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Abstract

Few-Shot Class Incremental Learning (FSCIL) is a chal-
lenging continual learning task, where limited training ex-
amples are available during several learning sessions. To
succeed in this task, it is necessary to avoid over-fitting
new classes caused by biased distributions in the few-shot
training sets. The general approach to address this issue
involves enhancing the representational capability of a pre-
defined backbone architecture by adding special modules for
backward compatibility with older classes. However, this
approach has not yet solved the dilemma of ensuring high
classification accuracy over time while reducing the gap be-
tween the performance obtained on larger training sets and
the smaller ones. In this work, we propose an alternative
approach called Continual Parameter-Efficient CLIP (CPE-
CLIP) to reduce the loss of information between different
learning sessions. Instead of adapting additional modules
to address information loss, we leverage the vast knowledge
acquired by CLIP in large-scale pre-training and its effec-
tiveness in generalizing to new concepts. Our approach is
multimodal and parameter-efficient, relying on learnable
prompts for both the language and vision encoders to en-
able transfer learning across sessions. We also introduce
prompt regularization to improve performance and prevent
forgetting. Our experimental results demonstrate that CPE-
CLIP significantly improves FSCIL performance compared
to state-of-the-art proposals while also drastically reducing
the number of learnable parameters and training costs.

1. Introduction
Deploying ML systems in a dynamic environment re-

quires accounting for continuous data streams arriving over

time. This environment may experience shifts in data distri-

bution or the addition of new classes. An ideal learning sys-

∗Equal contribution.

tem must be able to learn new incoming classes while main-

taining its discriminability over previously learned classes,

thus avoiding catastrophic forgetting [31]. This continual

learning problem formulation is known as Class-Incremental

Learning (CIL), which requires dealing with the stability-

plasticity dilemma [32, 14], i.e., the trade-off between learn-

ing new classes and retaining old ones. In this work, we

focus on a special case of CIL, named Few-Shot Class Incre-

mental Learning (FSCIL, [44]), where only a few training

examples are available at every learning session. Here, the

additional challenge consists in avoiding over-fitting on new

incoming classes caused by biased distributions in the few-

shot training sets. This problem is particularly crucial in

practical, real-world scenarios where data availability is lim-

ited. Examples of such scenarios include manufacturing

settings [59, 2] and medical imaging [18]. In manufacturing,

robots are deployed to carry out a diverse range of tasks, such

as assembling or grasping objects. To perform these tasks,

robots may need to adapt to new objects or materials, which

may have a limited amount of training data available. In

medical imaging the availability of data may also be limited

due to the high costs of data collection and patient privacy,

making it difficult to acquire new knowledge over time.

Recent research has focused on solving these problems

through various approaches, such as meta-learning [57, 34],

regularization techniques [30], or knowledge distillation

[38, 6, 62]. These methods have shown promising results

in achieving incremental learning over time with a limited

amount of data available. The general approaches consist

in enhancing the basic representational capability of a pre-

defined backbone architecture by adding special modules

to entail backward compatibility with older classes during

learning sessions. These solutions are computationally ex-

pensive since they need a large number of iterations in each

session to adapt the additional modules to new classes while

maintaining backward compatibility. Despite the high com-

putational cost, they still fail to efficiently reduce the gap

between the performance obtained on larger training sets

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
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the final published version of the proceedings is available on IEEE Xplore.
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and the one obtained on smaller sets over time, which still

remains an unsolved dilemma [67, 25].

In this work, we propose Continual Parameter-Efficient

CLIP (CPE-CLIP) as an alternative approach to reduce the

loss of information between different learning sessions. In-

spired by the astounding continual learning performance

obtained in a zero-shot setting [45], we use CLIP [36] as a

starting point to build a continual learning system for FSCIL.

Instead of relying on adapting additional modules to address

information loss, we propose to adapt the CLIP architecture

with lightweight learnable prompts for few-show image clas-

sification. In this way, we are able to take advantage of the

vast amount of knowledge acquired by CLIP in large-scale

pretraining and its inherent effectiveness in generalizing to

new concepts. Notably, this is a Multimodal and Parameter-

Efficient approach as it relies on learnable prompts, rather

than finetunig, of both the language and vision encoders to

allow transfer learning across sessions over time. We show

that our approach significantly improves FSCIL performance

compared to state-of-the-art proposals while also drastically

reducing the number of learnable parameters and training

costs. We also conduct extensive hyperparameter tuning and

ablation studies to understand the functional properties of the

multiple components of our model. Our main contributions

can be summarized as follows:

• We propose a prompt-based approach to adapt the CLIP

architecture for solving continual learning tasks in few-

shot settings by reducing forgetting and supporting

knowledge transfer over time, all while learning less

than 0.3% of the total parameters.

• We combine two different prompt attachment methods

with prompt regularization to smoothly transition to

future tasks while maintaining constant performance

over time.

• We achieve state-of-the-art performance on three popu-

lar benchmark datasets for FSCIL, and exceed previous

state-of-the-art results by a great margin.

The rest of this paper is organized as follows. We dis-

cuss related works about our methodological approach and

few-shot class-incremental learning in Section 2. Section 3

introduces the problem formulation. The proposed method

is presented in Section 4. Moreover, we present our experi-

mental results and final considerations in Sections 5 and 6,

respectively.

2. Related Work

Our approach to the few-shot continual learning problem

is related to several topics, so we introduce them separately.

2.1. Few-Shot Image Classification

Few-shot image classification aims to fit new unseen

classes with an insufficient number of training examples

[5, 50]. Several learning methods have been proposed for this

purpose. For instance, in metric-based approaches, different

network branches are built to classify images by calculating

the distance between a query image from the test set and the

training images in the few-shot training set [42, 48, 43]. Dif-

ferently, in meta-learning, models are trained on a variety of

learning tasks, such that they can solve new learning tasks us-

ing only a small number of training samples [11, 10, 57, 34].

A rather different and more recent perspective relies on pre-

trained multimodal vision-language models to classify im-

ages from labeled captions with minimal training examples

[65, 64, 19]. In this approach, few-shot learning is based on

the correct match between the query image and a text caption

describing the category label. Our method can be seen as a

continual learning adaptation of the latter approach.

2.2. Incremental Learning

Incremental learning deals with the problem of learn-

ing new information from non-stationary data streams

[46, 28, 35]. According to the availability of task identi-

fiers (IDs) over time, the problem formulation can pertain

to either task- or class-incremental learning. There are sev-

eral solutions in the literature that try to face these tasks by

enabling learning of incoming information from new tasks

while minimizing forgetting of previously acquired knowl-

edge. In regularization-based methods, specific parameters

are regularized for learned tasks in order to retain knowledge

acquired on previous ones and avoid catastrophic forgetting

[20, 24, 60]. Architecture-based methods assign an isolated

portion of the backbone, or isolated parameters of additional

branches, to each task [40, 58, 29, 51, 9]. In rehearsal-based

methods, data from previously learned tasks are stored in a

rehearsal buffer and used in the current task in addition to

the current training set [3, 4, 33]. A more recent prompt-

based rehearsal-free approach combines powerful pretrained

backbones with learnable prompts that retain the knowl-

edge acquired from the different tasks without modifying

the weights of the main backbone, thus avoiding forgetting

[52, 53, 41, 37]. Our method gets inspiration from the solu-

tions proposed in the latter methods.

2.3. Few-Shot Class-Incremental Learning

FSCIL is a recent research topic proposed to tackle few-

shots training inputs in a class-incremental setting [44],

where task ID is not provided during evaluation. The general

task is to initially learn from a number of base classes and

then continuously update the model to represent new incom-

ing classes. The main challenge of this setting is to avoid

overfitting to new class few-shot samples. The first attempt

to solve this issue proposed the neural gas (NG) network
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for representing knowledge [44], where feature space topolo-

gies were learned for different classes, and new classes were

represented by growing and adapting the network’s topology.

In [61], authors decoupled learning representations and clas-

sifiers, by letting the latter be updated over time by means

of a graph model propagating information between classi-

fiers. Prototype modeling was also used to assign prototypes

in the embedding space to reserve it for future incoming

classes [62], or to use the average of new class embedding

representations as a class prototype to replace classifiers [63].

Different methods addressed the problem by synthesizing

features into a mixture of sub-spaces for incremental classes

by using a VAE [7], or by adapting general deep learning

architectures to enable a few parameters to be updated for

every new set of novel incoming classes [30]. More recent

approaches tried to combine features emerging from super-

vised and self-supervised models for boosting classifiers [1],

or to calibrate distributions to avoid forgetting by retrieving

distributions for old classes while estimating distributions

for new classes [26].

2.4. Parameter-Efficient Learning

The most common way to adapt foundational large

general-purpose pretrained models to downstream tasks is

to finetune all the model parameters, which results in high

computational costs and memory usage, and the need to store

several copies of the finetuned model for different tasks. A

lightweight alternative came from the parameter-efficient

learning literature that proposed to update only a small num-

ber of extra parameters while keeping backbone parameters

frozen [12, 22]. Several methods have been proposed to flexi-

bly adapt pretrained backbones to different downstream tasks

according to this logic. Adapter-tuning [15, 16] interleaves

transformer layers with a feed-forward bottleneck module

with skip-connection to adapt the layer’s output before pass-

ing to the next layer. Prefix-tuning [23, 52, 17] prepends

tunable prefix vectors as learnable embeddings to the keys

and values of the multi-head attention layers in transformers

[47]. In prompt-tuning [22, 53], a set of learnable embed-

dings is prepended to the input embeddings from the first

layer, and the augmented input is then normally processed

by the frozen transformer layers.

3. Problem Formulation

The FSCIL setting [44] can be defined as follows. We

consider a stream of labelled training sets D0, D1, . . . , DT ,

where Dt = {(xi,t, yi,t)}N
D
t

i=1 , N
D
t is the number of training

examples provided at session t, and T is the last incremental

session. D0 identifies the large-scale training set of base

classes, and Dt is the few-shot training set of new classes,

for t > 0. The base class dataset, D0, is meant to have

a sufficient number of training examples. On the contrary,

insufficient training sets are provided for new classes. Con-

sider the set of class labels Ct belonging to train set Dt.

FSCIL has the following requirements: (1) classes don’t

overlap among sessions, ∀t, τ , t �= τ , Ct∩Cτ = ∅, (2) base

class set is bigger than new class sets, where |C0| > |Ct|,
and ND

0 > ND
t , hold for t > 0, (3) new class sets have

the same size, such that ∀t, τ , t �= τ , |Ct| = |Cτ | and
ND

t = ND
τ hold for t, τ > 0. For the evaluation phase,

the only requirement is that session-wise performances are

computed by considering all the classes encountered up to

the current session t. Consider the stream of labelled evalua-

tion sets E0, E1, . . . , ET , and a model f , than the evaluation

accuracy for session t can be computed as follows:

At =

∑

(xi,yi)∈E0∪E1∪...Et

[f(xi) = yi]

NE
0 +NE

1 + . . .+NE
t

(1)

where NE
τ is the number of evaluation examples for session

τ , and [·] the indicator function.

4. Method
Our proposed method, CPE-CLIP, is summarized in Fig-

ure 1. The approach involves the use of the CLIP founda-

tional vision-language model [36] as the primary building

block of a continual learning system. CLIP is a neural net-

work trained to align the modalities of language and vision,

and to leverage the abundant supervision offered by natural

language to reason about visual concepts. In our work, we

exploit the capabilities of CLIP to cast image classification

as a multimodal task, where text prompts (e.g. "a photo of a

<category>") are used as query captions for the text encoder,

and the matching of a test image to the caption serves as the

classification criterion. Our approach learns prompts that

are adapted to both the language and vision encoders [19].

By doing so, we maintain the knowledge acquired during

pretraining by freezing the CLIP backbone while allowing

the prompts to solve the continual learning task. To further

enhance performance and avoid forgetting, we introduce

prompt regularization.

Language Encoder. Here we learn language context

prompts that are shared among all the classes of a given

downstream task. Context prompts fulfill two purposes: (1)

they prevent manually selecting inefficient prompts [65, 64]

to provide the textual representation of an image, assuming

the category label of that image is available, (2) they serve

as stability parameters that learn general task-invariant prop-
erties shared among the session tasks. We then introduce L
learnable tokens, g, called G-Prompt (by following notation

in Wang et al. [52]), such that Θg ∈ R
L×dNLP

, where dNLP

is the embedding dimension of CLIP language encoder. The

input embeddings now follow the form [g1, g2, . . . , gL, w] =
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Figure 1. Summary of CPE-CLIP architecture and training process. The picture on the left describes the general structure of CPE-CLIP,

where the G-Prompt contributes to generalizing task-invariant knowledge on the language encoder and is then projected to the vision encoder.

Vision prompts are accumulated across subsequent layers, while a replacement strategy is used for the language encoder. The image on the

right depicts the regularization process where an increase in the number of seen classes reduces parameter gradients by means of the scaling

factor αt, for a given session t.

[g, w], and w is the embedding for the category name of the

input image. Let’s define fNLP
i as the ith transformer layer

of the language encoder, where i = 1, 2, . . . ,K and K is

the total number of layers. We admit the case where new

learnable tokens can be further introduced in each language

encoder layer, fNLP
i , up to a certain depth D. In this way,

different prompts are used independently across different

layers to account for different levels of abstraction. The

forward pass can then be described as:

[_, h1] = fNLP
1 ([g1, w]) (2)

for the first layer, and

[_, hi] = fNLP
i ([gi−1, hi−1]) i = 2, 3, 4, . . . , D (3)

for subsequent layers up to layer D. Here, [·, ·] refers to

vertical concatenation, hi is the latent state output from layer

i associated with the class category word embedding, and

gi represents the set of learnable prompts for layer i. In this

phase, the output embeddings for the input prompt gi are

discarded for the next layer. Notably, when layer-specific

prompts are introduced we have Θg ∈ R
D×L×dNLP

. After

Dth transformer layer, subsequent layers process previous

output layers in a standard way until the final text represen-

tation:

[gi, hi] = fNLP
i ([gi−1, hi−1]) i = D + 1, . . . ,K. (4)

For simplicity, we refer to the last hidden state for the [EOS]

token as hNLP, which in the CLIP language encoder is used

to represent the whole sentence. The hidden state is then

projected to a lower dimensional space:

hNLP
∗ = pNLP(hNLP), (5)

where pNLP is a linear projection layer, and hNLP
∗ is the final

low-dimensional vector for the text representation.

Vision Encoder. As for the language encoder, we con-

ceive G-Prompt for the vision branch. Even in this case,

prompts are concatenated with image patch embeddings

across several layers of the hierarchy in order to interact

with lower and higher-level image feature processing. We

introduce L tokens, g̃, such that g̃ ∈ R
L×dCV

, where dCV

is the embedding dimension of CLIP vision encoder, and

dCV > dNLP. The input embeddings now follow the form

[c1, c2, . . . , cJ , g̃1, g̃2, . . . , g̃L] = [c, g̃], where c is the em-

bedded patches set of the input image plus the additional

[CLS] token, and J the total number of embeddings. Let’s

now define fCV
i as the ith transformer layer of the vision

encoder, where i = 1, 2, . . . ,K. Similar to Khattak et
al. [19], we bridge the gap between language and vision

prompts by explicitly expressing the latter as a function of

the former. We introduce a learnable linear projection fPROJ,

ΘfPROJ ∈ R
dNLP×dCV

, and constraint vision task-invariant

prompts to be conditioned on language G-Prompt, such that

g̃i = fPROJ(gi), and g̃i is the set of prompts for vision en-
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coder layer i. Although prompts in the vision branch are

derived from language context prompts, we found it ben-

eficial to use a different strategy for propagating prompts

across the layers hierarchy. Here, we propose an accumu-
lation method, as an alternative to the replacement method

used in the language branch, where prompts in different

layers are not independent anymore since they can interact

with the processed output embeddings of prompts from pre-

vious layers. As usual, prompt accumulation takes place up

to depth D. Formally, we describe the forward pass in the

vision encoder as:

[h1, g̃1] = fCV
1 ([c, g̃1]) (6)

for the first layer, and

g̃i = [g̃i, g̃i−1]

[hi, g̃i] = fCV
i ([c, g̃i])

i = 2, 3, 4, . . . , D (7)

for subsequent layers up to layer D. After Dth transformer

layer, prompts are not accumulated anymore, and subsequent

layers process previous output layers in a standard way until

the final image representation:

[g̃i, hi] = fCV
i ([g̃i−1, hi−1]) i = D + 1, . . . ,K (8)

where now g̃i is the final pooled prompt such that g̃i ∈
R

LD×dCV

. We refer to the last hidden state related to the

[CLS] token as hCV, which in the CLIP vision encoder is

used to represent the whole image. The hidden state is then

projected to a lower dimensional space:

hCV
∗ = pCV(hCV) (9)

where pCV is a linear projection layer, and hCV
∗ is the final

low-dimensional vector for the image representation.

Multimodal Classification. The prediction probability

for every given input image x to be classified as belonging

to class z, z = 1, 2, . . . , Z, is computed as:

p(y = z|x) = exp[ρ(hCV
∗ , hNLP

∗z )]

Σ
Z

j=1 exp[ρ(h
CV∗ , hNLP

∗j )]
(10)

where ρ is the cosine similarity, hCV
∗ the projected represen-

tation of image x, and hNLP
∗z is the projected representation

of the sentence with the category name of zth class in the

training set.

Prompt Regularization. In FSCIL, base class training is

crucial to initially tune the network to boost generalization

to novel classes. In our case, the G-Prompt introduces a set

of tokens to fulfill this purpose. Such tokens provide an effi-

cient text representation that can be matched with an image

in order to correctly classify the latter as belonging to the

correct (semantic) category/label. However, the base class

set provides a greater chance for generalization compared to

session-related class sets, since it provides a greater number

of classes and training examples. For this reason, we propose

a mechanism to preserve knowledge proportionally to the

number of classes encountered in different sessions. We de-

fine a scaling factor αt for a given session t, t = 1, 2, . . . , T ,

that affects the updating rate of G-Prompt parameters when

training on session t:

αt =
|Ct|∑t

τ=0 |Cτ |
. (11)

We then apply regularization as follows:

∂Lt

∂Θg
← αt

∂Lt

∂Θg
(12)

and

∂Lt

∂ΘfPROJ

← αt
∂Lt

∂ΘfPROJ

(13)

where Lt is the loss function for the classification task in

session t. Such a regularization allows the G-Prompt, as well

as the language-vision prompt projection, to be updated less

consistently as the number of total seen classes increases.

5. Experiment
We evaluate CPE-CLIP on the three benchmarks [44]

that provide the main baseline for model comparison in

the FSCIL literature. Benchmarks include CIFAR100 [21],

miniImageNet [39], and CUB200-2011 [49].

5.1. Evaluation Benchmarks

For all the benchmarks we follow the split proposed by

Tao et al. [44] since they provide the standard for all the pro-

posals in the literature and ensure a fair model comparison.

Benchmarks are described as follows:

• CIFAR100 The dataset contains 60.000 32× 32 RGB

images from 100 classes. We use 60 classes as the

base class set. The remaining 40 classes are split into

8 sessions where each session contains 5 new classes,

and the few-shot training set consists of 5 examples per

class (5-way 5-shot incremental task).

• miniImageNet The dataset contains 60.000 84 × 84
RGB images. We use 100 classes as the base class

set. The remaining 40 classes are split into 8 sessions

of 5 few-shot training examples each (5-way 5-shot

incremental task).
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• Caltech-UCSD Birds-200-2011 (CUB200) The

dataset contains 11.788 finegrained 224 × 224 RGB

images from 200 classes of bird species. We use 100

classes as the base class set. The remaining 100 classes

are partitioned into 10 sessions, or timestamps, where

each session contains 10 new classes, and the few-shot

training set consists of 5 examples per class (10-way

5-shot incremental task).

5.2. Implementation Details

We use the 16× 16 patches OpenAI CLIP [36] version

from the HuggingFace’s Transformers library [54] as the

starting backbone. Models and pipelines are built in Py-

Torch with the aid of Avalanche library [27]. We use the

SGD optimizer with momentum, by setting learning rate

to 0.00325, weight decay to 1e−5, and a cosine annealing

with warmup, for all the benchmarks. For the base class

training we set batch size to 32 and number of epochs to 3
for CIFAR100 and miniImageNet, and batch size to 4 with

6 epochs for CUB200. For the new class session training

sets we set batch size to 4 and number of epochs to 5 for all

the benchmarks. All the experiments have been deployed

on one single GeForce RTX 2080 Ti. For model compari-

son, we report the top-1 evaluation accuracy for base class

and for every session since it is the standard practice in FS-

CIL. We also report the dropping rate (PD) metric, which

measures the drop in accuracy in the last session w.r.t. the

accuracy in base class session as a measure of forgetting, and

the across-session average accuracy as a measure of overall

performance.

5.3. Hyperparameter Tuning

We performed a hyperparameter tuning to select the best

candidate model by varying the two hyperparameters affect-

ing CPE-CLIP overall behavior on FSCIL. We used grid

search to explore the following range of values: L = [2, 4],
D = [1, 3, 6, 9, 12] in an exhaustive 2× 5 search. For every

configuration, we use the average across-session accuracy

of 5 runs with random parameter initialization as the metric

for model selection. Due to the computational burden of the

exhaustive hyperparameter search, we focused on CUB200

benchmark only, since it conveys a special challenge for our

CLIP-based method due to the fine-grained images associ-

ated with technical, non-common, text labels reflecting bird

species. Results are shown in Table 1

D

L 1 3 6 9 12

2 67.48 68.63 68.54 69.49 70.23
(0.25) (0.38) (0.38) (0.14) (0.31)

4 68.03 68.35 69.61 69.11 69.28
(0.26) (0.07) (0.45) (0.36) (0.28)

Table 1. Hyperparameter Tuning for L and D. Average across-

session accuracy and standard errors (in brackets) for every config-

uration are reported.

The best model results in the hyperparameter set L = 2,
D = 12. Therefore, we relied on this configuration for

model comparison.

5.4. Comparison with state-of-the-art models

In this section, we show our main results on CIFAR100,

miniImageNet, and CUB200 benchmarks, shown in Table 2,

3, and 4, respectively, where CPE-CLIP is compared with

the latest state-of-the-art FSCIL approaches [66, 1, 61, 55,

56, 67, 62, 63]. Models which are outperformed by a great

margin by the most recent state-of-the-art methods were not

included in the model comparison study.

According to these results, our model outperforms state-

of-the-art models by a great margin. CPE-CLIP obtains the

best classification accuracy in the base class session and

reduces forgetting more efficiently, as shown by the PD

metric, while maintaining stable high classification perfor-

mances over time. CPE-CLIP shows superior abilities in

reducing information loss when moving from training on a

larger dataset, such as the base class set, to smaller datasets

during learning sessions. It is worth mentioning that the

other approaches included in the current model comparison

primarily relied on ResNet [13] and ViT [8] as the main

backbones, which were pretrained solely for the CUB200

benchmark. Furthermore, CPE-CLIP relies on CLIP which

was not pretrained directly on popular foundational datasets

such as ImageNet [39], differently from ResNet and ViT.

We have also conducted a comparison of the training time

and number of learnable parameters for various models in

our study. The comparison was meant to unerstand computa-

tional costs for completing the entire learning session stack.

We only included models that guarantee reproducibility and

have available hyperparameters. The results of this compari-

son are presented in Table 5. Overall, our findings indicate

that CPE-CLIP significantly decreases computational costs

without sacrificing performance.

5.5. Ablation Study

Here we analyze the importance of the relevant compo-

nents in CPE-CLIP. For brevity, we only rely on the CUB200

benchmark. In particular, we focused on three ablated mod-
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Method
Accuracy in each session (%)

Avg. ↑ PD ↓ Δ Avg. Δ PD
0 1 2 3 4 5 6 7 8

CEC † [61] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 59.53 23.93 +23.89 +16.62
SPPR ‡ [66] 76.33 72.33 67.33 63.33 59.00 55.33 53.00 50.33 47.33 60.47 29.00 +22.95 +21.69
CLOM † [67] 74.2 69.83 66.17 62.39 59.26 56.48 54.36 52.16 50.25 60.57 23.95 +22.85 +16.64
FeSSSS † [1] 75.35 70.81 66.70 62.73 59.62 56.45 54.33 52.10 50.23 60.92 25.12 +22.50 +17.81
MFS3 † [55] 73.42 69.85 66.44 62.81 59.78 56.94 55.04 53.00 51.07 60.93 22.35 +22.49 +15.04
PC † [56] 76.30 71.89 67.70 63.40 60.21 57.31 55.01 52.79 50.74 61.71 25.56 +21.71 +18.25
LIMIT † [63] 73.81 72.09 67.87 63.89 60.70 57.77 55.67 53.52 51.23 61.84 22.58 +21.58 +15.27
FACT † [62] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 62.24 22.50 +21.18 +15.19
CLIP zero-shot 74.45 72.83 72.11 70.25 69.71 69.55 69.52 68.78 68.04 70.58 6.40 +12.84 −0.91

CPE-CLIP 87.83 85.86 84.93 82.85 82.64 82.42 82.27 81.44 80.52 83.42 7.31

Table 2. CIFAR100 benchmark. Δ PD represents the improvement for PD compared to other models. Δ Avg. represents the improvement in

across-session average accuracy compared to other models. † identifies the results taken from their respective papers, and ‡ shows the results

approximated from the respective paper’s figures since tabular results are unavailable.

Method
Accuracy in each session (%)

Avg. ↑ PD ↓ Δ Avg. Δ PD
0 1 2 3 4 5 6 7 8

CEC † [61] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.74 24.37 +28.39 +16.91
CLOM † [67] 73.08 68.09 64.16 60.41 57.41 54.29 51.54 49.37 48.00 58.52 25.08 +27.61 +17.62
LIMIT † [63] 72.32 68.47 64.30 60.78 57.95 55.07 52.70 50.72 49.19 59.05 23.13 +27.08 +15.67
PC † [56] 73.20 68.35 64.06 60.85 58.00 54.98 52.82 51.17 50.16 59.28 23.04 +26.85 +15.58
MFS3 † [55] 73.65 68.91 64.60 61.48 58.68 55.55 53.33 51.69 50.26 59.79 23.39 +26.34 +15.93
FACT † [62] 72.56 69.63 66.38 62.77 60.60 57.33 54.34 52.16 50.49 60.69 22.07 +25.44 +14.61
SPPR ‡ [66] 80.00 74.00 68.66 64.33 61.00 57.33 54.66 51.66 49.00 62.29 31.00 +23.84 +23.54
FeSSSS † [1] 81.50 77.04 72.92 69.56 67.27 64.34 62.07 60.55 58.87 68.24 22.63 +17.89 +15.17
CLIP zero-shot 77.13 76.49 75.31 77.30 75.35 75.28 73.92 74.18 73.17 75.35 3.96 +10.78 −3.50

CPE-CLIP 90.23 89.56 87.42 86.80 86.51 85.08 83.43 83.38 82.77 86.13 7.46

Table 3. miniImageNet benchmark. Δ PD represents the improvement for PD compared to other models. Δ Avg. represents the improvement

in across-session average accuracy compared to other models. † identifies the results taken from their respective papers, and ‡ shows the

results approximated from the respective paper’s figures since tabular results are unavailable.

els. First of all, we consider the case where no accumulation

strategy for prompt propagation is applied to the vision en-

coder. In this case, a standard replacement strategy is used,

as for the language branch. Further, we focus on the con-

tribution of projecting G-Prompt to the vision branch, by

completely removing vision prompts. Finally, we consider

the case where no regularization is applied so that G-Prompt

updates consistently across sessions. Results are depicted in

Figure 2.

The comparison between the main model and its ablated

versions reveals noteworthy observations. Specifically, it

appears that prompt regularization is a critical element for

ensuring consistent performance over time by counteracting

the influence of biased distributions of few-shot training ex-

amples in problematic sessions. Conversely, the exclusion of

the vision prompt system does not appear to have a marked

effect on the model’s susceptibility to forgetting and informa-

tion loss during sessions. However, performance generally

deteriorates compared to the full model throughout each ses-

sion, with a noticeable decline during the initial sessions, and

ultimately converges in the later ones. It is noteworthy that

a minimal difference in performance is observed between

the total removal of prompts from the vision branch and

the utilization of a prompt propagation replacement strat-

egy. Overall, the results confirm the effectiveness of our

prompt system in achieving the best performance in a con-

tinual learning setting. To summarize, prompt regularization

allows to reduce information loss and forgetting by ensuring

stable training over time, and the accumulation strategy for

prompt propagation in the vision encoder provides better

image representation ensuring a better text-image match and

higher accuracy within specific sessions.
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Method
Accuracy in each session (%)

Avg.↑ PD ↓ ΔAvg. ΔPD
0 1 2 3 4 5 6 7 8 9 10

SPPR † [66] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 31.35 +21.47 +14.37
PC † [56] 74.06 70.89 68.13 63.98 61.54 58.85 57.56 55.96 54.28 53.73 52.40 61.03 21.66 +9.76 +4.68
CEC † [61] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.34 23.57 +9.45 +6.59
MFS3 † [55] 75.63 72.51 69.65 65.29 63.13 60.38 58.99 57.41 55.55 54.95 53.47 62.45 22.16 +8.34 +5.18
FeSSSS † [1] 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98 62.85 26.62 +7.94 +9.64
FACT † [62] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 64.42 18.96 +6.37 +1.98
LIMIT † [63] 75.89 73.55 71.99 68.14 67.42 63.61 62.40 61.35 59.91 58.66 57.41 65.50 18.48 +5.29 +1.50
CLOM † [67] 79.57 76.07 72.94 69.82 67.80 65.56 63.94 62.59 60.62 60.34 59.58 67.17 19.99 +3.62 +3.01
CLIP zero-shot 65.46 63.37 62.15 58.58 58.66 58.57 56.95 55.97 54.57 54.64 55.31 58.56 10.15 +12.23 −6.83

CPE-CLIP 81.58 78.52 76.68 71.86 71.52 70.23 67.66 66.52 65.09 64.47 64.60 70.79 16.98

Table 4. CUB200 benchmark. Δ PD represents the improvement for PD compared to other models. Δ Avg. represents the improvement in

across-session average accuracy compared to other models. † identifies the results taken from their respective papers.

CIFAR100 miniImageNet CUB200

Model # params. train. time # params. train. time # params. train. time

CEC [61] 295K 0.32 12.2M 1.41 12.3M 0.96

FACT [62] 280K 1.48 11.2M 7.30 11.3M 1.41

LIMIT [63] 295K 1.02 12.2M 2.00 12.3M 0.99

CLOM [67] 350K 0.24 14M 1.56 18.9M 0.35

CPE-CLIP 400K 0.69 400K 0.65 400K 0.27

Table 5. Training time (train. time), expressed in hours, and number of learnable parameters (# params.). Results are obtained by simulating

models from their open-source training protocol. All the simulations were performed on the same GeForce RTX 2080 Ti.

Figure 2. Ablation study depicting top-1 accuracy of 5-run simula-

tions for the main model (Full Model), and three ablated versions

where accumulation is removed from the vision branch (No Ac-

cumulation), no prompts are processed by the vision branch (No

Vision Prompts), and no regularization is applied (No Regulariza-

tion). Session 0 refers to base class.

6. Conclusions

Inspired by advances in few-shot image classification and

parameter-efficient learning, we proposed a novel solution

for solving the challenging task of Few-Shot Class Incre-

mental Learning where a limited number of labeled data are

available for each session. Our proposed CPE-CLIP effec-

tively combined several technologies and modern ideas to

conceive a multimodal few-shot continual learner that main-

tains high performances over time. We demonstrated that

our proposed approach is capable of outperforming other

approaches specifically designed for FSCIL, by relying on a

small number of parameters and lower overall computational

costs. CPE-CLIP introduces an accumulation strategy for

prompt propagation that seems to be beneficial for enhancing

image representation by ensuring the best classification accu-

racy. Prompt regularization ensures instead stable learning

by reducing information loss over time.

Limitations. The CPE-CLIP architecture is built upon the

CLIP framework as its underlying backbone. CLIP lever-

ages text supervision to reason about visual concepts, which

serves as a primary advantage for FSCIL. However, this also

poses challenges when tackling tasks that lack image cat-
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egory labels, that are not readily processable by the CLIP

vocabulary, or that are inherently ambiguous, leading to

unreliable image-text matching. Additionally, the impact

of regularization on a greater number of sessions has not

been explored. Although decreasing the updating rate of

G-Prompt parameters as more classes are seen seems crucial

to avoid over-fitting, the scaling factor for the gradient ap-

proaches zero as sessions increase. In this case, the lack of

proper G-Prompt parameters update can harm generalization

on novel classes when unexpected distribution shifts occur.
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