
Looking through the past: better knowledge retention for generative replay in
continual learning

Valeriya Khan1, Sebastian Cygert1,2, Bartłomiej Twardowski1,3,4, and Tomasz Trzciński1,5,6,7

1IDEAS NCBR, 2Gdańsk University of Technology, 3Computer Vision Center, 4Universitat Autònoma Barcelona, 5Warsaw

University of Technology, 6Jagiellonian University, 7Tooploox

Abstract

In this work, we improve the generative replay in a contin-
ual learning setting.We notice that in VAE-based generative
replay, the generated features are quite far from the origi-
nal ones when mapped to the latent space. Therefore, we
propose modifications that allow the model to learn and gen-
erate complex data. More specifically, we incorporate the
distillation in latent space between the current and previous
models to reduce feature drift. Additionally, a latent match-
ing for the reconstruction and original data is proposed to
improve generated features alignment. Further, based on the
observation that the reconstructions are better for preserving
knowledge, we add the cycling of generations through the
previously trained model to make them closer to the origi-
nal data. Our method outperforms other generative replay
methods in various scenarios.

1. Introduction

A popular setting for continual learning is Class Incremen-

tal Learning (CIL), where the goal is to train the classifier

on new classes in consequent incremental steps [8]. Typi-

cally, different types of regularizations are applied [6, 12],

however, without using any exemplars of the previous tasks,

the results are far away from being satisfactory. Hence, there

is an interest in generative models [1], which allow replay-

ing the synthetic data from previous tasks using a trained

generative model.

Generative replay models often have poor results on

datasets with more complex data or a greater number of

different classes [5]. This is mainly because modeling high-

dimensional images in incrementally trained generative mod-

els is very challenging, as from task to task the quality of gen-

erated data degrades. Therefore, some recent works [7] in-

corporated feature-based replay when the data is first passed

through the trained and frozen feature extractor, and only

then it is used for training the generator part. One significant

benefit of utilizing feature replay is that the distribution that

needs to be learned by the generative model is usually much

simpler and has lower dimensionality.

One of the recent works in the generative replay that uti-

lizes the feature replay is Brain-Inspired Replay (BIR) [11].

This work performed several modifications to make varia-

tional autoencoder able to learn and generate more complex

data, even in long sequences. Upon in-depth analysis, we

have observed, that there is still a significant difference be-

tween features from the real data and those produced by the

generator. We hypothesize that this may have a detrimental

effect on the quality of the data replay, and hence we add

two modifications to the model that mitigate the problem.

Overall, the main contributions of this work are threefold:

• We analyzed existing feature-generative replay meth-

ods for class-incremental learning and identified the

weaknesses of recent VAE-based approaches, such as

degraded generated samples and a mismatch in the dis-

tribution of current features and generated ones.

• We propose a new method for class-incremental learn-

ing with generative feature replay. Our method im-

proves the matching of latent representations between

reconstructed and original features through distillation,

and using cycling of generative replay to effectively

reduce the discrepancy between new and old samples

for classification.

• Through a series of experiments, we demonstrate that

our method significantly outperforms the baseline ap-

proach (BIR).

2. Method
2.1. Problem definition

In this work, we focus on image classification in a class-

incremental setting. The model is trained on the sequence

of tasks T1, T2, ..., Tn. The training data {X(t), Y (t)} is

drawn from the distribution D(t), where X(t) are the training

samples, Y (t) are the ground truth labels, and 1 ≤ t ≤ n

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

3496

Figure 1: Principal Component Analysis (PCA) plots were computed on original latent vectors and generated ones when doing

0, 10, and 20 cycles respectively. By looking at both the PCA plots and Fréchet distances we can observe the generated latents

are more aligned with the original ones when using an appropriate number of cycles.

is the current task id. In this context, the task means an

isolated training phase with access only to this task data

(cannot recall old data).

2.2. Baseline model

Our work is based on the Brain-Inspired Replay (BIR)

method [11]. The model contains two main parts: a pre-

trained feature extractor and a symmetrical VAE on top

of it. The VAE is used as a feature generator in BIR to

replay old knowledge. It consists of the encoder qφ and

the decoder pψ . The encoder maps the input x to stochastic

latent variables z, and the decoder maps these latent variables

back to reconstructed vector x̂. Usually, a VAE model is

trained by maximizing a variational lower bound on the

evidence (ELBO), which is analogous to minimizing the

following per-sample loss:

LG(x;φ, ψ) = Ez∼qφ(.|x)[− log pψ(x|z)]
+DKL(qφ(.|x)||p(.)) = Lrecon(x;φ, ψ)+Llatent(x;φ),

(1)

where qφ(.|x) = N (μ(x), σ(x)2I) and p(.) = N (0, I)
are the posterior and prior distributions over the latent vari-

ables respectively, and DKL is the Kullback-Leibler diver-

gence.

To generate samples of specific classes, the standard nor-

mal prior is substituted by the Gaussian mixture with a sepa-

rate distribution for each class.

For the current task, classification loss is given by:

LC(x, y; θ) = − log pθ(Y = y|x), (2)

where pθ is the conditional probability distribution defined

by the parameters of the model.

For the replay part in BIR, the knowledge distillation loss

is used instead of classification loss. Usually, knowledge

distillation [4] is incorporated in transferring the knowledge

from the teacher model to the student model. It is performed

by minimizing the loss where the target is the result of the

softmax function with temperature on the teacher model

logits. The distillation loss is calculated as follows:

LD(x, ỹ; θ) = −T 2
Nclasses∑

c=1

ỹc log p
T
θ (Y = x|x), (3)

where T is the softmax temperature.

2.3. Improved feature replay

In this section, we describe three improvements that we

propose to the base method that address particular problems

with VAE-based feature replay: (1) reconstruction misalign-

ment, (2) features drift in continual learning, (3) discrepancy

between generated features and ones coming from the origi-

nal data.

2.3.1 Latent matching for reconstructions and original
data

The first modification that we add is an additional loss term

for minimizing the difference between the latent vectors of

the original sample and its reconstruction. In order to do

that we pass the original sample x through the encoder and

obtain the latent vector for the original sample zo. Then

we pass this latent vector through the decoder to get the

reconstruction x̂. After that, we pass the reconstruction

through the encoder again and receive the latent vector zr.

We utilize the mean squared error (MSE) loss for measuring

the difference between two vectors:

Llatent match(zo;φ, ψ) = −1

2
(zr − zo)

2 (4)

3497

2.3.2 Latent distillation

The BIR method, as described above in Sec 2.2 has no mech-

anism for preventing feature drift. Hence, we add a latent dis-

tillation loss which is similar to the feature distillation [10]

however performed on the latent space level, similar as in [7].

During the training of task t, we use the previously trained

model consisting of encoder Et−1 and decoder Dt−1. We

use additional loss between the latent vector obtained by

passing the sample through the previous model encoder zt−1

and the latent vector produced by the current training model

encoder zt. The calculation of difference coincides with the

calculation of latent matching loss defined before but with

different inputs given:

Llatent distill(zt−1;φt−1,t, ψt−1,t) = −1

2
(zt − zt−1)

2 (5)

2.3.3 Cycling

Even with the proposed changes, we hypothesized that there

might be a large distance between generated latents and

original ones. Using the motivation from [2] we decided to

pass the generations during training several times through the

previous model, to make the generations closer to reconstruc-

tion. In the mentioned paper, authors use a similar approach

in a context of classifier cards that capture and reconstruct

knowledge from previous tasks better. In our case, we do

not use the memory buffer to save any data and generate the

features using the previous model. To verify our assump-

tion we measure the distance between original features and

generated ones we compute the Fréchet distance [3], which

measures the distance between two Gaussian distributions.

Figure 2 shows how the Fréchet distance is reduced between

generated latents and original ones as we use cycling. This

motivates us to incorporate it during training.

Figure 2: Fréchet distance between original and generated

latents as a function of a number of cycles. 0 stands for the

standard model (no cycling). As we increase the number of

cycles (up to some point) the generated latent vectors match

more closely those from original data.

In our improved version of the baseline VAE method

(BIR) we combine all of the described components into a

single training objective function for the class-incremental

learning session. It consists of two main parts namely Lcurrent

and Lreplay. Lcurrent is the loss that is calculated for the data

of the current task, and it is given by:

Lcurrent = LG + LC + Llatent match (6)

Lreplay is calculated for the generations as follows:

Lreplay = LG + LD + Llatent distill (7)

The final loss function is the combination of these two losses:

Ltotal = Lcurrent + Lreplay (8)

We use this loss to train the encoder, decoder, and clas-

sifier with current task data and data from the generative

feature replay, additionally aligned with cycling through

VAE. For the final loss, we start with a simple version with-

out using any additional tradeoffs (coefficients) to balance

each component.

3. Experimental setup
We utilize PyTorch as our framework [9]. We pretrain

ResNet-32 as the feature extractor on the first 50 classes of

the CIFAR-100 after randomly shuffling the data. For the

pretraining stage, we use strong data augmentations from

the PyCIL framework [13], which improves the performance

of generative replay methods. In incremental steps, when

we use an already pretrained feature extractor, we change

data augmentation to one introducing less distortions to the

inputs: images are firstly padded by 4 and then are randomly

cropped to have size 32×32. In addition, we use random

horizontal flips for augmentation.

4. Results and Analysis
We performed the experiments on CIFAR-100 with the

first task containing 50 classes. The rest 50 classes were

split equally into 5, 10, and 25 tasks. To evaluate the overall

performance we calculate average incremental accuracy over

all tasks. It is obtained by taking the average of accuracies

after each task.

The average incremental accuracies are shown in Table 1,

and the accuracies after each task for T = 5, 10, 25 are shown

in the form of plots in Figure 3. Our method outperforms the

regularization methods, and also the baseline BIR method.

BIR combine with the SI is better than the other methods

for six tasks, however, it falls behind if the number of tasks

is increasing. In our method, we change the regularization

methods from SI to distillation-based for latent alignment.

By that, we see systematic improvements in all scenarios.

3498

Figure 3: Comparison of average accuracies after each task for 6, 11, and 26 tasks with the first task containing 50 classes.

Table 1: The average incremental accuracies on CIFAR 100

with the first task containing 50 classes and the rest 50 classes

split into 5, 10, and 25 tasks equally.

CIL Method T=6 T=11 T=26
SI 35.46 26.42 15.42

EWC 32.66 23.56 13.37

LwF 51.38 43.31 22.56

BIR 54.22 51.93 45.59

BIR+SI 57.02 52.39 47.95

Finetune 32.46 23.3 13.33

Ours 59.78 57.2 53.62
Joint 64.7

4.1. Number of cycles

We perform the analysis of how the number of cycles

influences the average incremental accuracy for T = 6.

As Figure 4 shows the accuracy firstly drops but with an

increased number of cycles the performance improves by a

significant margin. The number of cycles should be treated

as a hyperparameter and tuned for different datasets and split

scenarios.

Figure 4: Average incremental accuracy of the model de-

pending on number of cycles for T=6.

Table 2: Ablation study of our method for CIL setting with

T=6 and CIFAR-100. Avg. inc. accuracy is reported for

ResNet32.

Approach Latent match Latent 10 cycles Acc.(%)

distillation

baseline method - BIR 54.22

w/ latent match � 56.21

w/ latent distillation � � 58.46

w/ 10 cycles � � � 59.78

4.2. Ablation study

We perform an ablation study of our method. By start-

ing from the baseline model (BIR), we add one by one the

modifications that we propose. The results of the ablations

study are presented in Table 2. As can be seen, all the ele-

ments of our method contribute significantly to the overall

performance, where in total we reach 5.56% of average in-

cremental accuracy in comparison to BIR.

5. Conclusions and Future Work
In this work, we propose a set of improvements for gener-

ative replay in class incremental learning. We observe that

the currently used approach for feature-level replay suffers

from the mismatch of latent vectors between original and

regenerated samples. Based on that we add a loss function

that aligns the latent vectors together. On top of that, we have

proposed a cycling procedure, which passes the generated

features through the model several times, before being used

in the training. Through, the ablation study we have shown

the improvements coming from each of the introduced com-

ponents.

For future work, we aim to scale the proposed solution

to more challenging datasets, such as ImageNet, and longer

sequences of more diversified tasks. Another interesting

direction is to prepare VAE-based feature replay models for

task-free scenarios in CIL.

3499

References

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio, Generative adversar-
ial nets, Advances in Neural Information Processing

Systems, 2014.

[2] Saisubramaniam Gopalakrishnan, Pranshu Ranjan

Singh, Haytham Fayek, Savitha Ramasamy, and Arul-

murugan Ambikapathi, Knowledge capture and replay
for continual learning, Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vi-

sion, 2022, pp. 10–18.

[3] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter, Gans trained
by a two time-scale update rule converge to a local
nash equilibrium, NeurIPS, 2017.

[4] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean,

Distilling the knowledge in a neural network, NIPS

Deep Learning and Representation Learning Workshop,

2015.

[5] Timothée Lesort, Hugo Caselles-Dupré, Michael

Garcia-Ortiz, Andrei Stoian, and David Filliat, Genera-
tive Models from the perspective of Continual Learning,

IJCNN, 2019.

[6] Zhizhong Li and Derek Hoiem, Learning without for-
getting, Computer Vision - ECCV 2016 - 14th Euro-

pean Conference, Amsterdam, The Netherlands, Octo-

ber 11-14, 2016, Proceedings, Part IV, Lecture Notes

in Computer Science, vol. 9908, 2016, pp. 614–629.

[7] Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz,

Bogdan Raducanu, Andrew D Bagdanov, Shangling

Jui, and Joost van de Weijer, Generative feature re-
play for class-incremental learning, Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, 2020, pp. 226–227.

[8] Marc Masana, Xialei Liu, Bartlomiej Twardowski,

Mikel Menta, Andrew D. Bagdanov, and Joost van de

Weijer, Class-incremental learning: Survey and perfor-
mance evaluation on image classification, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence

(2022), 1–20.

[9] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,

Alban Desmaison, Luca Antiga, and Adam Lerer, Au-
tomatic differentiation in pytorch, (2017).

[10] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-

hou, Antoine Chassang, Carlo Gatta, and Yoshua Ben-

gio, Fitnets: Hints for thin deep nets, International Con-

ference on Learning Representations (ICLR) (2015).

[11] Gido M Van de Ven, Hava T Siegelmann, and An-

dreas S Tolias, Brain-inspired replay for continual
learning with artificial neural networks, Nature com-

munications 11 (2020), no. 1, 4069.

[12] Friedemann Zenke, Ben Poole, and Surya Ganguli,

Continual learning through synaptic intelligence, In-

ternational Conference on Machine Learning, ICML

2017, 2017.

[13] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-

Chuan Zhan, Pycil: a python toolbox for class-
incremental learning, SCIENCE CHINA Information

Sciences 66 (2023), no. 9, 197101–.

3500

