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Abstract

Few-shot class-incremental learning (FSCIL) is gaining
prominence in real-world machine learning applications,
including image classification and face recognition. Exist-
ing methods often employ parameter freezing for the back-
bone and classify based on metric learning. However, these
methods suffer from two significant problems. Firstly, train-
ing the backbone solely on base classes limits its perfor-
mance on novel classes due to information loss. Secondly,
conventional metric-based strategies for prototype genera-
tion tend to introduce confusion in decision boundaries dur-
ing few-shot tasks. To address these challenges, we propose
a novel approach called Decision Boundary Optimization
Network (DBONet) for few-shot class-incremental learning.
To tackle the first issue, DBONet incorporates an augmenta-
tion feature extractor along with a corresponding loss func-
tion. This augmentation feature extractor combines sam-
ples from different categories to capture richer features. For
the second issue, we leverage limited sample representa-
tiveness information by introducing the Prototype Gener-
ation Module (PGM) into DBONet, enabling the genera-
tion of more representative prototypes. The prototypes pro-
duced by PGM significantly contribute to the accurate de-
lineation of decision boundaries. Furthermore, we exploit
intra-class information to enhance classification precision.
Extensive experiments on CIFAR100, miniImageNet, and
CUB200 datasets demonstrate that our proposed approach
achieves new state-of-the-art results.

1. Introduction
Image recognition has garnered significant attention in

recent years [23, 25, 27, 38, 41]. The ability of models to

acquire new visual knowledge from limited samples has be-

come a central focus for numerous researchers [10, 11, 42].

In practical applications, visual recognition systems often
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class prototype shifted with potential center. The green cir-

cle point denotes the prototype produced with limited sam-

ples, and the orange circle point denotes the potential class

center.

encounter challenges related to data privacy or device mem-

ory limitations, which pose difficulties in retraining the

model using previously learned data [46]. To address this is-

sue, class-incremental learning (CIL) has emerged as a ded-

icated approach, where the learning of each class is treated

independently. The primary objective of CIL is to enable

a learning system to continuously acquire new knowledge

from novel classes while retaining a substantial portion of

the previously learned knowledge [36].

Conventional class-incremental learning (CIL) tasks typ-

ically operate under the assumption that an ample amount

of data for novel categories is available for model learning.

However, in practical scenarios, it is often the case that there

is an insufficiency of data pertaining to novel categories,

thereby necessitating the learning system to effectively ac-

quire knowledge using limited samples [45, 60]. These spe-

cific learning scenarios are referred to as Few-Shot Class-

Incremental Learning (FSCIL) [46].

FSCIL exhibits remarkable parallels with the learning

process observed in human beings. Humans continuously

receive and assimilate new knowledge from their surround-

ings, and this learning occurs gradually over time [19]. Im-

portantly, humans tend to retain the vast majority of the

knowledge they have acquired, making it challenging to

forget previously learned information. Furthermore, hu-
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mans possess the remarkable ability to leverage their exist-

ing knowledge to comprehend novel content. This ability to

build upon prior knowledge plays a vital role in the human

learning process.

Deep learning models currently fall short of achieving

human-level performance, particularly when trained on lim-

ited samples, which often leads to underfitting issues. Ad-

ditionally, disregarding previous data while learning new

classes can result in catastrophic forgetting of the model

[36]. This problem is particularly pronounced when deal-

ing with limited samples of novel categories compared to

conventional continual incremental learning (CIL) tasks.

In recent times, several studies have employed metric

learning strategies to preserve the model’s recognition abil-

ity on base classes. Existing FSCIL frameworks [5, 6, 9,

13, 37, 46, 55, 63] have made significant advancements.

However, these methods primarily rely on optimizing the

cross-entropy loss for a single category and cannot be ef-

fectively applied when dealing with dual category virtual

samples [53, 15].

The semantic features across different categories typi-

cally exhibit a lack of generality, giving rise to three primary

challenges when dealing with novel class samples in com-

parison to previous class samples. Firstly, the features of
novel classes are often not fully expressed, resulting in the

feature vectors’ norm being statistically smaller than that of

the base class samples. Consequently, the model tends to

confuse categories between novel and base classes, for in-

stance, mistaking dolphins from the base class for sharks

in the novel class. As a result, severe category confusion

problems often occur. Secondly, the support set’s samples
are often non-representative, a common issue in real-world

applications like face recognition. Obtaining ideal photos

with strong feature representation in few-shot conditions,

such as frontal shots under good lighting, is challenging.

To overcome this, we propose a prototype generation mod-

ule (PGM) that produces superior class prototypes in latent

space, mitigating the impact of potential outliers on class

representation learning. Additionally, our analysis reveals
varying intra-class variances for each class in the latent
space. This difference in the spatial distribution of feature

vectors between classes poses challenges when using the

equal category decision method. To address this, we pro-

pose a novel classifier based on intra-class variance for a

more accurate decision boundary in latent space.

To address the aforementioned challenges, we present

a novel architecture DBONet, which comprises three key

components: the augmentation feature extractor, the proto-
type generation module, and the intra-class variance clas-
sifier. Specifically, the augmentation feature extractor aims

to obtain robust global features from images, thus achieving

fully expressed features. The prototype generation module

(PGM) aims to create more suitable prototypes that adapt

well to conditions with limited samples. Finally, the intra-

class variance classifier is introduced to tackle the decision

boundary shift problem. By effectively eliminating above

issues, our approach further enhances the overall perfor-

mance and accuracy of the model.

The contributions of this paper can be summarized as

follows:

• A novel end-to-end FSCIL learning framework, De-

cision Boundary Optimization Network (DBONet),

is proposed to acquire highly representative features,

thus achieving much better performance.

• A Prototype Generation Module (PGM) is proposed,

whereby the utilization of representative samples en-

ables the derivation of significantly improved class

prototypes in the latent space.

• An intra-class variance classifer is employed to adap-

tively adjust the class decision boundary to reduce con-

fusion between classes.

• Extensive experiments on three benchmark datasets

demonstrate the state-of-the-art (SOTA) performance

of the proposed method in FSCIL tasks.

2. Related Work
Class-incremental learning (CIL). The main content of

CIL is making learning system can continually learn knowl-

edge without forgetting [26, 28, 62]. The current meth-

ods can be generally divided into three types. Regulariza-

tion Approaches [1, 20, 35, 58] mainly adopt regularization

terms and classification loss to alleviate catastrophic for-

getting. Some methods which using rehearsal and replay

mechanism [16, 33, 36, 40] to prevent the forgetting of pre-

vious tasks. Another group of study [2, 14, 52] aim to mute

bias from most recently learned task to tackle CIL tasks. In

CIL tasks, novel classes usually have adequate samples. So

many methods proposed for CIL task may suffer from re-

duced efficacy with the condition of limited novel samples.

Few-shot learning (FSL). The purpose of few-shot

learning is to be able to learn valid information from lim-

ited samples, which usually requires pre-training or meta-

learning to obtain a model that can quickly adapt to few-shot

scene [34, 43, 50]. Related few-shot learning study primar-

ily includes model-based, metric-base, optimization-based

methods. Model-based methods [29, 30, 31] involve model

architectures specifically tailored for fast learning. Metric-

based methods [17, 22, 32, 42, 45, 49, 56] focus on how

to pull support samples and query samples in latent space,

while scaling up the distance between different classes.

Optimization-based methods [11, 39, 44] learn an optimizer

through meta learning which can quickly adapt to new cate-

gories with limited samples. Most of FSL study don’t con-

sider differentiating between base classes and novel classes

together.
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Few-shot class-incremental learning (FSCIL). There

are some finetune-based methods to tackle FSCIL tasks.

Finetune-based methods optimize parameters with novel

data using various balance mechanism to solve catastrophic

forgetting and overfitting problems [5, 9, 19, 37, 46, 63].

Recently, methods which freeze backbone during novel

classes learning perform significant results. Zhang et al.
[59] use a pseudo incremental learning method to train a

attention-base module to enhance the model performance.

Zhou et al. [61] propose forward compatible training by

assigning virtual prototypes to compress the embedding of

base classes and reserve space for novel classes. The above

methods do not effectively solve the problem of confusion

and scope imbalance in the latent space. We reckon that the

decision boundary of the latent space can be further opti-

mized by adjusting the prototype.

Prototypical learning (PL). The basic assumption of

prototypical learning is that each category has a potential

center, and samples between different categories are ap-

proximately separable in latent space [24, 42]. Yue et al.
[57] leverage prototype which can preserve semantic struc-

ture for Unsupervised Domain Adaptation. Chen et al. [4]

perform fine-grained image classification with comparing

part of images and prototypes. Li et al. [21] use limited sup-

port samples as prototype to guide few-shot image segmen-

tation. There are also some study which aim to exploit po-

tential of the prototype sufficiently. Yang et al. [54] propose

a new approach to handle outlier data by utilizing trained

prototypes and an assumed Gaussian distribution. Deng et
al. [8] argue that the prototype should be treated as a dis-

tribution instead of a point in the latent space. Inspired by

above mentioned prototypical learning researches, we pro-

pose to sufficiently explore the role of prototypes to tackle

the FSCIL tasks.

3. Method

3.1. Problem Formulation

In an N-way K-shot FSCIL task, let training set streams

asD0,D1,D2, · · · ,Dn, totally (n+1) sessions, and the cor-

responding samples label sets are Y0, Y1, Y2, · · · , Yn. The

test set streams isDt
0,Dt

1,Dt
2, · · · ,Dt

n, and the correspond-

ing samples label sets are Y t
0 , Y

t
1 , Y

t
2 , · · · , Y t

n . D0 is the

base session training sets with sufficient samples. The train-

ing label sets from different sessions are disjoint, which can

be formulated as Yi ∩ Yj = ∅ for i �= j. In other words, the

model can only access a set of specific categories of train-

ing data at different sessions. At the end of each session,

the model needs to evaluate on the previous data and cur-

rent data together. So the test set label space in i-th session

can be summarized as Y t
i = Y0 ∪Y1 ∪Y2 ∪ · · · ∪Yi−1 ∪Yi.

The novel sessions in training set usually have only a lim-

ited amount of samples. Without loss of generality, we

use N classes, and each class has K samples. Taking

miniImageNet dataset as an example, in the session 0, there

are 60 base classes, and each class has 500 training samples.

Other sessions contain 5 ways× 5 shot, totally 25 training

samples for each session.

3.2. Augmented Feature Training

Our training pipeline mainly comprises two stages. In

the first stage, we train the encoder using feature augmenta-

tion to obtain a global feature representation of each image.

In the second stage, we categorize samples into two types

based on their representativeness and then train the proto-

type generation module to obtain a prototype for each class.

In the previous work CEC [59], encoders and atten-

tion mechanisms were trained using a feature enhancement

method involving image rotation. Building upon this, we in-

troduce an innovative approach to enrich the feature space

further, leveraging manifold mixup augmentation [48]. The

architecture of our proposed method is illustrated in Fig. 2.

The h(·) indicates the pre-encoder which consists of the

first three layers of ResNet [12] backbone, and the gs(·) and

ga(·) indicate the stable feature extractor and the augmen-
tation feature extractor. This can be shown as following:

E(x) = Concat(gs(h(x)), ga(h(x))) (1)

where E(x) is the output global feature. In the following,

we will use the E(·) to represent the inference function of

the DBONet.

As depicted in Fig. 2, the model processes an input im-

age and generates two distinct feature vectors using the sta-

ble feature extractor and the augmentation feature extractor.

We refer to these feature vectors as the ”stable feature” and

the ”augmented feature” of the image, respectively. Subse-

quently, these two feature vectors are concatenated to create

a comprehensive global feature representation for the im-

age.

Our study aims to optimize high-level semantic features

by fusing diverse categories of image features. To achieve

this, we follow a three-step process: 1) We input pairs of

images from different classes into the pre-encoder, result-

ing in two dense feature maps. 2) The two feature maps ob-

tained from different categories are fused using a randomly

selected weight coefficient λ from the interval [0.45, 0.55].
3) These fused feature maps are then passed through two

feature extraction modules gs and ga, dedicated to extract-

ing stable and augmented features, respectively.

F ′ = λ ∗ h(xi) + (1− λ) ∗ h(xj) (2)

The process involves taking images xi and xj from dif-

ferent base categories and passing them through the third

layer of ResNet to obtain dense features h(xi) and h(xj).
These dense features are fused to create the combined fea-

ture F ′. Subsequently, the fused dense feature is fed into an
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Figure 2: Structure of DBONet. The fc in stage 1 denotes the output feature vector multiple with classifier weight. The © in

stage 2 denotes concatenate operation.

augmentation feature extractor to generate a global feature

representation. Finally, the global feature representation is

multiplied with matrix W as described in Eq. 3 to obtain

logits output, and the loss is calculated using Eq. 4.

l = fc(ga(F
′)) = W�ga(F ′) (3)

where l is the logit output and W is the classifier weight for

each class.

LB = BICELoss(l, λy1 , λy2 , y1, y2)

= −[
∑

k=1,2

λyk
lyk
− log(

∑

j=1,2

λyj
elyj +

∑

i �=y1,i �=y2

eli)]

(4)

where y1 and y2 are the labels of the samples which are

fused, and λy1 and λy2 (λy1 +λy2 = 1) are the correspond-

ing fusion weight for the sample feature vectors. ly1 and

ly2
are the logit output value for the class y1 and y2. The

goal of BICELoss is to enhance the recognition of virtual

categories by effectively separating them from other class

prototype vectors within the latent space.

In addition, we also optimize the pre-encoder h(·) and

the stable feature extractor gs(·) with using traditional cross

entropy loss. So our training pipeline in stage 1 can be for-

mulated as Algorithm. 1.

3.3. Cosine Variance Classifier

Consider a simple toy example, illustrated in Fig. 3,

where two distinct categories exhibit Gaussian distributions

with varying variances in the latent space. The ideal clas-

sification boundary, represented by the green dashed line

in Fig. 3, should accurately separate the two categories.

However, when utilizing an unweighted Euclidean distance

measurement for classification, the decision boundary of

the two distributions is depicted as the red line in Fig. 3,

Algorithm 1: Stage 1 training pipeline.

Input: h, gs and ga with randomly initial

parameters, D0

Output: trained models h, gs, ga
1 for epoch in max epochs do
2 for images, y in D0 do
3 F ← h(images);
4 randomly choose λ from [0.45, 0.55];
5 Fm, ym ← randomly permute dense feature

F , y in dimension of batchsize ;

6 F ′ ← λ ∗ F + (1− λ) ∗ Fm;

7 LC ← CrossEntropy(fc(gs(F )), y);
8 LB ←

BICELoss(fc(ga(F
′)), λ, 1− λ, y, ym);

9 optimize model h, gswith LC ;

10 optimize model h, gawith LB ;

11 end
12 end

which lies at the midpoint between the two distributions.

Unfortunately, this red line classification boundary leads to

an increased classification error. To address this issue, we

propose the need for further optimization of the decision

boundary within the latent space. Our objective is to min-

imize the classification error as much as possible, ensuring

an accurate separation of categories and improving the over-

all performance of the classification model.

In the latent space, the feature vectors of each class of

image occupy a certain range. In the experiment, we find

that the range of different categories is not always allocated

according to the average distance, and the range occupied

by different categories in latent space is also different. Con-
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Figure 3: Different variance Gaussian distribution.

ventional average prototype cosine distance measurement

cannot take this difference into account, so we propose a

classifier that includes the cosine variance of the category.

To enhance the precision of class probability calculation,

we assume that the data feature vector follows a spherical

Gaussian distribution, which can be formulated as follows:

S(ν;μ, σ, a) = aeσ(〈μ,ν〉−1) (5)

where ν is the input vector, a is a scalar coefficient, μ
is center vector of spherical Gaussian distribution, σ is a

scalar which can reflect the variance of the distribution, and

〈μ, ν〉 = μ�ν
||μ||2∗||ν||2 is the cosine function. We define the

training set which belongs to the i-th class as Si, and the

number of samples in Si as |Si|. We use the Eq. 6 and Eq. 7

to calculate the mean μi and cosine variance σi of Si in

latent space.

μi =
1

|Si|
∑

x∈Si

E(x) (6)

Cosine variance is defined as follow:

σi = (
1

|Si|
∑

x∈Si

〈μi, E(x)〉)γ (7)

where γ is a factor to scale σi, and then we can calculate

the probability p(y = i|x) that the sample x belongs to i-th
class using the Eq. 8.

p(y = i|x) = S(E(x);μi, σi, 1)∑C
j=1 S(E(x);μj , σj , 1)

(8)

where C is the number of total classes.

3.4. Prototype Generation Module

We propose a prototype generation module to generate

prototype vectors closer to the potentially general center for

each category, and calculate the average cosine variance for

each category to measure the coverage of the category on

the latent hypersphere space. To split representative and

weakly representative samples from training set, we need to

use the Eq. 8 to calculate the probability that one sample

belongs to its label category. And by comparing the proba-

bility and threshold ε, we can select representative samples.

And then, we label the samples of the base class 1 if it is

representative, else 0. After that, we use the encoder E(·)
to extract the feature vectors of all samples of the training

set. And we train a prototype generation module with this

feature set, the function of the module is to generate a more

precise prototype vector based on the representative sam-

ples of the support set for a class. Here we use the trans-

former architecture [47] for the prototype generation mod-

ule, the training process is shown in Algorithm. 2.

Algorithm 2: Stage 2 training pipeline.

Input: frozen Encoder E(·), D0, PGM with

randomly initial parameters

Output: trained PGM

1 for Si in D0 do
2 μi ← 1

|Si|
∑

x∈Si
E(x) ;

3 σi ← ( 1
|Si|

∑
x∈Si

〈μi, E(x)〉)γ ;

4 end
5 for Si in D0 do
6 for x in Si do
7 assign x with label 1 if p(y = i|x) ≥ ε else

0;

8 end
9 end

10 for epoch in {1, 2, · · · , total training epochs} do
11 C ← randomly sample Nc classes from base

classes ;

12 LP ← 0;

13 for c in C do
14 x← representation-balanced randomly

sample K samples from Sc;

15 μ← PGM(x) ;

16 LP ← LP + 1− 〈μc, μ〉;
17 end
18 optimize PGM with Lcos ;

19 end

During the episodic training, at each task, we select K
samples of a class to generate a prototype by using the

PGM. This training method can simulate the condition of

learning at few-shot incremental session. To improve the

robustness of PGM for weakly representative samples, we

use a representation-balanced select strategy to select sam-

ples from base classes. In our implementation for Algo-

rithm. 2, we set the K is 5 and the episodic classes Nc is 5.

At training phase for PGM, if the current epoch is less than

half of the total training epochs, we select 4 representative

samples and 1 weakly representative sample as the samples

set of a class. And if the current epoch is more than half of

the total training epochs, we select 3 representative samples
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Table 1: Comparison with the state-of-the-art on CIFAR100 dataset. The * denotes result report in corresponding paper.

Method
Average class-wise accuracy (%) ↑

PD ↓
0 1 2 3 4 5 6 7 8

Ft-CNN* 64.10 39.61 15.37 9.80 6.67 3.80 3.70 3.14 2.65 61.45
iCaRL*[36] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 50.37
EEIL*[3] 64.10 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85 48.25
Rebalancing*[14] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 50.56
TOPIC*[46] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 34.73
Decoupled-Cosine*[49] 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68 26.87
CEC*[59] 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14 23.93
Fact*[61] 74.60 72.09 67.56 63.52 61.38 58.36 56.28 54.24 52.10 22.50

DBONet 77.81 73.62 71.04 66.29 63.52 61.01 58.37 56.89 55.78 22.03

Table 2: Comparison with the state-of-the-art on miniImageNet dataset.

Method
Average class-wise accuracy (%) ↑

PD ↓
0 1 2 3 4 5 6 7 8

Ft-CNN* 61.31 27.22 16.37 6.08 2.54 1.56 1.93 2.60 1.40 59.91
iCaRL*[36] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 44.10
EEIL*[3] 61.31 46.58 44.00 37.29 33.14 27.12 24.10 21.57 19.58 41.73
Rebalancing*[14] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 47.14
TOPIC*[46] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 36.89
Decoupled-Cosine*[49] 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 24.74
CEC*[59] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 24.37
Fact*[61] 72.56 69.63 66.38 62.77 60.6 57.33 54.34 52.16 50.49 22.07

DBONet 74.53 71.55 68.57 65.72 63.08 60.64 57.83 55.21 53.82 20.71

Table 3: Comparison with the state-of-the-art on CUB200 dataset.

Method
Average class-wise accuracy (%) ↑

PD ↓
0 1 2 3 4 5 6 7 8 9 10

Ft-CNN* 68.68 43.70 25.05 17.72 18.08 16.95 15.10 10.06 8.93 8.93 8.47 60.21
iCaRL*[36] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 47.52
EEIL*[3] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 46.57
Rebalancing*[14] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 48.81
TOPIC*[46] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.26 42.40
Decoupled-Cosine*[49] 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 26.21
CEC*[59] 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57
Fact*[61] 75.90 73.23 70.84 66.13 65.56 62.15 61.74 59.83 58.41 57.89 56.94 18.96
DBONet 78.66 75.53 72.72 69.45 67.21 65.15 63.03 61.77 59.77 59.01 57.42 21.24

and 2 weakly representative samples to further exploit the

representation capture ability of the PGM.

And then we use the LP mentioned in Algorithm. 2 to

constrain the prototype to groundtruth, and the groundtruth

is set as the average feature vector of all samples of this

class. Through above training process, we can train a PGM

to obtain a accurate prototype of one class as much as pos-

sible with the condition of limited samples. We empirically

set the hyperparameter γ as 0.25 and the representativeness

threshold ε as 0.03.

4. Experiments
4.1. Datasets and implementation details

We follow TOPIC [46] and use datasets CIFAR100 [18],

miniImageNet [7] and Caltech-UCSD Birds-200-

2011(CUB200) [51] to evaluate our methods. CIFAR100

has 100 categories of images. Each category has 500

Table 4: Average class-wise accuracy of base and novel cat-

egories.

Method
Average class-wise accuracy (%) ↑

CIFAR100 miniImageNet CUB200
base novel base novel base novel

Decoupled-Cosine 72.2 10.9 69.36 10.035 76.1 9.125
CEC 71.7 15.3 69.82 14.345 76.34 16.19
Fact 75.43 17.43 71.08 16.655 78.24 23.265
DBONet 77.11 23.785 73.74 22.59 79.23 25.705

training images and 100 test images. Size of each image

is 32 ×32 pixels. miniImageNet also has 60,000 images

with 100 classes. And per class has 500 training images

and 100 testing images. Size of each image is 84 ×84

pixels. CUB200 is a fine-grained image classification

benchmark, which consists of 200 different species of

birds. It contains 5994 images for training and 5794 images

for testing. Each image has a size of 224 × 224 pixels. In

FSCIL task, we follow the setting as the same as previous
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Table 5: Ablation study on three benchmark datasets.

Dataset Method
Average class-wise accuracy (%) ↑

PD↓
0 1 2 3 4 5 6 7 8 9 10

CIFAR100

baseline 77.13 72.05 68.14 64.03 61.15 58.68 55.94 53.48 51.91 × × 25.22
ga 77.67 73.14 70.12 65.24 62.1 59.56 57.12 54.76 53.32 × × 24.35
ga+PGM 77.67 73.33 70.5 65.89 63.14 60.43 57.89 56.24 54.93 × × 22.74
ga+PGM+IC 77.81 73.62 71.04 66.29 63.52 61.01 58.37 56.89 55.78 × × 22.03

miniImageNet

baseline 73.82 70.56 66.89 63.03 60.43 57.56 54.71 51.87 49.74 × × 24.08
ga 74.24 70.92 67.88 63.84 61.46 58.83 56.09 53.37 51.49 × × 22.75
ga+PGM 74.24 71.04 68.24 64.97 62.57 60.03 57.26 54.58 53.07 × × 21.17
ga+PGM+IC 74.53 71.55 68.57 65.72 63.08 60.64 57.83 55.21 53.82 × × 20.71

CUB200

baseline 77.82 74.16 71.07 67.63 65.16 63.02 60.79 59.04 56.93 55.44 54.24 23.58
ga 78.13 74.98 71.76 68.42 66.19 64.4 62.31 60.13 58.5 57.62 55.96 21.17
ga+PGM 78.13 75.23 71.93 69.02 66.98 64.88 62.76 61.29 59.53 58.54 56.85 21.28
ga+PGM+IC 78.66 75.53 72.72 69.45 67.21 65.15 63.03 61.77 59.77 59.01 57.42 21.24
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Figure 4: Ablation study on three benchmarks. The results show that our proposed module has incremental improvements

for FSCIL task. Compared to baseline model, we improve by 3.87%, 4.08%, 3.18% on the last session class-wise average

accuracy for CIFAR100, miniImageNet and CUB200, respectively. And we achieve 3.19%, 3.37%, 2.34% decrease on

performance drop for CIFAR100, miniImageNet and CUB200.

works [46, 59, 61]. For CIFAR100, there are 60 categories

as the base data and the remaining 40 categories as the

novel data. The model learns novel data in the manner

of 5way × 5shot, with a total of 8 sessions. And for

miniImageNet, we divide it into 60 and 40 categories, with

the same setting of CIFAR100. For CUB200, we divide it

into 100 and 100 categories, respectively. The model learns

novel data in the manner of 10way × 5shot, with a total

of 10 sessions. We use ResNet20 as the backbone for the

CIFAR100 dataset, and the corresponding pre-encoder h(·)
structure is consistent with the first two residual layers of

ResNet20, gs(·) and ga(·) structure are consistent with the

last layer of ResNet. We train 100 epochs with an initial

learning rate of 0.01. We adopt ResNet18 as the backbone

architecture for the miniImageNet dataset. The pre-encoder

function h(·) aligns structurally with the first three layers

of ResNet18, while the structures of gs(·) and ga(·) are

analogous to the last layer of ResNet18. The training

process consists of 100 epochs, initialized with a learning

rate of 0.01. For the CUB200 dataset, we maintain network

consistency with the architecture used for miniImageNet.

The training process spans 100 epochs, commencing with

an initial learning rate of 0.001. Our implementation

is based on the PyTorch library, and we employ SGD

with momentum as the optimization algorithm, alongside

milestones as the scheduler.

4.2. Comparison with the State-of-the-art Methods
We report the performance over benchmark datasets CI-

FAR100, miniImageNet and CUB200 in Tab. 1, Tab. 2 and

Tab. 3. Compared with current SOTA results, we obtained

3.68%, 3.33% and 0.86% improvements at last session

class-wise average accuracy on CIFAR100, miniImageNet

and CUB200 datasets, respectively. In order to maintain

consistency in model capacity, we halve the convolution

kernel width of the last layer of ResNet, so as not to bring

about excess parameters and computations. The last layer

width of ResNet20 for CIFAR100 is 64, which we reduced

to 32, miniImageNet and CUB200 use ResNet18, and the

width of the last layer is 512, which we changed it to 256.

The performance drop is the result that the session 0 accu-

racy subtract the last session accuracy. Our performance im-

provement is also reflected in the term of performance drop

, which means that our classification accuracy improvement

is not only dependent on the base classes.

We also calculate the average accuracy of the base class

and the novel class separately, and we can see that our

model mainly improves classification performance on the

novel classes compared with base classes. Compared to

the Fact [61], we have improved the classification accu-

racy of the base classes by 1-2%, and the accuracy of the

novel classes can be improved by 2-6%, which is primarily

attributed to our innovative approach involving feature aug-
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mentation training and prototype vector optimization. Com-

pared to previous freezing backbone methods, our proposed

method achieves better performance balance on base classes

and novel classes.
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Figure 5: Channel width of the last layer (ga, gs) study on

three benchmark datasets.
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Figure 6: Performance with different hyperparameters γ on

three benchmark datasets.

(a) Features distribution output by

conventional network structure.

(b) Features distribution output by

augmentation feature extractor.

Figure 7: t-SNE visualization on miniImageNet dataset.

4.3. Ablation study

On the basis of building the baseline method, we grad-

ually add the required modules. The results are shown in

Tab. 5 and Fig. 4. ga in Tab. 5 represents the use of aug-

mented features and BICELoss in Eq. 4 to train the ga
extractor module, while baseline uses conventional samples

and cross entropy loss for training. PGM in Tab. 5 denotes

the use of prototype generation module to generate proto-

type vectors. Finally, the IC in Tab. 5 indicates the classifier

based on cosine variance is added. To assess the effective-

ness of our method, we conduct ablation experiments on

all three datasets. To ensure a fair comparison, we train ga
without utilizing manifold mixup features by substituting it

with a convolutional layer of the same structure. We train

the alternative model using cross-entropy loss and then con-

catenate the feature vectors obtained from the last two layer

modules. This demonstrates the contribution of manifold

mixup features in our overall approach.

4.4. Analysis

To investigate the impact of prototype dimension, we

conduct an experiment with different output dimensions of

two feature extractors across three datasets. The results are

presented in Fig. 5. Notably, as the number of dimension

increased, our model exhibited additional performance im-

provements. In Fig. 5, the variable d represents the sum of

the last layer width of the feature extractors ga(·) and gs(·).
We conduct a comparative experiment (Fig. 6) to investi-

gate the impact of parameter γ. Setting γ to 1 result in a sig-

nificant decrease in accuracy, indicating that excessive in-

troduction of intra-class variance information confuses the

embedded spatial classification boundary. Conversely, with

γ set to 0.25, we achieve the highest classification accuracy

in the final parameter session, reaching a better equilibrium

state.

As shown in the Fig. 7, we visualize the feature vectors

of test set samples of categories 0, 5, 10, · · · , 95 (we treat

the first category as 0) by using the t-SNE algorithm. In

order to facilitate the presentation of the results, we only

select 50 samples from each category. Fig. 7 (a) shows the

output result of the conventional network structure intro-

duced in Sec. 4.3, and Fig. 7 (b) presents the output result

of the augmentation feature extractor. From the results we

can observe that the distribution of samples of novel class

are more dispersed compared with most of the base classes.

The features by the augmentation feature extractor are often

more compact, especially on categories 65, 70, 75 and 95.

5. Conclusion
In this paper, we propose a framework based on de-

cision boundary optimization to apply in few-shot class-

incremental learning, and use the manifold mixup for fea-

ture augmentation to further improve the feature extraction

ability. The PGM produces much better class prototype to

reduce the classification error caused by the decision bound-

ary shift. The classifier considering the intra-class variance

further obtains a more accurate decision boundary in the la-

tent space. Our extensive experiments show that proposed

method achieves SOTA performance.
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