

When using instracluster variance, one must have access

to the entire dataset before training begins. This can be seen

as unfair in the context of continual learning since in real

world scenarios it would be impossible to view the entire

dataset beforehand. We address this concern by using the

Kaiser criterion below.

Kaiser Criterion. Instead of finding a global number of

samples to be kept for each class as done in intracluster vari-

ance, we detail an additional method based on the number

of most useful eigenvectors for each class.

Assume that xi,c is a d dimensional column vector that

represents the ith training image of class c for 1 ≤ i ≤
Nc. For each class, we define the data matrix Ac =
[x1,c, ...,x1,Nc], and compute the eigenvalues and eigen-

vectors of AcA
T
c denoted as λk,c and φk,c, respectively,

for k = 1, ..., d. Loosely speaking, the rank of this matrix

is a proxy for the number of independent images required

to represent the dataset and can thus be viewed as a reduced

version of PCA. This in turn is related to the non-singular

eigenvalues. Therefore, to determine the minimum number

of images required to represent the data, we count the num-

ber of non-trivial eigenvalues (ignoring the ones that are

zero or close to it). The Kaiser criterion [18] is a common

method for selecting the useful eigenvectors which states

that only those with eigenvalues greater than 1.0 should be

retained for representing the data.

We note that this method of using raw images to form the

data matrix is better suited than using network features, as

that would always require the network to accurately classify

the entire data, which manot not occur if a particular class

is difficult for the network to classify.

We report the statistics of the Kaiser criterion for each

dataset in Table 1. The benefits of using a dynamic buffer

with the Kaiser criterion allow for classes with higher com-

plexity to have more representation in the buffer, which ul-

timately leads to higher probability of sampling these more

complex classes from the buffer and further mitigate forget-

ting.

Additionally, the Kaiser criterion can be used in an of-

fline manner before the training of each task as the determi-

nation for the number of samples to be stored for each class

depends only on a specific class’s data matrix. Thus, when

new task data is available, we can compute the Kaiser cri-

terion for each individual class by partitioning the task data

matrix into class data matrices.

4. Experiments
We investigate the performance of each population strat-

egy described above by comparing each scheme under a

commonly used suite of replay-based training methods. We

test using both a fixed memory buffer with commonly used

buffer sizes and the newly proposed dynamic buffer scheme

described in Section 3.5. Our primary focus is on the of-

fline class-IL setting. We report offline task-IL results in

the supplementary material.

Datasets. We benchmark each population strategy on

three commonly used continual learning datasets: split-

CIFAR10, split-CIFAR100 and split-Tiny-ImageNet [20,

45, 21]. In split-CIFAR10, the CIFAR10 dataset is split

into 5 disjoint tasks where each task contains 2 classes.

Split-CIFAR100 splits CIFAR100 into 10 disjoint tasks of

10 classes each. Split-Tiny-ImageNet splits Tiny-ImageNet

into 10 disjoint tasks of 20 classes each. We maintain the

same order in which classes are split across all tested popu-

lation strategies and methods.

Compared Methods. Each population strategy studied

herein is tested against four commonly compared methods

in continual learning literature, namely ER [32], DER [4],

GDumb [28], and ER-ACE [5]. Each of the aforementioned

methods was state of the art for its time with ER-ACE be-

ing the most recently proposed state of the art method for

bench-marking of current replay-based continual learning

research.

All compared methods use some form of experience re-

play. For each t > 1, all methods train on the union of task

data and data stored in memory as Dt ∪M, except in the

case of GDumb where we only populate M in a balanced

manner by performing one iteration through each Dt and

proceed to train solely onM at the conclusion of the final

task.

Configuration and Hyperparameters. We test each

of the buffer population strategies studied herein with the

above described methods using the open-source codebase,

Mammoth, first introduced in [4]. We use the best configu-

ration for each compared training method when testing per-

formance of each population strategy with a ResNet18 [14]

backbone for fair comparisons. Exact hyperparmeter con-

figuration can be found in the supplementary material.

Metrics. We judge performance with the commonly

used metrics of final average accuracy (FAA) and final for-

getting (FF) given by

FAA =
1

T

T∑
j=1

aTj (6)

3544

Split-CIFAR10 Split-CIFAR100 Split-TinyImageNet

Fixed
Buffer

Size
Method

Population
Strategy Class-IL Class-IL Class-IL

FAA FF FAA FF FAA FF

200

ER

Reservoir 48.39± 2.01 60.39± 2.26 15.35± 0.86 81.20± 0.62 8.40± 0.16 76.88± 0.18
Herding 52.32± 0.77 55.17± 0.77 15.94± 0.46 79.60± 0.11 8.81± 0.05 76.61± 0.62

GSS 41.45± 4.65 68.92± 5.57 11.87± 0.05 84.34± 0.41 - -
IPM 48.68± 1.11 59.44± 1.32 15.0± 0.26 80.67± 0.31 8.55± 0.09 77.13± 0.44

DER

Reservoir 61.17± 1.08 41.27± 0.53 24.38± 1.46 70.07± 1.76 11.15± 0.46 74.22± 0.65
Herding 30.01± 1.87 83.12± 2.01 9.99± 0.23 87.73± 0.50 5.7± 1.06 71.92± 1.87

GSS 38.04± 6.09 71.95± 7.60 12.29± 1.70 78.05± 0.53 - -
IPM 60.48± 0.34 30.12± 1.03 33.47± 1.86 42.32± 1.71 19.36± 1.06 45.46± 0.63

GDumb

Reservoir 29.26± 1.18 N/A 4.63± 0.49 N/A 2.13± 0.28 N/A
Herding 32.16± 1.51 N/A 7.02± 0.51 N/A 3.45± 0.30 N/A

GSS 28.35± 1.19 N/A 4.81± 0.29 N/A - N/A
IPM 31.60± 1.83 N/A 6.26± 0.14 N/A 2.67± 0.36 N/A

ER-ACE

Reservoir 63.32± 2.40 18.62± 2.24 28.78± 0.66 44.40± 1.13 12.82± 0.11 48.91± 1.65
Herding 61.66± 0.35 33.04± 3.37 29.64± 0.29 62.08± 0.27 15.75± 0.09 64.86± 1.45

GSS 26.25± 9.53 1.02± 1.01 7.525± 0.13 8.93± 0.75 - -
IPM 49.41± 0.56 16.56± 0.09 28.36± 0.28 27.17± 0.23 15.02± 0.53 29.16± 0.35

500

ER

Reservoir 61.07± 0.64 44.27± 1.10 21.37± 1.27 73.55± 0.77 10.19± 0.20 75.34± 0.16
Herding 64.09± 0.73 39.26± 1.39 24.25± 0.70 70.46± 0.57 10.38± 0.16 75.50± 0.35

GSS 61.07± 0.64 44.27± 1.10 21.37± 1.27 73.55± 0.77 - -
IPM 61.08± 0.46 44.33± 0.68 22.06± 0.48 72.80± 0.33 10.20± 0.17 74.98± 0.18

DER

Reservoir 70.07± 0.95 29.5± 1.80 34.53± 1.68 56.30± 1.52 17.15± 1.40 66.91± 1.81
Herding 48.20± 2.94 54.64± 7.93 13.11± 0.51 84.04± 0.69 5.32± 0.78 67.13± 2.02

GSS 45.94± 6.22 59.09± 9.16 16.64± 1.69 72.323± 5.59 - -
IPM 65.5± 2.68 23.55± 5.19 40.51± 0.43 28.97± 1.06 20.49± 0.86 31.54± 2.61

GDumb

Reservoir 43.35± 0.55 N/A 9.85± 0.45 N/A 3.6± 0.004 N/A
Herding 42.85± 0.83 N/A 11.45± 0.42 N/A 4.83± 0.19 N/A

GSS 37.39± 1.21 N/A 6.2± 0.29 N/A - N/A
IPM 42.03± 3.05 N/A 9.02± 0.67 N/A 3.27± 0.40 N/A

ER-ACE

Reservoir 72.15± 0.38 13.18± 1.26 37.60± 0.15 38.17± 1.16 20.99± 0.52 46.60± 0.55
Herding 69.75± 1.90 23.00± 4.32 37.54± 0.44 53.08± 0.47 20.3± 0.36 60.48± 0.06

GSS 19.54± 0.09 0.22± 0.11 8.34± 0.09 7.73± 0.62 - -
IPM 54.43± 0.99 14.57± 1.17 35.01± 0.14 25.50± 0.91 18.5± 0.42 34.41± 8.08

5120

ER

Reservoir 83.18± 1.82 14.33± 1.65 50.71± 0.27 38.92± 0.44 27.36± 0.03 54.46± 0.69
Herding 85.56± 0.34 12.22± 0.29 52.93± 1.55 35.21± 0.93 28.43± 0.51 52.12± 0.51

GSS 60.35± 7.06 43.74± 8.69 17.52± 0.22 78.74± 2.28 - -
IPM 85.19± 0.63 10.97± 0.91 50.75± 1.16 36.96± 0.60 27.39± 0.23 53.43± 0.12

DER

Reservoir 83.35± 0.72 11.27± 0.96 57.22± 0.24 22.86± 1.51 37.09± 0.50 31.91± 1.05
Herding 76.21± 1.08 25.26± 1.63 52.53± 0.24 38.70± 0.38 5.09± 2.59 38.44± 5.37

GSS 45.86± 16.34 54.54± 21.02 56.32± 1.10 45.05± 7.04 - -
IPM 67.75± 0.52 6.25± 1.21 57.30± 0.51 8.85± 0.52 34.33± 0.93 7.27± 0.98

GDumb

Reservoir 79.89± 1.29 N/A 42.52± 0.22 N/A 21.18± 0.06 N/A
Herding 77.16± 0.74 N/A 36.80± 0.57 N/A 17.38± 0.40 N/A

GSS 70.27± 2.29 N/A 19.64± 1.40 N/A - N/A
IPM 79.58± 0.93 N/A 42.31± 0.18 N/A 20.99± 0.72 N/A

ER-ACE

Reservoir 83.67± 0.26 4.93± 0.30 57.01± 0.27 21.02± 0.22 38.68± 0.37 29.41± 0.74
Herding 85.02± 0.86 11.83± 2.08 58.52± 0.23 26.77± 0.19 34.66± 0.99 41.91± 1.08

GSS 19.73± 0.01 0.05± 0.02 9.20± 0.04 4.31± 0.71 - -
IPM 66.69± 0.46 6.29± 0.38 53.91± 0.43 14.69± 0.46 36.28± 0.19 18.99± 0.27

Table 2: Population strategy results tested with various replay based methods with traditionally used fixed size buffer, aver-

aged across three runs. We do not report forgetting in GDumb experiments due to the nature of GDumb only training on the

fully populated, balanced buffer. Results for TinyImageNet are not reported for GSS due to intractable train times.

FF =
1

T − 1

T −1∑
j=1

fTj s.t. fTj = max
l∈{1,...,T −1}

all − aTj (7)

where aTj and fTj are interpreted as the accuracy and forget-

ting of task j and the end of training on T tasks respectively

[8]. When judging performance, we seek maximal FAA and

minimal FF.

4.1. Results

Fixed Buffer. Results for commonly tested fixed buffer

sizes are in Table 2. We first observe that in nearly all cases,

reservoir sampling leads to greater forgetting when com-

pared to the other population strategies, specifically com-

pared to herding and IPM. We also observe in several tri-

als, that reservoir sampling also underperforms in FAA com-

pared to herding and IPM. This behavior can be attributed

to both herding and IPM selecting the best samples from the

learned feature space at the conclusion of each task whereas

reservoir sampling simply selects and replaces samples at

random.

Another reason for greater forgetting in reservoir sam-

3545

(a) (b) (c)

(d) (e) (f)

Figure 2: A comparison of the reservoir, herding, and IPM population strategies paired with DER with a fixed buffer size of

500. Top row corresponds to Split-CIFAR10 performance and bottom row is Split-CIFAR100. The columns correspond as

follows: left uses reservoir sampling, center uses herding, and right uses IPM. We do not report GSS results due to all around

inferior performance.

Fixed
Buffer

Size

Percentage of Samples
Belonging to Each Task

(t1/t2/t3/t4/t5)

200 23.5% / 19.0% / 16.0% / 22.0% / 19.5%

500 23.5% / 15.0% / 20.5% / 22.5% / 18.5%

5120 20.0% / 18.5% / 19.53% / 20.43% / 21.54%

Table 3: Percentage of samples in buffer belonging to each

task at the end of training populated via reservoir sampling.

pling is the unbalanced fixed buffers incurred by the ran-

dom sampling and replacement of data in the buffer. We

show the percentage of task specific data of the final fixed

buffer when populated via reservoir sampling in Table 3.

We can clearly see that, for smaller buffer sizes, there is a

bias to the storage of earlier task data compared to more re-

cently encountered tasks. In comparison, both herding and

IPM maintain a balanced fixed buffer at all times leading to

equal probability of sampling any task data for batch train-

ing. Naturally, as the buffer size increases, the unbalanced

nature of the buffer populated with reservoir sampling be-

comes less severe and we see the reservoir population strat-

egy become more competitive with herding and IPM in both

FAA and FF.

We pay particular interest to the scenarios where IPM

yields superior FF yet inferior FAA. To analyze why this

happens in certain cases, we plot each population strategy

used in conjunction with DER for both split-CIFAR10 and

split-CIFAR100 in Figure 2 (we omit GSS figures due to all

around inferior performance). We observe the interesting

behavior where for each t > 1, IPM initially has poor cur-

rent task performance but then proceeds to make astonish-

ing recoveries for each subsequent task. This indicates that

IPM tends to prioritize performance on the buffer instead

of the current task at hand which in turn leads to lesser for-

getting. An interesting observation to make is that this be-

havior holds only for DER and ER-ACE (see supplementary

material for additional figures). Both DER and ER-ACE are

training schemes that directly optimize on logits indicating

that IPM is best suited for these types of training schemes.

We take note of the relatively low forgetting of the GSS

population strategy when tested with ER-ACE. To inves-

tigate why GSS achieves such low forgetting, we plot the

accuracy of each previously learned task as new tasks are

learned in Figure 4. From this, we can infer that GSS’s

low forgetting capabilities when coupled with ER-ACE is

caused by the inferior performance on subsequent tasks af-

ter t = 1 and thus, has nearly nothing to forget. We note

the strong performance of t = 1 throughout the model’s

life, however. This is due to GSS first populating the buffer

with t = 1 data and thereafter, hardly ever finding a sam-

3546

(a) (b) (c)

Figure 3: Final forgetting performance with various final buffer sizes tested with Split-CIFAR100. Final buffer sizes with a

(D) indicate dynamic final size. In order from left to right are results from reservoir, herding, and IPM respectively.

(a) (b)

Figure 4: ER-ACE using the GSS population strategy for a

fixed buffer with buffer size 200. (a) Split-CIFAR10 results.

(b) Split-CIFAR100 results.

ple with an appropriate score to replace other samples in

the buffer as described in Section 3.3. Because of this na-

ture, we should not accept that GSS is the best forgetting

performer with coupled with ER-ACE. We still observe that

reservoir sampling mostly does not compare in forgetting to

other strategies when ignoring GSS results.

We observe the all around competitiveness of each pop-

ulation strategy when tested with GDumb (note, we do not

report FF for GDumb as there is no forgetting to take place

since GDumb trains solely on the buffer). Because GDumb

only uses each observed task to populate the memory buffer,

it makes sense that herding and IPM perform roughly the

same with reservoir sampling since herding and IPM de-

pend on the well learned features for population. Similarly,

GSS depends on the gradients of each sample, but because

GDumb takes no gradient steps until the conclusion of the

final observed task, GSS has no proper way to score sam-

ples for replacement or not.

Lastly, we make the note that while no single method

consistently outperforms any other, we demonstrate that in

many situations, reservoir sampling yields inferior final for-

getting performance. This suggests that when using replay-

based methods in continual learning solutions, reservoir

sampling should not be blindly used as the buffer popula-

tion strategy of choice, and one should instead pay careful

attention to selection of buffer population algorithm for the

best performance.

Dynamic Buffer. We next perform experiments using

dynamic buffers using the two criteria as described in Sec-

tion 3.5 and provide tabulated results for class-IL and task-

IL scenarios in the supplementary material. We omit GSS

results using a dynamic buffer due to poor performance with

paired with any of the fixed buffer schemes.

Overall, we observe much of the same trends as seen

with fixed buffers. However, we notice that dynamic buffers

seem to benefit most when paired with reservoir sampling

and IPM in Figure 3 (FAA and FF for all datasets are

reported in supplementary material). Because dynamic

buffers find the optimal number of samples for storage, we

expect the change in FF to be lower when we approach that

number, which we observe in Figure 3. In general we ob-

serve the Kaiser criterion performing better than intraclus-

ter variance. This can be attributed to the ability to adapt

to classs complexity for the Kaiser criterion, particularly as

the number of classes increases in a dataset.

We note the curious performance of DER when coupled

with dynamic replay and give a brief conjecture for why this

may be in the supplemental material.

5. Conclusions
In this work, we compare the commonly used approach

of reservoir sampling for memory buffer population in re-

play methods to other greedy sampling methods to answer

the question of which samples should be stored in memory.

We show that reservoir sampling tends to lead to higher for-

getting when compared to methods that use strategic popu-

lation strategies to select the best data points for storage. We

then address the question of how many samples should be
stored by the formulation of a dynamic buffer populated ac-

cording to two criteria based on a dataset’s eigenvectors and

eigenvalues. We show that dynamic buffers lead to more

competitive performance for all population strategies when

3547

compared to the arbitrary fixed buffer sizes commonly used

in replay methods.

References
[1] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-

rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-

Caccia. Online continual learning with maximal interfered

retrieval. In Advances in Neural Information Processing Sys-
tems 32, pages 11849–11860. Curran Associates, Inc., 2019.

1, 2
[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-

gio. Gradient based sample selection for online continual

learning. Advances in neural information processing sys-
tems, 32, 2019. 1, 3

[3] Lorenzo Bonicelli, Matteo Boschini, Angelo Porrello, Con-

cetto Spampinato, and Simone Calderara. On the effec-

tiveness of lipschitz-driven rehearsal in continual learning.

In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and

Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 1, 3

[4] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide

Abati, and Simone Calderara. Dark experience for gen-

eral continual learning: a strong, simple baseline. Advances
in neural information processing systems, 33:15920–15930,

2020. 1, 2, 4, 5
[5] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-

laars, Joelle Pineau, and Eugene Belilovsky. New insights

on reducing abrupt representation change in online continual

learning. In International Conference on Learning Repre-
sentations, 2022. 1, 2, 4, 5

[6] Lawrence Cayton. Algorithms for manifold learning. Univ.
of California at San Diego Tech. Rep, 12(1-17):1, 2005. 4

[7] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Con-

trastive continual learning. In Proceedings of the IEEE/CVF
International conference on computer vision, pages 9516–

9525, 2021. 2
[8] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-

than, and Philip HS Torr. Riemannian walk for incremen-

tal learning: Understanding forgetting and intransigence. In

Proceedings of the European conference on computer vision
(ECCV), pages 532–547, 2018. 6

[9] Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip

Torr, and David Lopez-Paz. Using hindsight to anchor past

knowledge in continual learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages

6993–7001, 2021. 2
[10] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

GEM. In International Conference on Learning Representa-
tions, 2019. 2

[11] Ehsan Elhamifar, Guillermo Sapiro, and René Vidal. See all

by looking at a few: Sparse modeling for finding representa-

tive objects. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1600–1607, 2012. 3

[12] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan.

Testing the manifold hypothesis. Journal of the American
Mathematical Society, 29(4):983–1049, 2016. 4

[13] Tyler L Hayes, Giri P Krishnan, Maxim Bazhenov, Hava T

Siegelmann, Terrence J Sejnowski, and Christopher Kanan.

Replay in deep learning: Current approaches and missing bi-

ological elements. Neural computation, 33(11):2908–2950,

2021. 1
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[15] Mohsen Joneidi, Saeed Vahidian, Ashkan Esmaeili, Weijia

Wang, Nazanin Rahnavard, Bill Lin, and Mubarak Shah. Se-

lect to better learn: Fast and accurate deep learning using

data selection from nonlinear manifolds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 4

[16] Mohsen Joneidi, Alireza Zaeemzadeh, Nazanin Rahnavard,

and Mubarak Shah. Iterative projection and matching: Find-

ing structure-preserving representatives and its application

to computer vision. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5409–

5418, 2019. 3, 4
[17] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.

Less-forgetful learning for domain expansion in deep neural

networks. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 32, 2018. 2

[18] Henry F Kaiser. The application of electronic computers

to factor analysis. Educational and psychological measure-
ment, 20(1):141–151, 1960. 5

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the National Academy of Sci-
ences, 114(13):3521–3526, 2017. 2

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 4, 5
[21] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition

challenge. 2015. 4, 5
[22] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935–2947, 2017. 2

[23] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. Advances in Neural
Information Processing Systems, 30, 2017. 2

[24] James L McClelland, Bruce L McNaughton, and Randall C

O’Reilly. Why there are complementary learning systems in

the hippocampus and neocortex: insights from the successes

and failures of connectionist models of learning and memory.

Psychological review, 102(3):419, 1995. 1
[25] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation, vol-

ume 24, pages 109–165. Elsevier, 1989. 1
[26] Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and

Lawrence Carin. Continual learning using a bayesian non-

parametric dictionary of weight factors. In International
Conference on Artificial Intelligence and Statistics, pages

100–108. PMLR, 2021. 2
[27] Quang Pham, Chenghao Liu, and Steven HOI. Dualnet:

Continual learning, fast and slow. In A. Beygelzimer, Y.

3548

Dauphin, P. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, 2021. 1,

2
[28] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.

Gdumb: A simple approach that questions our progress in

continual learning. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pages 524–540. Springer, 2020. 5

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classifier

and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages

2001–2010, 2017. 1, 2, 3
[30] Mark B Ring. Child: A first step towards continual learning.

In Learning to learn, pages 261–292. Springer, 1998. 1
[31] Anthony V. Robins. Catastrophic forgetting, rehearsal and

pseudorehearsal. Connect. Sci., 7:123–146, 1995. 2
[32] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lil-

licrap, and Gregory Wayne. Experience replay for continual

learning. Advances in Neural Information Processing Sys-
tems, 32, 2019. 1, 2, 4, 5

[33] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 2
[34] Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath

Raghavan. Finding a ”kneedle” in a haystack: Detecting

knee points in system behavior. In 2011 31st International
Conference on Distributed Computing Systems Workshops,

pages 166–171, 2011. 4
[35] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,

Lawrence Carin, and Piyush Rai. Calibrating cnns for life-

long learning. Advances in Neural Information Processing
Systems, 33:15579–15590, 2020. 2

[36] Qing Sun, Fan Lyu, Fanhua Shang, Wei Feng, and Liang

Wan. Exploring example influence in continual learning.

In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and

Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 1

[37] Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li,

and Michalis Titsias. Information-theoretic online memory

selection for continual learning. In International Conference
on Learning Representations, 2022. 1

[38] Sebastian Thrun and Tom M Mitchell. Lifelong robot learn-

ing. Robotics and autonomous systems, 15(1-2):25–46,

1995. 1
[39] Gido M Van de Ven and Andreas S Tolias. Three scenar-

ios for continual learning. arXiv preprint arXiv:1904.07734,

2019. 1
[40] Jeffrey S Vitter. Random sampling with a reservoir. ACM

Transactions on Mathematical Software (TOMS), 11(1):37–

57, 1985. 3
[41] Johannes von Oswald, Christian Henning, Benjamin F.

Grewe, and João Sacramento. Continual learning with hy-

pernetworks. In International Conference on Learning Rep-
resentations, 2020. 2

[42] Max Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 1121–1128, 2009. 3

[43] Jaehong Yoon, Divyam Madaan, Eunho Yang, and Sung Ju

Hwang. Online coreset selection for rehearsal-based contin-

ual learning. In International Conference on Learning Rep-
resentations, 2022. 1

[44] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju

Hwang. Lifelong learning with dynamically expandable net-

works. In International Conference on Learning Represen-
tations, 2018. 2

[45] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In International
Conference on Machine Learning, pages 3987–3995. PMLR,

2017. 5
[46] A. Çivril. Column subset selection problem is ug-hard. Jour-

nal of Computer and System Sciences, 80(4):849–859, 2014.

4

3549

