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Abstract

Class Incremental Learning (CIL) is inspired by the hu-
man ability to learn new classes without forgetting previous
ones. CIL becomes more challenging in real-world scenar-
ios when the samples in each incremental step are imbal-
anced. This creates another branch of problem, called Gen-
eralized Class Incremental Learning (GCIL) where each in-
cremental step is structured more realistically. Grow When
Required (GWR) network, a type of Self-Organizing Map
(SOM), dynamically creates and removes nodes and edges
for adaptive learning. GWR performs incremental learning
from feature vectors extracted by a Convolutional Neural
Network (CNN), which acts as a feature extractor. The in-
herent ability of GWR to form distinct clusters, each corre-
sponding to a class in the feature vector space, regardless of
the order of samples or class imbalances, is well suited to
achieving GCIL. To enhance GWR’s classification perfor-
mance, a high-quality feature extractor is required. How-
ever, when the convolutional layers are adapted at each
incremental step, the GWR nodes corresponding to prior
knowledge are subjected to near-invalidation. This work in-
troduces the Self Augmenting Task Hallucinal Unified Rep-

resentation (SATHUR), which re-initializes the GWR net-
work at each incremental step, aligning it with the incre-
mentally updated feature extractor. Comprehensive exper-
imental results demonstrate that our proposed method sig-
nificantly outperforms other state-of-the-art GCIL methods
on CIFAR-100 and CORe50 datasets.

1. Introduction

Humans and animals have an astonishing ability to con-

tinually acquire, process, and update knowledge through-

out their lifetime [27]. The ability to continually learn over

time by accumulating new knowledge while retaining and

utilizing previously learned knowledge is referred to as In-

cremental Learning (IL) [3]. Convolutional Neural Net-

works (CNN) have achieved expert-level performances in

various computer vision problems. In some challenges like

Figure 1. Feature transformation due to incremental training of

the CNN: The top row indicates the feature vectors for each class

in the feature space after learning Task 1. When the feature ex-

tractor (CNN) is trained on Task 2, the previous clusters become

invalidated. The feature vectors in the Task 1 clusters need to be

transformed to their corresponding new positions according to the

current (updated) feature extractor.

image classification, their performance has even surpassed

that of humans. However, when CNN models attempt to

learn tasks incrementally, they partially or completely forget

the previously learned knowledge, a phenomenon termed as

catastrophic forgetting [7, 24, 25].

Class Incremental Learning (CIL) [2, 12, 29, 42] is a

widely studied setting in IL, particularly in image classi-

fication problems. CIL requires the learning of new classes

for each task, where a task is defined as a group of classes.

There are certain rules that must be followed while defin-

ing a task. (i) every task should consist of the same number

of classes (ii) there should not be any overlap between the

classes in the tasks (i.e., if a class is present in task 1, it

should not be present in any of the future tasks) (iii) train-

ing samples are well-balanced across different classes.

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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However, this is not how humans and animals learn.

They learn from imbalanced data, which is more realistic:

each task does not necessarily consist of the same number of

classes, tasks are intermixed in terms of classes, and class

imbalance is prominent. In real scenarios, such as when

a robot or a system is deployed into a real-world environ-

ment, the above three rules do not hold [36]. This paradigm

creates another branch of the problem, called Generalized

Class Incremental Learning (GCIL) [26], where each task is

characterized by the following three quantities: the number

of classes appearing in each task, the specific classes ap-

pearing in each task, and the number of samples per class.

In the GCIL setting, these quantities are sampled from prob-

abilistic distributions [26]. Hence, more diverse and realis-

tic scenarios can be created by varying these distributions.

This setup more closely resembles human learning.

Along with the challenge of catastrophic forgetting in

previous CIL settings, GCIL has two other challenges,

which are class imbalance and sample efficiency [26].

The Grow When Required (GWR) [23] network, a Self-

Organizing Map (SOM), learns a cluster by dynamically

creating and removing nodes and edges when required. For

each input feature vector, only the nodes in the neighbor-

hood of that feature vector are trained according to a learn-

ing rule. This approach naturally aligns with class imbal-

ance, sample efficiency, and the non-deterministic ordering

of training samples in each task in the GCIL setting. A CNN

acts as a feature extractor, creating a feature vector for each

image input. These feature vectors are then used to train

the GWR network to form clusters. To enhance the GWR’s

classification performance, the feature extractor should be

capable of extracting class-specific features, so the feature

extractor has to be trained incrementally. However, when

the convolutional layers are adapted at each incremental

step using a CIL method, the GWR nodes corresponding to

prior knowledge may become nearly invalidated ( Fig. 1).

We have proposed the Self Augmenting Task Hallucinal
Unified Representation (SATHUR), which re-initializes the

GWR network at each incremental step, aligning it with the

current feature extractor. SATHUR takes the previous GWR

nodes and exemplar feature vectors, which are extracted

from exemplar samples by the current feature extractor, as

input. It then trains a hallucinator to create a set of aug-

mented feature vectors. The GWR network is subsequently

re-initialized by training on these augmented feature vec-

tors. The re-initialized GWR network is then trained on a

mixture of feature vectors that are extracted from new task

data and exemplar data. We have validated our approach us-

ing the CIFAR-100 and CORe50 datasets. The usage of our

method, in conjunction with state-of-the-art replay-based

CIL methods, improves accuracy by a significant margin.

Specifically, it surpasses the results by 3.70% on CIFAR-

100 and by 2.88% on CORe50.

2. Related Work
Class Incremental Learning. In general, two groups

of incremental training protocols are considered in the cur-

rent CIL literature. The first is multi-epoch CIL, where new

tasks, consisting of new classes or patterns, arrive incremen-

tally, and only data in the current task is available for model

training. During training, data of each task pass through

multiple epochs. The second is online CIL. In this case, al-

though training data still arrives sequentially, this setup only

allows the model to be trained on each sample once [9, 10].

We focus only on the multi-epoch CIL setting and refer

to it as CIL in the rest of the paper. The main problem of

CIL is catastrophic forgetting, where learning a new task

leads to degradation of performance related to previously

learned tasks. There are three main approaches to miti-

gate catastrophic forgetting in CIL [22]: (i) Regularization-

based methods, (ii) Parameter-isolation-based methods (iii)

Replay-based methods.

Regularization-based methods incorporate penalization

terms into their objective functions to address discrepan-

cies. These discrepancies typically exist between old and

new models. This is often achieved by establishing com-

parisons across various elements. These elements include

output logits [16, 29], intermediate features [6, 12, 17, 32],

and prediction heatmaps [5].

Parameter-isolation-based methods aim to increase the

trainable model parameters at each incremental step, effec-

tively counteracting the problem often seen with parame-

ter overwriting. There are two primary strategies within

this category. One approach involves gradually increas-

ing the neural network’s size to accommodate incoming

data [13,31,33,38,39]. The second strategy involves freez-

ing a section of network parameters, ensuring that prior

class knowledge remains preserved [1, 14, 18, 40].

Replay-based methods are based on the idea that there is

a specific, yet small, memory allowance for keeping a few

old-class exemplars in memory compared to the new class

data. These exemplars can be used to re-train the model in

each new incremental step [6, 12, 19, 20, 29, 34, 37]. This

re-training process usually has two parts: the first part in-

volves training the model on all new class data and the small

amount of old class exemplars, while the second part fine-

tunes the model using a balanced subset with an equal num-

ber of samples from each class [6, 12, 18, 19, 39].

Generalized Class Incremental Learning. GCIL was

introduced by Fei Mi et al. [26]. They used a replay-based

method [29] in combination with mixup [41], a method they

referred to as ReMix [26], to address the challenges asso-

ciated with GCIL. The herding technique was used to se-

lect exemplars from different classes during each incremen-

tal task training. Subsequently, mixup was applied to the

mini-batches containing samples from both the current task

and the exemplars. Mixup creates virtual training samples

3474



through the linear interpolation of raw training samples.

Grow When Required network. GWR [23] network

dynamically learns clusters by adjusting nodes and edges

for each feature vector, as detailed in Sec. 3.2. It naturally

forms distinct clusters ideal for GCIL, irrespective of sam-

ple order or class imbalances. Although a superior feature

extractor boosts the performance of GWR, incrementally

adapting convolutional layers risks invalidating the GWR

nodes that represent prior knowledge.

3. Methods
3.1. Problem Definition

As proposed in Mi et al. [26], GCIL is formulated by

structuring every task from a task-dependent distribution.

We denote the complete set of available classes as S with

size n. Given a sequence of tasks, Ct is the set of samples

that are present in the task t, and it is sampled from a task-

dependent distribution H(t).

Ct ∼ H(t) (1)

A probabilistic formulation of H(t) can be formed through

three steps.

Kt ∼ D(t) (2)

The number of classes Kt to appear in task t follows a task-

dependent discrete distribution D(t). Different scenarios

regarding the number of appearing classes in each task can

be simulated through different choices of D(t).

St ∼ R(W 1
t ,Kt) (3)

Classes appearing in task t are modeled as a random vec-

tor St ∈ IRn. St is a binary indicator vector with ones

corresponding to classes appearing in t. R depends on

the class number Kt and a class appearance weight vec-

tor W 1
t ∈ IRn. Each entry of W 1

t represents the appearing

probability of the class in task t. Classes with larger weights

are more likely to appear in the task.

Ct ∼ M(W 2
t , St) (4)

Eq. (4) is used to determine the sample size of each ap-

pearing class in St, which is encoded as random vector Ct.

Ct follows a distribution, which depends on the appearing

class St and a class sample size weight vector W 2
t ∈ IRn.

W 2
t the sample size of each class appearing in task t, and

it can model different degrees of class imbalance within a

task. In Sec. 4.3, we outline our choices for the distributions

D(t), W 1
t and W 2

t . Learning in the presence of this realistic

presentation of classes is the GCIL problem.

3.2. Proposed Solution

We propose SATHUR, an effective method that can

incrementally re-initialize the GWR network according to

(a) Incremental training of feature extractor Θ

(b) Re-initializing GWR using SATHUR and training on new task data

Figure 2. GWR-based GCIL enabled by SATHUR. (a) Training

set Strain incorporates new training samples Snew and exem-

plars SR. Smix
train is a balanced training set formed from Strain

by adding augmented samples generated through mixup. The fea-

ture extractor Θ is then trained using Smix
train. (b) Exemplar fea-

tures XR are extracted from exemplar samples SR using updated

Θ as the feature extractor. By using XR and previous task GWR

nodes V (t−1) as the inputs to the SATHUR, GWR is re-initialized.

Updated feature extractor Θ is used to extract the features Xmix
train

from Smix
train. Re-initialized GWR is trained on Xmix

train to learn the

unified representation. Red nodes represent re-initiated nodes be-

fore training on new task data, and blues nodes represent the nodes

that are created during new task training.

the updated feature extractor and train GWR on the new

task. Our method can be used as a plugin method along

with existing replay-based CIL methods.

Incremental training of feature extractor. At each incre-

mental training step, new task data is combined with the

exemplars to form a unified training set. The mixup [41]

is applied to the unified training set to generate new aug-

mented samples. The augmented samples are generated

by taking convex combinations of pairs of inputs and their

labels, which create more diverse samples for underrepre-

sented classes by mixing them with over-represented ones.

An augmented training sample (x̄, ȳ) is generated by lin-

ear interpolation between raw training samples (xi, yi)
and (xj , yj) as shown in Eq. (5). This increase in sam-

ples assists the model in learning better representations of

under-represented classes, while facilitating the learning of

smooth decision boundaries between all classes.

x̄ = λxi + (1− λ)xj , ȳ = λyi + (1− λ)yj (5)

where λ ∼ Beta(α, α), with hyperparameter α ∈ (0,∞)

As illustrated in Fig. 2a, we combine the samples corre-

sponding to the new task Snew and exemplars SR to create

a unified training set Strain. We apply mixup on Strain to

create balanced training set Smix
train, which is then used to
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train the feature extractor, Θ. After training, Θ is able to

extract the important high-level features corresponding to

Smix
train.

GWR-based GCIL. GWR networks are suitable for learn-

ing imbalanced feature distributions in the GCIL setting due

to their ability to introduce new neurons when it is required

to match new inputs.

GWR [23] network is initialized by randomly selecting

two feature vectors as inputs. The weights (w) and labels

(l) of the nodes correspond to those of the feature vectors.

The best matching unit (s) is the node that most closely re-

sembles the input. For each input, an edge connection is

generated between the best matching unit and the second-

best matching unit (t). The GWR network adds new nodes

based on two conditions. First, the activity (a) of the best

matching node, which is inversely related to the Euclidean

distance from the input, should fall below a certain activity

threshold (aT ). This indicates that the current best match-

ing node does not closely resemble the input. Secondly, the

node’s firing counter (h), must also fall below a certain fir-

ing threshold (hT ).

hs(t) = h0 − 1

αb
(1− e−αbt/τb) (6)

hn(t) = h0 − 1

αn
(1− e−αnt/τn) (7)

where h0 is the initial firing counter value. αb, αn and τb, τn
are the constants controlling behaviour of the curve. When-

ever the criterion for adding a new node is not met, the

weights of the best matching node and its directly connected

neighboring nodes are adjusted to learn the new input. εb
and εn are learning rates for the best matching node and

neighboring nodes, respectively. The firing counter of the

best matching node hs(t) is updated using Eq. (6). The fir-

ing counters of directly connected neighboring nodes to the

best matching node hn(t) are updated using Eq. (7). The

edge connections have an associated age, which is initially

set to zero and is incremented at each time step for each

edge connected to the best matching node. The only excep-

tion is the edge that links the best matching and second-best

matching units, whose age is reset to zero. Edges that ex-

ceed a certain age threshold, agemax, are removed. Any

node without direct neighbors, i.e., without edge connec-

tions, is removed.

During the inference phase of GWR, the nearest neigh-

bors to the input feature vector are determined based on Eu-

clidean distance. The label of the input feature vector is

then predicted as the most common label among these near-

est neighbors.

Re-initializing GWR using SATHUR. Drawing inspira-

tion from [35], which enhances low-shot learning through

Algorithm 1: GWR training

1 Initialize the network by randomly selecting two in-

puts to form nodes with corresponding labels.

2 for each input feature xi:

3 for each node i in the network: calculate ‖xi−wi‖
4 Select nodes s, t; s = argminv∈V{‖xi − wi‖}

and t = argminv∈V\{s}{‖xi − wi‖}
5 if (s, t) not in E : E = E ∪ {(s, t)}
5 else: age(s,t) = 0
6 Calculate activity for s; as = exp(−‖xi − ws‖)
7 if as < aT and hs < hT :

8 Add new node r; wr = (ws +xi)/2 and lr = li
9 E = E ∪ {(r, s), (r, t)}
10 E = E \ {(s, t)}
11 else:

12 Adapt the positions of the s and its neighbors;

Δws = εb × hs × (xi − ws)
Δwj = εn × hj × (xi − wj)

13 for all edges ending at s: age(s,q) = age(s,q)+1
14 Update the hs using Eq. (6)

15 Update the hj of the neighbors of s using Eq. (7)

16 for all (p, q) ∈ E :

17 if age(p,q) > agemax: E = E \ {(p, q)}
18 for all v ∈ V:

19 if no edge end at v: V = V \ {v}

Algorithm 2: SATHUR (task t, t ≥ 2)

Input : GWR nodes V (t−1) of task (t− 1)
Exemplar features XR extracted by updated Θ

Output: Re-initialized GWR,

G(t−1)∗ = (V (t−1)∗, E(t−1)∗)
1 for epochs do:

2 V
(t−1)
j ← choose m samples from V (t−1)

3 for every V
(t−1)
j,k ∈ V

(t−1)
j :

4 Select XR
j,k from XR; same class as V

(t−1)
j,k

5 XR
j ← all selected exemplar samples XR

j,k

6 Xaug = P 2(P 1(V
(t−1)
j ) +XR

j ); P = P 1 ∪ P 2

8 Xaug
train = XR ∪Xaug

9 Train hallucinator P , using classifier hP

10 Using updated hallucinator P , create Xaug
train

11 Train a GWR network on Xaug
train using Algorithm 1

learned hallucinations, we have developed a novel method-

ology, SATHUR. SATHUR is used to re-initialize the previ-

ous task GWR network G(t−1), adapting to the updated fea-

ture extractor Θ. As shown in Fig. 3, at every training itera-

tion we choose m samples from previous task GWR nodes

V (t−1) and form a node batch. Exemplar features XR are

extracted using updated feature extractor Θ. We form an ex-
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Figure 3. Re-initializing GWR using SATHUR: Following the

incremental training of feature extractor Θ, previous task GWR

nodes V (t−1) and exemplar features XR from the same class are

sampled. Sampled previous task GWR nodes are passed into P 1

and the output is combined with the corresponding class exemplar

features and passed into P 2 to obtain augmented features Xaug .

A unified training set Xaug
train is created by adding Xaug to XR.

The hallucinator P is trained end-to-end along with the classifica-

tion algorithm hP . Dotted red arrows indicate the flow of gradi-

ents during back-propagation. Once the hallucinator P is trained,

then a unified training set Xaug
train is generated by combining XR

and augmented features Xaug , created by the trained hallucinator.

GWR is re-initiated by training Xaug
train on the GWR algorithm. As

a result, new nodes are created for previous classes validating the

new task feature extractor.

emplar batch XR
j by choosing samples from XR, such that

for every node in the node batch, there is a corresponding

exemplar feature that belongs to the same class. The inter-

mediate output obtained by passing V (t−1) to P 1 is com-

bined with corresponding samples in XR and passed to P 2

to generate augmented features Xaug . Each augmented ex-

ample is of the form (x′, y), where x′ = P (x, v;wP ). Here,

(x, y) is a sample from XR, and (v, y) is the correspond-

ing sample from V (t−1). wP represents the parameters of

the hallucinator, P . An augmented training set, Xaug
train, is

formed by adding the set of augmented features, Xaug , to

the set of exemplar features, XR. The hallucinator P is

trained end-to-end along with the classification algorithm

hP . After training the hallucinator P , an augmented train-

ing set Xaug
train is created. Xaug

train. The GWR network is

re-initialized by training with Xaug
train using Algorithm 1.

4. Experiments
4.1. Baseline Methods

ReMix [26]: Mixup is applied to the new task data and

stored exemplars to generate more augmented data, helping

to reduce the class imbalance across the training data.

Mnemonics [20]: A bilevel optimization framework was

used to distill new class data into exemplars before discard-

ing them. The aim of this method is to improve the quality

of exemplars without inflating their number.

MRDC [34]: The aim of this method is to establish a bal-

ance between the quality and quantity of exemplars. This

was accomplished through image compression, utilizing the

JPEG algorithm, which resulted in each exemplar being uni-

formly downsampled.

GWR [23]: Pre-trained convolutional layers are used as the

feature extractor and GWR network is trained only on new

task data.

Full: At each task, the model is trained on all the task data

that have been arrived at the model. This is a common per-

formance upper bound in CIL.

To ensure a fair comparison between the methods, we

used the ImageNet pre-trained 32-layer ResNet [11] as the

base initialization for the feature extractor Θ. For ReMix,

Mnemonics, and MRDC, Θ is incrementally trained us-

ing the respective algorithms. In the case of Full, at ev-

ery task, base initialization is done, and then the model

is trained on all the data that the model has encountered

up to that particular task. For GWR, feature extractor Θ
cannot be trained incrementally without SATHUR. There-

fore, we consistently used the ImageNet pre-trained 32-

layer ResNet [11] as the feature extractor Θ without training

it incrementally.

4.2. Datasets

We compare the model’s performance on CIFAR-

100 [15] and CORe50 [21] datasets.

CIFAR-100: Contains 60,000 RGB images, each sized

32×32 pixels, spread across 100 classes. Each class con-

tains 500 training images and 100 testing images. We train

20 tasks incrementally, each containing 1,000 images. In

each experiment, 20,000 images are randomly selected from

the collection of 60,000 images for training.

CORe50: Contains short 15-second video sequences of an

object moving. It has 10 object categories, each with 5

distinct domestic objects, recorded under 11 different en-

vironmental conditions (e.g., various backgrounds, various

illuminations, outdoors/ indoors, etc.), 8 for training, and 3

for testing. The videos were originally recorded at 20 fps,

but we sample them at 2 fps. Due to the smoothness of

the videos, down-sampling the video frame rate is a com-

mon practice with CORe50 [8, 9]. The training set contains

12,000 RGB images, and the testing set contains 4,500 im-

ages, each sized 128×128 pixels, spread across 10 classes.

We incrementally train 10 tasks with 600 images in each

task. In each experiment, 6,000 images are randomly se-

lected from the collection of 12,000 images for training.
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(a) (b) (c)

Figure 4. Performances with varying W 2
t on CIFAR-100: At each incremental training task, mean top-1 accuracy and standard deviation

over 5 runs with different random seeds are plotted. Our method significantly outperforms existing methods.

(a) (b) (c)

Figure 5. Performances with varying W 2
t on CORe50: At each incremental training task, mean top-1 accuracy and standard deviation over

5 runs with different random seeds are plotted. Ours method significantly outperforms existing methods and reaches very close to the upper

limit “Full”.

4.3. Implementation Details

Feature extractor Θ. At each incremental task training, a

32-layer ResNet [11] is used as the feature extractor Θ, and

it is trained by stochastic gradient descent with 60 epochs.

α of ReMix is set to 1.2. The learning rate starts from 0.1

and is divided by 10 after 40 and 50 epochs; weight decay

is 1e-3 and the momentum is 0.9.

SATHUR. For our hallucinator P , we use a two layer MLP

for P 1 and three layer MLP for P 2 with ReLU as the acti-

vation function. P is trained by stochastic gradient descent

with 100 epochs. The learning rate starts from 0.1 and is

divided by 10 after 60 and 80 epochs; weight decay is 1e-

3 and momentum is 0.9. For the GWR network activity

threshold and firing threshold are set to 0.65 and 0.11, re-

spectively.

We evaluate our method on benchmarks as done in

ReMix [26]. For CIFAR-100 dataset, we set D(t) as a uni-

form distribution U(1, 100), and W 1
t as a uniform distribu-

tion over all classes. For CORe50 dataset, we set D(t) as a

uniform distribution U(1, 10), and W 1
t as a uniform distri-

bution over all classes. Three variations of W 2
t are tested;

UNIFORM: W 2
t is a fixed uniform distribution over all

classes in S.

TASK-VARIED: W 2
t varies across different tasks by

adding independent Gaussian noises (0 mean and 20% of

uniform class weight as the standard deviation) to each class

weight of UNIFORM.

LONGTAIL: W 2
t is a fixed long-tailed distribution. The

weight W 2
t,i for class i in the long-tailed distribution is gen-

erated by an exponential function W 2
t,i = μi [4]. Differ-

ent μ’s correspond to different degrees of class imbalance.

In our setting, the largest weight is 5 times larger than the

smallest.

Models are evaluated by top-1 accuracy on the balanced

test set consisting of all classes that appeared so far.

5. Results

Figure 4 and Figure 5 show the performance of the

methods, with the CIFAR-100 and CORe50 datasets respec-

tively, measured by mean top-1 accuracy and standard de-

viation, based on five experimental runs each. We com-

pare (see Sec. 4.1) ReMix, Mnemonics, MRDC, GWR, and

Full with our method. Our method outperforms the state-

of-the-art methods by significant margins in different GCIL
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Method CIFAR-100 CORe50

GWR 27.80 55.98

ReMix 28.76 58.26

Mnemonics 32.25 64.64

MRDC 35.72 66.66

Ours (MRDC+GWR+SATHUR) 39.42 69.54

Table 1. Top-1 accuracy averaged over 20 tasks for CIFAR-100

and 10 tasks for CORe50 when W 2
t = LONGTAIL. The contribu-

tion from SATHUR is essential for the good results achieved.

setups. When W 2
t = LONGTAIL, it surpasses the state-

of-the-art method, MRDC, on CIFAR-100 and CORe50 by

3.70% and 2.88%, respectively. During early incremental

tasks, our method performs better than “Full”. This is be-

cause SATHUR is creating augmented features that are so

close to real features.

5.1. Ablation study

In Tab. 1, our approach is evaluated against GWR and

MRDC. The fact that training GWR using the features ex-

tracted from the pretrained Θ as the feature extractor fails

significantly shows that Θ needs to be optimally trained at

each incremental task. MRDC exhibits good performance

in the GCIL setting compared to Mnemonics and ReMix, by

maintaining a higher number of compressed training sam-

ples within the memory buffer. Therefore, we used MRDC

in conjunction with mixup to train Θ at each incremental

task. Hence, the use of SATHUR is crucial to transform the

previously generated nodes across incremental tasks. Our

method outperformed GWR by a large margin of 11.62%
on CIFAR-100 and 13.56% on CORe50 datasets.

By splitting the allocated memory between exemplar

samples and GWR nodes, our method efficiently manages

memory resources and can be used as a plugin method with

replay-based CIL methods. Future research can be con-

ducted in the area of adaptive memory optimization be-

tween exemplar samples and GWR nodes at each incremen-

tal step.

As the GWR is adapted only to the local neighbor-

hood that is most similar to the input [23], catastrophic

interference to parameters unrelated to the current input

is effectively prevented. This focused local adaptation is

lightweight in terms of computation and memory require-

ments, compared to backpropagation-based learning with

entire model adaptation [28]. Once the feature extractor is

well-trained on all the new classes, GWR can incremen-

tally learn new instances [21] of each class from a very

small number of samples without the need for fine-tuning

the feature extractor. This makes our approach notably ca-

pable of performing collaborative cloud and edge comput-

ing [28, 30].

6. Conclusion
Generalized Class Incremental Learning (GCIL) repre-

sents a more realistic continual learning paradigm where

each incremental task is customized based on probabilis-

tic distributions. Therefore, different realistic scenarios can

be simulated by altering these distributions. GWR net-

works inherently possess the ability to learn distributions

by managing class imbalance, sample efficiency, and the

non-deterministic ordering of training samples. However,

the performance of GWR is constrained by the fixed feature

extractor used to extract feature vectors from images. In this

work, we propose a method to train the GWR network while

incrementally adapting the feature extractor. We introduce

a Self Augmenting Task Hallucination Unified Representa-
tion (SATHUR) to re-initialize the GWR network at each in-

cremental step, thereby adapting to the updated feature ex-

tractor. Our method’s effectiveness in addressing the GCIL

problem is demonstrated by our successful results with the

CIFAR-100 and CORe50 datasets. In the context of con-

tinual learning, our research expands the capacity to learn

from data samples that represent realistic conditions. It fa-

cilitates the accumulation of new knowledge while concur-

rently mitigating the issues of catastrophic forgetting and

class imbalance.
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