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Abstract

Test time domain adaptation has come to the forefront
as a challenging scenario in recent times. Although sin-
gle domain test-time adaptation has been well studied and
shown impressive performance, this can be limiting when
the model is deployed in a dynamic test environment. We
explore this continual domain test time adaptation problem
here. Specifically, we question if we can translate the ef-
fectiveness of single domain adaptation methods to contin-
uous test-time adaptation scenario. We take a step towards
bridging the gap between these two settings by propos-
ing a domain shift detection mechanism and hence allow-
ing us to employ the current test-time adaptation methods
even in a continual setting. We propose to use the given
source domain trained model to continually measure the
similarity between the feature representations of the con-
secutive batches. A domain shift is detected when this mea-
sure crosses a certain threshold, which we use as a trig-
ger to reset the model back to source and continue test-time
adaptation. We demonstrate the effectiveness of our method
by performing experiments across datasets, batch sizes and
different single domain test-time adaptation baselines.

1. Introduction
The ability to continually adapt models in real-time is be-

coming increasingly important in today’s fast-paced techno-

logical landscape. Research in deep learning [7, 17, 9, 5, 12,

22] broadly operates under a stringent assumption that the

training and testing data come from the same distribution.

This assumption can be problematic when there is a sig-

nificant difference between the distribution of the training

data and the distribution of the testing data, a phenomenon

known as a domain shift. This can result in reduced ac-

curacy and performance of the model, as it has not been

trained on data from the testing distribution. To mitigate this

vulnerability, various domain adaptation techniques have

been developed to make the models more robust to such

shifts. These techniques aim to align the distributions of the

training and testing data.

Test-time adaptation (TTA) is a critical area of research

aimed at addressing distribution shifts between the training

and testing data. Current TTA methods[25, 30, 21] primar-

ily address the single domain shift scenario. A more re-

cent and practical scenario is that of Continual Test Time

Adaptation(CTTA). This problem is particularly important

for deep models operating in environments where the test

conditions frequently change. TTA methods aim to adapt

a given source model with respect to any testing sample

from an unseen target domain using methods like entropy

minimization[25]. While effective in stationary test envi-

ronments, these[25, 30, 21] can become unstable in CTTA.

This instability arises from two factors: (1) Error accumula-
tion: In continually changing environments, the distribution

shift makes the pseudo-labels less reliable, resulting in early

prediction mistakes that accumulate errors over time. (2)

Catastrophic forgetting: As the model continually adapts to

new distributions, it struggles to retain knowledge from the

source domain, leading to a phenomenon known as catas-

trophic forgetting.

Contrary to TTA, in CTTA, researchers aim to create

algorithms that enable the model to incrementally adapt

to new test domains while retaining its ability to perform

well in the source domain and previously encountered test

domains. This is a more complex and dynamic task that

requires specialized techniques to handle the continuous

evolution of test conditions and data distributions. How-

ever, our approach successfully bypasses the complexity of

CTTA methods and successfully employs the simplicity of

TTA methods in CTTA setting.

We summarize our contributions below:

• We propose a Simple Signal to Domain Shift, to em-

ploy efficient TTA methods in CTTA setting.

• We empirically demonstrate that the features obtained

from the source model can be used to uniquely identify

domains in feature space.

• We perform extensive experiments on multiple

datasets and incorporate our module with multiple

TTA methods to demonstrate its effectiveness in the

CTTA setting.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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2. Related Work

The study of robustness of deep networks against dis-

tribution shifts has rapidly evolved in recent years, broadly

covering the following topics:

Unsupervised Domain Adaptation (UDA): This setting

assumes access to labeled source domain data along with

unlabeled target domain data during training. UDA meth-

ods [11, 19, 23, 20, 28, 24] primarily aim to align the two

domains so that the supervision from source domain can be

transferred to that of target.

Domain Generalization (DG): DG methods [15, 14, 32]

use multiple source domains to learn robust domain-

invariant representations so that the model can better gen-

eralize to unseen test domains.

UDA and DG focus on training robustness and the goal

of learning domain-invariant representations. In contrast,

SFDA and TTA aim to adapt off-the-shelf models using un-

labeled target domain data. SFDA allows for the collection

of ample target domain data for offline adaptation, while

TTA is a more realistic setting where the model must be

adapted using test data that is only available online and can

only be seen once.

Source Free Domain Adaptation (SFDA): Contrary to

UDA and DG, SFDA methods [16, 29, 30, 3] attempt to

adapt a source model using abundant unlabeled target do-

main data. This data is assumed to be available offline and

can be shown to the model multiple times for adaptation.

Test Time Adaptation (TTA): This setting was first pro-

posed by [25] with the objective of leveraging the test data

coming in an online manner to adapt a given off-the shelf

model. The key challenges here are: (1) No access to labels

and therefore inability recognise and correct wrong predic-

tions; (2) No access to source data; (3) Viewing data in an

online manner i.e. you have access to each test minibatch

only once.

Continuous Test Time Adaptation (CTTA): Taking an-

other step forward from TTA towards reality, a recent work

[26] formalized the CTTA setting where the test domain

can dynamically change in time. The seminal approach

[26] reduces error accumulation through weight-averaged

and augmentation-averaged predictions and avoids catas-

trophic forgetting through stochastic restoration of source

pre-trained weights. However, this method is computation-

ally very taxing as also acknowledged by the authors. Con-

trary to CoTTA [26], RMT [8] and SATA [2], we propose

a simple strategy to detect domain shift, thus enabling us

to employ light weight single domain TTA methods like

TENT [25] in CTTA setting.

More recent works[18, 10] also explore the CTTA set-

ting. As ViDA uses Vision Transformers instead of CNNs

and VDP requires source data to initialize the prompts, we

cannot directly compare with these methods.

Setting Source-free
Adaptation protocol Target domain

Offline Online Single Continuous

UDA � �
SFDA � � �
TTA � � �

CTTA � � �

Table 1: Domain adaptation protocols

3. Motivation
Why TTA can hurt CTTA? TTA methods designed for

single domain adaptation tend to overfit on the current

test domain which can lead to catastrophic forgetting of

discriminative information from source in time. This can

be extremely harmful when the model could encounter new

test domains in the future.

Can we simulate TTA setting in CTTA? We recognise

that a simplistic approach to CTTA is to adapt to the test

domain in a TTA manner i.e. adapt the model using a TTA

algorithm and then reset the model back to the source model

everytime it encounters a domain shift. This allows the

model to learn representations by leveraging the benefits of

single domain TTA and at the same time avoid error accu-

mulation in time by not carrying over an overfit model to

the next domain.

4. Problem setting
Given an off-the shelf model hθ = f ◦ g comprising of

feature extractor f and classifier g trained on a source do-

main Dtrain, the objective of TTA is to adapt hθ using test

batches xt arriving in an online manner from a test domain

Dtest by minimizing a test time objective Ltest(xt; θ). In

the single domain TTA addressed in [25, 1, 4], xt comes

from a single test domain Dtest �= Dtrain. Here, we address

the CTTA setting, where the test domain Dtest can continu-

ously change sequentially as Dt1,Dt2,Dt3, ...,DtN , where

Dti �= Dtrain∀i. We address this more challenging and re-

alistic CTTA scenario leveraging the ideas of TTA through

a Domain Shift Signal.

5. Method
We first briefly describe the single domain TTA method

TENT [25] and SFDA method AaD [30]. Then, we

describe how to employ these methods in the CTTA setting

using the proposed Domain Shift Signal.

TENT: Tent is a seminal work, which first proposed the

TTA setting to online adapt any given off-the-shelf model

hθ . In general, the Batch Normalization (BN) layers in a

model estimate the feature statistics during training, which

3578



(a) Batch size=25 (b) Batch size=50 (c) Batch size=200

(d) Batch size=25 (e) Batch size=50 (f) Batch size=200

Figure 1: We observe from the t-SNE plots for (a), (b) and (c) that the classes are better clustered and separated as the batch-

size increases. The color of these clusters also represent the order in which 15 corruptions are seen. In (d), (e) and (f) we see

the corresponding DSS signals to the t-SNE. The red dotted lines are where the actual domain shift happens.

is then used during testing. However, when Dtest �= Dtrain,

the estimated statistics are no longer appropriate. Tent pro-

poses to correct this by using the feature statistics of the

test data instead. Further, they fine-tune the BN’s affine pa-

rameters to minimize the Shannon entropy, as they observe

that test entropy is correlated with the test error. For a test

sample xi, the optimization objective is

Lent(xi) = −
∑

c

pc log pc (1)

where pc is the softmax score of class c for the sample xi.

Attracting and Dispersing (AaD): AaD is a simple and

effective approach recently proposed for SFDA. They treat

SFDA as an unsupervised clustering problem where they

enforce consistency between predictions of local neighbour-

hood features while also ensuring diversity in the feature

space. The test objective for a sample xi from a test batch

xt is

L(xi) = −
∑

j

pTi pj + λ
∑

m∈xt

pTi pm (2)

Here Ni is the set of neighbours of xi and pm refers to the

softmax prediction vector of a sample xm ∈ xt.

Efficient Anti-forgetting Test-time Adaptation (EATA):
EATA proposes active sample selection, identifying reliable

and non-redundant samples for model adaptation, minimiz-

ing entropy loss during TTA. Additionally, a Fisher regular-

izer is introduced to prevent drastic parameter changes and

alleviate the forgetting problem by estimating Fisher impor-

tance from test samples with pseudo labels. This method

improves out-of-distribution test performance while main-

taining in-distribution data accuracy. The test objective for

a sample xi from a test batch xt is

LEATA(xi) = S(xi)Lent(xi) + βR(θ, θ0) (3)

where S(xi) is the sample importance, R() is the Fisher

regularization, θ and θ0 are the current model parameters

and source model parameters respectively.

While these methods achieve state-of-the-art perfor-

mance in single domain adaptation setting, they suffer from

error accumulation due to over-fitting in CTTA. We observe

that source model is a more reliable starting point for adap-

tation on domain shift than a continually adapting model.

This is because the source model has already been trained

on a large amount of data, and it has learned some general

representations that can be transferred to the new domain.

By adapting the source model on the new domain, the model

can adjust its representations to better fit the new data while

retaining the knowledge learned from the source domain.

5.1. Domain Shift Detection

As mentioned earlier, using TTA methods like TENT

can hurt in CTTA setting because of error accumulation.

This in turn degrades the model over time. Here, we

propose a simple but effective solution to this by resetting

the model when a domain shift is encountered.
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Can source model characterize domain shift? In CTTA,

the data distribution changes over time, meaning that each

batch of samples can come from a different domain. Then

during inference time the domain shifts from one corruption

to another. To handle this challenge, we leverage the fea-

ture extractor of the source model f , which we empirically

observed to capture domain information. The features of

each sample vf = f(x) has two components: (i) Domain-

specific component vd which represents the part of the fea-

ture that is unique to a particular domain and distinguishes it

from other domains; (ii) Class-specific component vc that is

relevant to the classification task. By separating the features

into these two components, the model can learn to identify

and adapt to changes in the distribution of the data between

batches, while still maintaining the ability to perform well

on the classification task.

We hypothesize that Evf = Evd + Evc. Given, the

samples come from the same domain all sample have same

domain Evd = vd, also the class specific components vc
would be uniformly spread across all classes as Evc =
1
C

∑C
k=1 vk = vc, where vc is a constant vector and C de-

notes the number of classes. Hence, Evf = vd + vc. In

this formulation, any change in the domain specific com-

ponent Evd can in-turn be captured by Evf , which can be

empirically estimated.

In CTTA, given a test batch xt = x1, x2, ..., xN at time

instant t, we can estimate Evf (t) as the mean feature vector

Evf (t) = 1
N

∑N
k=1 vf,i, where vf,i = f(xi). This shows

that these domain specific components can be used to iden-

tify or detect a domain shift. We empirically observe that

vc → 0 as N → ∞. In Figure 1, we visualize the average

batch features using different batch sizes and for 15 corrup-

tions in the CIFAR-100C. As the batch size increases the

domain clusters become more compact indicating the afore-

mentioned tendency. Because of this the domain-specific

component becomes more dominant with larger batch sizes.

This naturally acts as our domain shift signal. We define

the cosine similarity of consecutive batches as Domain Shift

Signal(DSS), which we compute as

DSS = 1− cos(Evf (t),Evf (t− 1)) (4)

This signal is depicted in the lower row of figure 1. We

can clearly see that there are spikes which align well with

the true domain shift shown by the dotted red lines. When

Evf (t) comes from the same domain as Evf (t−1), DSS is

low. Otherwise, we need to trigger a model reset back to the

source model. In order to detect the domain shift, we pro-

pose to obtain a smooth estimate of the DSS by calculating

its moving average. Further, we use this moving average to

define a Domain Shift Detector(DSD) as follows:

DSD = I{DSS>k·MovingAverage(DSS)} (5)

The proposed module is completely decoupled from the

Figure 2: The blue line is the function DSS - k· Movin-

gAverage(DSS). The orange lines represent the true domain

shift. The zero crossing of the blue line is the indicator for

domain shift as described in Equation 5.

underlying TTA method. Our objective is to employ any

single domain TTA method[25, 30, 21] in a CTTA scenario

through the means of the Domain Shift Detection module.

By simply resetting the model to source on domain shift,

we simulate a single domain TTA setting. Our method im-

proves the performance of any TTA method in CTTA set-

ting as it mitigates error accumulation. We summarize the

proposed algorithm.

Algorithm 1: Domain Shift Detection module

Input:
Source feature extractor f
Domain Shift Detection:
for each batch xt:

vf,i = f(xt,i)

Evf (t) =
1
N

∑N
k=1 vf,i

DSS(Evf (t),Evf (t− 1)) = 1− Evf (t)
TEvf (t−1)

||Evf (t)||||Evf (t−1)||
DSD = I{DSS>k·MovingAverage(DSS)}
if DSD == 1:

Reset model to source

Continue TTA

6. Experiments and Results
We now describe the datasets, baseline TTA methods and

implementation details of the experiments done to deter-

mine the effectiveness of our proposed method.
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Source 97.8 97.1 98.2 81.7 89.8 85.2 78.0 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0

BN Stats 84.9 84.0 84.8 84.9 84.5 73.3 61.1 65.8 68.2 51.9 35.0 83.0 56.3 51.2 60.0 68.6

CoTTA[26] 83.9 79.5 76.7 79.5 76.3 67.0 57.8 62.0 59.5 50.9 40.9 62.5 49.7 44.7 48.0 62.6

RMT[8] 79.9 76.3 73.1 75.7 72.9 64.7 56.8 56.4 58.3 49.0 40.6 58.2 47.8 43.7 44.8 59.9

SATA[2] 74.1 72.9 71.6 75.7 74.1 64.2 55.5 55.6 62.9 46.6 36.1 69.9 50.6 44.3 48.5 60.1

TENT-TTA[25] 73.7 71.0 72.7 74.2 74.6 60.9 52.2 54.4 58.7 43.1 32.6 74.4 46.0 42.0 48.8 58.6

TENT-CTTA 73.7 65.9 67.4 78.0 79.9 81.8 80.2 89.7 94.2 96.4 97.0 99.6 99.4 99.3 99.5 86.8

TENT-DSS 73.7 65.9 67.4 74.2 74.6 60.9 52.2 54.4 58.7 43.1 32.6 74.4 46.0 42.0 48.8 57.9 (+28.9)

AaD-TTA[30] 84.3 84.9 83.8 84.7 84.3 74.0 60.8 66.0 66.5 51.5 35.3 84.3 55.2 51.2 60.2 68.5

AaD-CTTA 84.4 84.6 83.8 83.9 86.9 82.0 75.5 89.3 95.3 93.6 93.1 99.5 99.3 99.3 99.6 90.0

AaD-DSS 84.4 84.6 83.8 84.7 84.3 74.0 60.8 66.0 66.5 51.5 35.3 84.3 55.3 51.2 60.2 68.4 (+21.6)

EATA-TTA[21] 76.3 69.4 63.1 71.3 68.7 59.8 52.4 55.3 59.1 47.2 33.4 61.0 47.2 42.8 46.5 56.9

EATA-CTTA 76.3 66.5 65.0 73.1 69.1 62.1 53.5 58.9 59.3 48.1 35.9 62.8 47.5 43.9 47.5 58.0

EATA-DSS 76.3 66.4 63.1 71.3 68.7 59.8 52.4 55.3 59.1 47.2 33.4 61.0 47.2 42.8 46.5 56.7 (+1.3)

C
IF

A
R

-1
0

0
C

Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4

BN Stats 42.3 40.7 43.2 27.7 41.8 29.8 27.9 35.0 34.7 41.8 26.4 30.2 35.6 33.1 41.2 35.4

CoTTA 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5

RMT 40.2 36.2 36.0 27.9 33.9 28.4 26.4 28.7 28.8 31.1 25.5 27.1 28.0 26.6 29.0 30.2
SATA 36.5 33.1 35.1 25.9 34.9 27.7 25.4 29.5 29.9 33.1 23.6 26.7 31.9 27.5 35.2 30.3

TENT-TTA 37.1 34.65 33.7 25.1 37.66 27.15 25.4 30.5 31.5 33.3 23.8 27.8 32.7 28.4 36.5 31.0

TENT-CTTA 92.7 37.2 35.7 41.6 37.5 50.8 47.7 48.5 58.7 64.8 72.4 70.5 82.2 88.5 89.9 61.2

TENT-DSS 37.1 35.9 41.6 25.2 37.6 27.2 25.4 30.5 31.6 33.2 23.8 27.7 32.6 28.4 36.5 31.5 (+29.7)

AaD-TTA 41.9 39.8 42.0 27.2 41.4 29.3 27.5 34.5 34.7 40.3 26.2 30.2 35.2 32.3 40.8 34.9

AaD-CTTA 41.9 40.1 43.5 31.7 46.8 39.2 41.6 58.2 67.7 76.2 79.1 90.1 93.0 93.8 94.6 62.5

AaD-DSS 41.9 40.1 43.5 27.2 41.4 29.3 27.5 34.5 35.0 40.3 26.2 30.2 35.2 32.3 40.8 35.0 (+27.5)

EATA-TTA 37.2 36.1 35.4 25.4 37.7 27.6 25.6 30.2 31.8 35.0 24.1 28.0 33.0 29.4 37.1 31.6

EATA-CTTA 37.2 33.1 36.0 27.8 37.6 29.6 27.0 32.6 31.5 35.2 26.6 29.1 33.4 29.6 37.5 32.2

EATA-DSS 37.2 33.1 35.4 25.4 37.7 27.6 25.6 30.2 31.8 35.0 24.1 28.0 33.0 29.4 37.1 31.4 (+0.8)

C
IF

A
R

-1
0

C

Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5

BN Stats 28.3 26.2 36.2 12.7 35.1 13.9 12.2 17.5 17.7 15.0 8.3 13.0 23.6 19.7 27.4 20.4

CoTTA 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2

RMT 24.1 20.2 25.7 13.2 25.5 14.7 12.8 16.2 15.4 14.6 10.8 14.0 18.0 14.1 16.6 17.0

SATA 23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 12.2 7.4 10.3 19.1 13.3 18.5 16.1
TENT-TTA 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.6

TENT-CTTA 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7

TENT-DSS 24.8 20.6 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.4 (+0.2)

AaD-TTA 26.7 24.8 35.0 12.4 33.9 13.8 11.5 16.7 16.9 14.4 8.2 12.5 22.8 18.7 26.2 19.6

AaD-CTTA 26.7 23.2 30.6 12.4 30.9 14.7 12.4 19.3 19.4 17.5 13.6 20.8 27.7 26.4 33.8 22.0

AaD-DSS 26.7 23.2 35.0 12.4 33.9 13.8 11.5 16.7 16.9 14.4 8.2 12.5 22.8 18.7 26.2 19.5 (+1.5)

EATA-TTA 24.6 22.4 32.1 11.3 31.9 13.0 10.8 16.2 16.0 13.2 8.0 10.6 21.5 17.0 23.7 18.1

EATA-CTTA 24.6 19.1 27.7 12.8 29.4 14.5 12.1 16.3 15.8 15.2 9.3 13.0 21.6 16.1 20.8 17.9

EATA-DSS 24.6 19.1 32.1 11.3 31.9 13.0 10.8 16.2 16.0 13.2 8.0 10.6 21.5 17.0 23.7 17.9 (0.0)

Table 2: Results as error percentages (lower is better) for all the datasets. The number in bracket shows the improvement in

the performance of the underlying method with respect its CTTA version. In all cases we observe that the DSS version works

at par with the TTA version and is an improvement over the CTTA version.

6.1. Datasets

In our study, we follow the experimental protocol out-

lined in reference [26] to evaluate the robustness of classi-

fication networks. We use CIFAR-10C, CIFAR-100C and

ImageNet-C datasets which are designed to evaluate the ro-

bustness of classification networks. These datasets contain

images that have been corrupted with 15 different types of

corruptions at 5 different levels of severity. All experiments

are conducted at the severity level 5. For ImageNet-C, we

use the first 10,000 samples for each corruption instead of

all the points in the dataset.

6.2. Baselines

We compare the performance of TENT, AaD and EATA

in three different scenarios:

(i) TTA: Here, the model is is set to source and the opti-

mizer parameters are set to the initial states whenever there

is a domain shift. This domain shift information is explic-

itly provided to the model following [25].

(ii) CTTA: Next, we consider the CTTA, as introduced

by CoTTA [26]. Similar to the TTA setting, the contin-

ual benchmark uses an off-the-shelf model pre-trained on

the source domain. However, this setting does not assume
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knowledge of when the domain changes and instead adapts

the model online to a sequence of test domains. We contin-

ually adapt the model and do not reset anything outside the

scope of the algorithms

(iii) DSS: Finally, we use our domain shift signal to mimic

the TTA setting while in the CTTA setting to dynamically

reset the model to the off-the-shelf model without having

the underlying domain shift information. Thus the model

can adapt to the changing distributions without error accu-

mulation, effectively mitigating the negative impact of con-

tinuous domain shift. Here, we reset the model and the op-

timizer according to our domain shift signal.

6.3. Implementation details

For all the settings, TTA, CTTA and DSS we use the

source model which is trained on the clean CIFAR10,

CIFAR100 or ImageNet dataset. Then the algorithms

are evaluated on the corruption benchmarks CIFAR10-

C, CIFAR100-C or ImageNet-C[13], respectively. The

CIFAR10 experiments use a WideResNet-28[31] model,

while the CIFAR100 experiments use a ResNeXt-29[27]

architecture. The ImageNet-C experiments are done with

the source model as Standard ResNet-50 trained on Ima-

geNet. All source models are adopted from the Robust-

Bench benchmark[6].

CoTTA[26] experiments are done using the official code

base, and we use the default parameters without any further

tuning as we do not change the problem set. For TENT[25]

and EATA[21], we use a learning rate of 1e-3 for all three

datasets. For AaD[30], we adapt the AaD loss from its

codebase. We use a learning rate of 1e-4 for CIFAR10-C

and CIFAR100-C, and for ImageNet-C, we use a learning

rate of 1e-7 as we observe that any higher learning rate

makes AaD unstable within a single corruption. For all

methods, only the BN-layers are learnable, and they use the

mean and variance of the test batch as the BN-layer statis-

tics. We set k (Equation 5) to 3 for all experiments. We hope

these details will help in the reproducibility of our results.

6.4. Computational Advantages

From Figure 3 and Table 3 we observe the computa-

tional advantages of using TENT-DSS or AaD-DSS com-

pared to CoTTA and RMT. Figure 3 compares inference

time. Here, we see that CoTTA (SoTA for CTTA setting)

is computationally more expensive because (i) it needs to

do 32 forward pass, (ii) update all parameters, (iii) update

teacher model after backpropagation. Next, Table 3 shows

the memory requirements is lower in TENT and AaD com-

pared to CoTTA and RMT due to less number of trainable

parameters and models that need to be stored. These exper-

iments were done on ImageNet-C using NVIDIA GeForce

RTX 3090.

0 0.25 0.5 0.75 1

RMT

CoTTA

AAD

TENT

TimeForward Pass Backward optimisation Post Backward

Figure 3: Comparison of inference time of the proposed

SATA framework with the state-of-the-art CoTTA. The x-

axis is time of inference per batch (sec/batch).

Method # Parameters # Trainable % Trainable

TENT 25,557,160 128 0.0005

AaD 25,557,160 128 0.0005

CoTTA 76,671,096 25,557,032 33.333

RMT 51,114,064 25,557,032 50.000

Table 3: Number of (trainable) parameters as a proxy for

the storage requirement of the respective algorithms. This

table is for ImageNet-C with ResNet-50 as the backbone.

6.5. Discussion

In Table 2 we see that indeed when TTA methods are

directly taken to CTTA setting their performance dramati-

cally reduces. This is due to catastrophic forgetting caused

by overfitting on current domain. The DSS approach brings

these methods back to TTA setting without explicit domain

information. We observed that the inclusion of the DSS

module in TENT and EATA resulted in comparable or even

better performance compared to the SoTA methods. This

potentially brings the choice of algorithm in real life setting

down to the computational requirement of the algorithms in

which case the TTA methods are more efficient compared

to the CTTA methods by orders of magnitude as shown in

Table 3 and Figure 3.

7. Conclusion
In this work, we address the limitations of traditional

single domain adaptation by developing a domain shift

detection mechanism. We show that the source model can

indeed characterize domain shift, by continually measuring

the similarity between mean feature representations of con-

secutive batches. We leverage this simple signal to detect

a domain shift, upon which our method resets the model

back to the source and continues test-time adaptation.

Incorporating this mechanism in TTA methods overcomes

the problem of error accumulation and catastrophic for-

getting in CTTA setting. Our experiments across standard

datasets and single domain test-time adaptation baselines

demonstrate the effectiveness of our approach, making it a

promising solution for the CTTA problem.
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