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Abstract

Continual learning is increasingly sought after in real-
world machine learning applications, as it enables learning
in a more human-like manner. Conventional machine learn-
ing approaches fail to achieve this, as incrementally updat-
ing the model with non-identically distributed data leads to
catastrophic forgetting, where existing representations are
overwritten. Although traditional continual learning meth-
ods have mostly focused on batch learning, which involves
learning from large collections of labeled data sequentially,
this approach is not well-suited for real-world applications
where we would like new data to be integrated directly. This
necessitates a paradigm shift towards streaming learning.
In this paper, we propose1 a streaming version of regular-
ized discriminant analysis as a solution to this challenge.
We combine our algorithm with a convolutional neural net-
work and demonstrate that it outperforms both batch learn-
ing and existing streaming learning algorithms on the Ima-
geNet ILSVRC-2012 dataset.

1. Introduction
Continual learning, also known as lifelong learning,

refers to the ability of a learning system to sequentially ac-

quire and adapt knowledge over time. This type of learning

mimics animal learning [8] and is increasingly sought after

in various domains such as medical diagnostics [22], au-

tonomous vehicles [40], and finance [35], where the learner

needs to continually adapt to changing data. The major

challenge in continual learning is the phenomenon of catas-
trophic forgetting [9, 31]. It refers to the situation where a

naively incrementally trained deep neural network forgets

previously learned representations to specialise to the new

task at hand.

Traditionally, the bulk of research [45] in continual

learning has primarily concentrated on batch learning ap-

1https://github.com/SonyCSLParis/Deep_SRDA.git

Figure 1. Deep SRDA model diagram.

proaches, which process data in fixed batches. In this set-

ting, a continual learner typically iterates multiple times

over the given task in an offline manner, allowing them to

achieve satisfactory performance. However, this approach

requires storing all data from the current task for training,

which is not suitable for on-device learning.

As a result, recent research has emerged in the field of

Online Continual learning [27], where data arrives in small,

incremental batches and previously seen batches from the

current or previous tasks are no longer accessible. There-

fore, a model must effectively learn from a single pass over

the online data stream, even when encountering new classes

(Online Class Incremental, OCI) or data non-stationarity,

such as new background, blur, noise, illumination, and oc-

clusion (Online Domain Incremental, ODI).

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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We take this scenario one step further and consider a

streaming case of the online continual learning scenario,

where a learner learns from batches of size 1. This particu-

lar case of Streaming learning aims to develop methodolo-

gies that can efficiently learn from streaming data, enabling

continuous adaptation without relying on complete batches.

Specifically, we concentrate on the application of classifica-

tion in computer vision, focusing on the general scenario of

Online Class Incremental.

In this paper, we aim to contribute to the field of con-

tinual learning by proposing a novel approach called Deep

Streaming Regularized Discriminant Analysis (SRDA).

Building upon the foundations of Deep Streaming Linear

Discriminant Analysis (SLDA) [14], our method combines

SLDA with a streaming version of Quadratic Discriminant

Analysis (QDA) to achieve state-of-the-art performance. As

done in [14], we combine our model with a convolutional

neural network (CNN) and empirically demonstrate its su-

periority over the other streaming and batch learning meth-

ods on the ImageNet ILSVRC-2012 dataset [39]. To the

best of our knowledge, this use of a regularized discrim-

inant analysis method with a neural network represents a

novel contribution that has not been explored before.

This paper makes the following contributions:

1. We present the SQDA and SRDA algorithms. We show

that SQDA does not generalize to high dimensional

problems and present SRDA as a solution.

2. We demonstrate that SRDA outperforms state-of-the-

art streaming and continual learning algorithms.

2. Related work
2.1. Continual Learning

Continual learning addresses the challenges of catas-

trophic forgetting that occur when training a model incre-

mentally, breaking the usual i.i.d. assumption on the train-

ing data. This problem arises from the plasticity dilemma

[1] and has been heavily studied in recent years [45]. Var-

ious continual learning scenarios have been developed to

continually train models, with the three main ones being

task incremental, class incremental, and domain incremen-

tal.

In the task incremental setting, different training steps

are identified by a label. Models trained in this setting tend

to perform well because there is an indication of the task

in the data. However, this scenario is not very realistic as

real-world data is not typically labelled by tasks. The class

incremental scenario considers the real-world scenario of

adding new classes without any task delimiters. Lastly, in

the domain incremental scenario, the focus is on dealing

with the addition of new domains or changing environments

without any explicit task labels.

To mitigate catastrophic forgetting, several methods have

been employed. The main ones include regularization [26,

44, 20, 49, 3, 23], rehearsal or pseudo-rehearsal [38, 41, 37],

combined [18, 5, 24], and architectural [29, 25]. Notably,

the rehearsal and pseudo-rehearsal categories have shown

the most promising results. In these approaches, the learner

stores previously encountered samples in a buffer for fu-

ture training [38]. In some instances, pseudo-rehearsal tech-

niques explore the replacement of the buffer with a genera-

tive model [41, 37].

2.2. Online Continual Learning

Online continual learning is a more challenging subset

of continual learning where data arrives in an online fashion

one tiny batch at a time and previously encountered batches

are not accessible. This field builds upon existing methods

for continual learning while adding specific tricks to tackle

this scenario. In this online setting, recent works [30, 16, 47,

2, 27] have shown that the Softmax layer and its associated

Fully-Connected layer suffer from task-recency bias, where

those layers tend to be biased to the last encountered classes.

This has prompted the creation of multiple tricks to alleviate

this problem. One example is the application of various

tricks in replay-based scenarios:

• Labels Trick [50]: Cross-entropy loss calculation con-

siders only the classes present in the mini-batch, pre-

venting excessive penalization of logits for classes ab-

sent from the mini-batch.

• Multiple Iterations [4]: A single mini-batch is stored

in a buffer and iterated upon multiple times. In ad-

dition to that, previously stored experiments are also

replayed.

• Nearest Class Mean Classifier: Replaces the last bi-

ased fully connected classification layer by a nearest

mean classifier such as in iCarl [36].

• Separated Softmax [2]: Since one softmax layer re-

sults in a bias explained in [30, 16, 47, 2, 27], this tech-

nique employs two Softmax layers one for old classes

and one for new classes. Thus training new classes will

not overly penalize the old logits.

• Review trick [6]: Adds an additional fine-tuning step

using a balanced subset of the memory buffer. This

trick is used in the End-to-End method used in our

benchmarks 5.3.

However, when the batch size is reduced to one, the

Stochastic Gradient Descent (SGD) usually employed in

most of these methods becomes noisy, making convergence

challenging. This is precisely where streaming learning

comes into play.
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2.3. Streaming Learning

Streaming learning, a field of study since 1980 [33],

primarily focuses on i.i.d data streams and utilizes online

learning methods. However, due to the Softmax bias and

SGD instability for batches of size 1, regular online learning

methods are not optimal for streaming learning on non-i.i.d
data streams.

For this case, one area of streaming learning considers

the use of streaming decision trees [21], where Hoeffding

decision trees [17] are adapted to avoid catastrophic forget-

ting. Those can also be combined into Streaming forests

[21, 46]. However, the issue with these types of methods

is that they are slow to train [11], and require extensive hy-

perparameter tuning, making them unsuited for fast-paced

streaming scenarios and real-time on-device learning.

Another approach involves employing a Nearest Mean

Classifier [32] instead of a Softmax layer. Research con-

ducted by [28] has demonstrated that this simple yet ef-

fective substitute not only addresses recency bias but also

avoids structural changes in the Fully-Connected layer

when new classes are encountered. Notably, this method

has been effectively employed by iCarl [36].

Another method used is Exstream [13]. This method

only updates fully connected layers of a CNN while main-

taining a prototype for each class. It also has a policy for

managing the buffer when it is full, merging the two closest

exemplars. But as we will see in section 5.5, this method

suffers in terms of computation time as it requires, in this

case, 64 hours to run on our experiment, whereas SRDA

requires 12 hours.

Especially relevant to this paper is Streaming LDA [34]

that was first used for data streams and has since been

adapted in [14] to work with CNNs. SLDA uses running

class means and a common covariance matrix for all classes

to assign labels to inputs based on the closest Gaussian dis-

tribution.

3. Problem Setting
We consider ensembles X and Y, representing our data-

points and labels, respectively. We aim to train a model F
with parameters θ to accurately classify classes in �1,C�,
where C ∈ N∗. To achieve this, we adopt a streaming fash-

ion approach, where each datapoint x ∈ X is individually

sent to the model for fitting. Additionally, we adopt a class

incremental scenario by ordering the samples in batches of

classes. We consider this type of scenario to be the most

general as it is similar to animal and human learning sce-

narios.

4. Deep Streaming RDA
Similar to Hayes and Kanan’s work [14], our model can

be formally divided into a composition of two distinct func-

tions G and F, such as y = F(G(x)). G is comprised of the

initial layers of a CNN, specifically a ResNet-18 [15] in our

case, while F represents our SRDA head. The early layers

of a CNN, such as those in G, tend to learn filters that ex-

hibit minimal variation across large natural image datasets

and demonstrate high transferability [48]. Therefore, we

made the decision to freeze the parameters of G and solely

focus on training F.

The following subsections will present our SRDA

model. We will start by presenting discriminant analysis

before presenting an initial quadratic streaming version that

led to our deep SRDA algorithm.

4.1. Discriminant Analysis

Discriminant analysis is a traditional machine learning

algorithm that can be used for classification [12]. It works

on the hypothesis that the data follows a Gaussian multi-

variate distribution that is used to calculate the log posterior

probability using Bayes’ rule.

For each training example x ∈ X and k ∈ �1,C�, the goal

is to calculate the posterior probability in order to classify

correctly. The Bayes’ rule on the posterior probability of

being in class k for an element x is:

P(y = k|x) =
P(x|y = k)P(y = k)

P(x)
(1)

With P(x|y = k) modeled as a multivariate Gaussian distri-

bution with a mean μk and a covariance Σk:

P(x|y = k) =
exp (− 1

2
(x − μk)tΣ−1

k (x − μk))

(2π)C/2|Σ|1/2 (2)

According to equations 1 and 2, the log of the posterior or

discriminant γk is given as follows:

γk = −1

2
log |Σk | − 1

2
(x − μk)tΣ−1

k (x − μk)

+ log P(y = k) + B
(3)

Where B ∈ R is a constant.

Finally, the classification rule is written as:

F(x) = arg max
k
γk (4)

With no further assumptions, this is referred to as

Quadratic Discriminant Analysis (QDA). Linear Discrim-

inant Analysis (LDA) and the streaming version of it [14],

constrains equation 3 and considers equal covariance matri-

ces between classes.

4.2. Streaming Discriminant Analysis

4.2.1 Quadratic

In order to adapt equation 3 to streams of data we need to

calculate μk, Σk, and Σ−1
k in a streaming fashion. We choose

to replace those values by their empirical estimators.
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We consider a new element zt and k ∈ �1,C�. The update

functions are written as follows, where:

• c is the vector of encountered classes:

c(k=y,t+1) = c(k=y,t) + 1 (5)

• μ̂ is the saved class means:

μ̂(k=y,t+1) =
c(k=y,t)μ̂(k=y,t) + zt

c(k=y,t) + 1
(6)

• Σ̂ is the vector containing all the class covariance ma-

trices:

Σ̂(k,t+1) =
tΣ̂(k,t) + Δt

t + 1
(7)

Δt =
t(zt − μ̂(k=y,t))(zt − μ̂(k=y,t))

T

t + 1
(8)

• Λ is the inverse of Σ regularized with a shrinkage co-

efficient ε:

Λ(k,t) = [(1 − ε)Σ̂(k,t) + εI]−1 (9)

• P(y = k) is calculated by incrementally and uniformly

updating it for seen classes at time t. For a balanced

dataset, this factor can be considered constant but is

important for unbalanced datasets serving as a correc-

tive term.

P(y = k)t =
c(k=y,t)∑C

n=1 c(k=n,t)
(10)

Applying those updates to equation 3 leads to a stream-

ing version of QDA mentioned by Hayes and Kanan [14].

But the problem with SQDA is that, in high dimensionality,

the number of datapoints needed to correctly empirically es-

timate the covariance matrices of each class are high [10].

As we will show in section 5, this approach struggles to

translate to our high dimensional problem and mostly works

with low dimensional datasets or ones with numerous ex-

amples per class. This prompted us to look for a regular-
ized alternative that solves this issue.

4.2.2 Regularized

Friedman [10] proposed a compromise between LDA and

QDA, that shrinks the separate covariances of QDA to-

ward a common covariance as in LDA. Using a coefficient

α ∈ [0, 1], the regularization targets the class covariance

matrices as follows:

Σ̄(k,t) = αΣ̂(k,t) + (1 − α)Σ̂t′ (11)

Where Σ̂(k,t) is the empirical class covariance calculated

through QDA (eq.7), and Σ̂t′ the empirical covariance ma-

trix calculated with SLDA, in this equation 12:

Σ̂t′+1 =
t′Σ̂t′ + Δt′

t′ + 1
(12)

Replacing this new regularised Σ̄ in equations 9 and 3 gives

us SRDA.
The coefficient α controls the degree of shrinkage of

the individual class covariance matrix estimates towards the

pooled estimate. Since it is often the case that even small

amounts of regularization can largely eliminate quite drastic

instability [43], some values of α have the potential of su-

perior performance when the population class covariances

substantially differ [10]. This performance boost is clearly

shown in section 5.

5. Experiments & Results
5.1. Baselines

We conducted a comprehensive analysis by comparing

our method with both streaming methods and batch stream-

ing methods. To evaluate the performance of our model,

we utilized the metric described in [13, 19], which involves

normalizing a model’s performance by the offline model’s

performance:

Ωall =
1

T

T∑

t=1

ρt

ρoffline,t
(13)

In our case, ρt refers to the top-5 accuracy of our model at

time t.
An Ωall of 1 indicates that the continual learner performs

equally well as the offline model. While it is theoretically

possible to achieve results higher than one if the continual

learner outperforms the offline model, such instances are

rare in practice.

Figure 2. Top-5 Accuracy on ImageNet ILSVRC-2012. We com-

pare our SRDA with α = 0.55 to SQDA and SLDA with a plastic

(non-fixed) covariance matrix.
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For comparison, we use the models and results of [14]

as we follow the same experiment settings. We don’t use

models that require task labels as this is not compatible with

this more general class incremental learning.

5.2. Initialization

As was done in previous works [14, 6, 36], we initialize

F and G with a 100 fixed randomly selected classes. We

use the same weights for G as [14] for the first 100. The

900 remaining classes are trained incrementally with a fixed

representation for G as mentioned in section 4.

5.3. Results

As shown in table 5.3, our method outperforms the

streaming state-of-the-art by 5 % and is very close to the of-

fline training of the last layer. SRDA also outperforms iCarl,

and End-to-End, which are methods that update the whole

model and can iterate multiple times on the data. It should

be noted that SQDA, as mentioned earlier, struggles in high-

dimensional settings due to the limited per-class availability

of data points required for accurate estimation of covari-

ance matrices. To address this limitation, SRDA serves as

a corrective measure by leveraging the well-estimated LDA

covariance matrix in combination with the estimated class

covariance matrices. The figure 3 provides visual evidence

supporting our findings, with a grid search CV revealing the

optimal α value of 0.55 for this experiment. Better results

can potentially be achieved by using a more recent back-

bone, such as EfficientNets [42], enabling higher accuracy

with a lighter model more adapted to on device-learning.

Table 1.Ωall accuracy on ImageNet. The results marked with * are

taken from [14] as our experiment follows the same conditions.

Models Streaming CLS-IID

Output Layer Only:
Fine-Tuning* Yes 0.146

ExStream* [13] Yes 0.569

SLDA [14] Yes 0.752

SQDA (ours) Yes 0.677

SRDA (ours) Yes 0.801

Representation Learning:
Fine-Tuning* Yes 0.121

iCaRL* [36] No 0.692

End-to-End* [6] No 0.780

Offline Upper Bounds:
Offline (Last Layer) No 0.853

Offline No 1.000

Figure 3. Variations of Top-5 Accuracy on ImageNet ILSVRC-

2012 with regard to α. An α = 0 represents a regular SLDA,

whereas an α = 1 represents an SQDA.

5.4. Hyperparameter tuning

Because this method requires the adjustment of a hyper-

parameter, alpha, one would think that it cannot be read-

ily used out of the box. However, in contrast to regular

machine learning hyperparameters, alpha can be modified

at the end of training with minimal additional computa-

tional costs. This is due to the independent calculation of

the two covariance matrices. Consequently, the model can

be trained using SRDA and tuned with a quick grid search

CV at the end utilizing the validation dataset without re-

training. In cases where a validation dataset is unavailable,

a potential solution is to maintain a small, class-balanced

buffer specifically for hyperparameter tuning, which can be

employed at the end of training. This enables this classi-

fication technique to be directly used and competitive with

other Streaming Learning algorithms.

5.5. Computation

Due to its quadratic complexity, our algorithm takes 12

hours to compute, which is considerably higher than SLDA,

which takes 30 minutes on ImageNet. Nonetheless, this

is still comparatively manageable compared to other batch

learning and streaming algorithms. For example, according

to [14] and our experiences, ExStream takes 64 hours, and

iCarl [36] 35 hours on the same hardware.

5.6. Memory usage

As it is with computational consumption 5.5, SRDA con-

sumes more memory than SLDA as it has to store a covari-

ance per class compared to one covariance matrix in SLDA.

For instance, in the case of ImageNet ILSVRC-2012 [39]

one needs (1000 × 4 × (5122 + 512)) bytes which is equiv-

alent to 1.051 GB. For comparison, SLDA requires 0.001
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GB, ExStream requires 0.041GB, and iCarl requires 3.011

GB.

6. Conclusion & Discussions

We presented Deep Streaming Regularized Discriminant

Analysis, a generative classifier able to adapt to non-iid data

streams and outperform existing batch and streaming learn-

ing algorithms when paired with a CNN. We outperformed

SLDA by 5%, iCarl by 11%, and End-to-End by 2%. This is

an impressive result considering that both iCarl and End-to-

End update the whole network and should intuitively beat a

method only focusing on the last layer.

This method provides better results than SLDA at the

cost of computation and memory but remains comparatively

manageable compared to other methods. SQDA is better

suited for low dimensional and low class counts problems,

while SRDA manages to adapt to high dimensional prob-

lems with the correct regularization parameter alpha that

can be found at the end of training with minimal additional

computational costs

For use cases where one would like to combine the speed

of SLDA and the performance of SRDA, one can imagine a

model where SLDA is used for rapid learning while SRDA

slowly trains in the background enabling improved accuracy

in the long run.

Finally, this method represents a step forward in the

research of Sustainable AI. As presented by [7], Contin-

ual Learning is a promising candidate for achieving Sus-

tainable AI. This case of Streaming Learning justifies this

choice even further as it presents a more realistic applica-

tion that respects the principles of Sustainable AI, includ-

ing efficiency, privacy, and robustness. Our deep SRDA has

many potential applications, including robotics, edge learn-

ing, and human-machine interfaces. It removes the need to

store the data as the model can learn on data streams, learn-

ing at approximately 28Hz for our experiment on ImageNet.

More importantly, it enables on-device Continual Learning,

removing the need for retraining and thus saving resources.

Appendix

The models were trained using these parameters:

• Offline: Same parameters as [14]. SGD for 90 epochs,

with lr = 0.1 with decay at 10 30 and 60 epochs,

momentum = 0.9 and weight decay of 10−4.

• iCarl: Parameters from [36], and stored 20 exemplars

per class.

• ExStream: Same parameters as offline with 20 exem-

plars per class.
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Pérez-Cruz, Stefan Kramer, Jesse Read, and Jose A. Lozano,

editors, Machine Learning and Knowledge Discovery in
Databases. Research Track, volume 12975, pages 502–518.

Springer International Publishing, 2021. Series Title: Lec-

ture Notes in Computer Science.

[22] Cecilia S. Lee and Aaron Y. Lee. Clinical applications of

continual learning machine learning. 2(6):e279–e281, 2020.

[23] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha,

and Byoung-Tak Zhang. Overcoming catastrophic forgetting

by incremental moment matching.

[24] Jin Li, Zhong Ji, Gang Wang, Qiang Wang, and Feng Gao.

Learning from students: Online contrastive distillation net-

work for general continual learning. In Proceedings of
the Thirty-First International Joint Conference on Artificial
Intelligence, pages 3215–3221. International Joint Confer-

ences on Artificial Intelligence Organization, 2022.

[25] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and

Caiming Xiong. Learn to grow: A continual structure learn-

ing framework for overcoming catastrophic forgetting. In

Proceedings of the 36th International Conference on Ma-
chine Learning, pages 3925–3934. PMLR, 2019. ISSN:

2640-3498.

[26] Zhizhong Li and Derek Hoiem. Learning without forgetting.

[27] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyun-

woo Kim, and Scott Sanner. Online continual learning in

image classification: An empirical survey. 469:28–51, 2022.

[28] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.

Supervised contrastive replay: Revisiting the nearest class

mean classifier in online class-incremental continual learn-

ing. pages 3589–3599, 2021.

[29] Arun Mallya and Svetlana Lazebnik. PackNet: Adding mul-

tiple tasks to a single network by iterative pruning.

[30] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel

Menta, Andrew D. Bagdanov, and Joost van de Weijer.

Class-incremental learning: survey and performance evalu-

ation on image classification.

[31] Michael McCloskey and Neal J. Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Gordon H. Bower, editor, Psychology of Learn-
ing and Motivation, volume 24, pages 109–165. Academic

Press, 1989.

[32] Thomas Mensink, Jakob Verbeek, Florent Perronnin, and

Gabriela Csurka. Distance-based image classification: Gen-

eralizing to new classes at near-zero cost. 35(11):2624–2637,

2013. Conference Name: IEEE Transactions on Pattern

Analysis and Machine Intelligence.

[33] J I Mwnro and M S Paterson. Selection and sorting with

limited storage. 1980.

[34] Shaoning Pang, Seiichi Ozawa, and Nikola Kasabov. Incre-

mental linear discriminant analysis for classification of data

streams. 35(5):905–914, 2005.

[35] Daniel Philps, Tillman Weyde, Artur d’Avila Garcez, and

Roy Batchelor. Continual learning augmented investment

decisions.

[36] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H. Lampert. iCaRL: Incremental clas-

sifier and representation learning.

[37] Amanda Rios and Laurent Itti. Closed-loop memory GAN

for continual learning.

[38] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P.

Lillicrap, and Greg Wayne. Experience replay for continual

learning.

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet large scale visual recognition chal-

lenge.

[40] Khadija Shaheen, Muhammad Abdullah Hanif, Osman

Hasan, and Muhammad Shafique. Continual learning for

real-world autonomous systems: Algorithms, challenges and

frameworks.

[41] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay.

[42] Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking

model scaling for convolutional neural networks, 2020.

[43] D. M. Titterington, Adrian F. M. Smith, and U. E. Makov.

Statistical Analysis of Finite Mixture Distributions. Wiley,

1985. Google-Books-ID: hZ0QAQAAIAAJ.

[44] Amal Rannen Triki, Rahaf Aljundi, Mathew B. Blaschko,

and Tinne Tuytelaars. Encoder based lifelong learning. In

2017 IEEE International Conference on Computer Vision
(ICCV), pages 1329–1337, 2017.

[45] Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. To-

lias. Three types of incremental learning. 4(12):1185–1197,

2022. Number: 12 Publisher: Nature Publishing Group.

[46] Joshua T. Vogelstein. Lifelong learning forests, 2023. Sec-

tion: Technical Reports.

[47] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning.

[48] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lip-

son. How transferable are features in deep neural networks?

In Advances in Neural Information Processing Systems, vol-

ume 27. Curran Associates, Inc., 2014.

3461



[49] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence.

[50] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry.

Task agnostic continual learning using online variational

bayes.

3462


