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Abstract

We consider the problem of learning multiple tasks in a
continual learning setting in which data from different tasks
is presented to the learner in a streaming fashion. A key
challenge in this setting is the so-called “catastrophic for-
getting problem”, in which the performance of the learner
in an “old task” decreases when subsequently trained on
a “new task”. Existing continual learning methods, such
as Averaged Gradient Episodic Memory (A-GEM) and Or-
thogonal Gradient Descent (OGD), address catastrophic
forgetting by minimizing the loss for the current task without
increasing the loss for previous tasks. However, these meth-
ods assume the learner knows when the task changes, which
is unrealistic in practice. In this paper, we alleviate the
need to provide the algorithm with information about task
changes by using an online clustering-based approach on
a dynamically updated finite pool of samples or gradients.
We thereby successfully counteract catastrophic forgetting
in one of the hardest settings, namely: domain-incremental
learning, a setting for which the problem was previously
unsolved. We showcase the benefits of our approach by
applying these ideas to projection-based methods, such as
A-GEM and OGD, which lead to task-agnostic versions of
them. Experiments on real datasets demonstrate the effec-
tiveness of the proposed strategy and its promising perfor-
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mance compared to state-of-the-art methods.
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1. Introduction

Continual learning can be described as the ability to con-

tinually learn over time by accommodating new knowledge

while retaining previously learned experiences [33, 27]. We

humans typically have no problem with retaining old expe-

riences while at the same time being able to learn new tasks.

For example: when a child learns to ride a bike, she does not

forget the previous experience of learning how to walk.

In sharp contrast, standard machine learning algorithms

typically assume that independent and identically dis-

tributed (i.i.d.) training examples of a task are given and

use Empirical Risk Minimization (ERM) to learn a model

for the task [36]. While this approach can be naturally ex-

tended to the setting in which samples arrive in an online

fashion, when the task changes the conditional distribution

of the data given the task also changes. As a consequence,

the performance of the model on previously learned tasks

significantly degrades when trained on new tasks, a phe-

nomenon known as catastrophic forgetting.

Existing methods that deal with catastrophic forgetting

often assume that the moment the task changes and the

identity of the task are known at training time. For in-
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stance, Averaged Gradient Episodic Memory (A-GEM) [7]

and Orthogonal Gradient Descent (OGD) [14] counteract

catastrophic forgetting by solving a constrained optimiza-

tion problem for each task change, which ensures that the

loss function: a) decreases on the current task and b) does

not increase on previous tasks. The constraints on previous

tasks are enforced by storing either labeled data samples
(A-GEM) or model gradients (OGD) from previous tasks

as new tasks incrementally arrive. Thus, knowledge of a

task change is needed to both solve the constrained opti-

mization problem and update the pool of stored samples or

gradients. Moreover, both A-GEM and OGD use pool size

that grows with the number of tasks, making memory re-

quirements prohibitive for a large number of tasks. While

such memory requirements could be reduced by maintain-

ing a constant and finite memory, this would inevitably lead

to catastrophic forgetting as the number of tasks grows.

The aforementioned weaknesses raise two critical ques-

tions:

1. Can we develop a memory and projection-based con-
tinual learning algorithm that does not require knowl-
edge of task boundaries?

2. Can we address catastrophic forgetting more effec-
tively for a large number of tasks while maintaining
a constant and finite amount of memory?

Paper contributions. In this work, we address these

questions by proposing an online clustering-based approach

that renders standard projection-based continual learning al-

gorithms task-agnostic. This approach successfully coun-

teracts forgetting in the setting of domain-incremental

learning, a setting for which this problem was previously

unsolved [35]. The proposed approach is generic and can be

applied to different projection-based algorithms. To show-

case its merits, we focus on the A-GEM and OGD algo-

rithms and propose two new task-agnostics versions called

Task Agnostic Averaged Gradient Episodic Memory (TA-

A-GEM) and Task Agnostic Orthogonal Gradient Descent

(TA-OGD). These algorithms reduce the amount of forget-

ting when training on different tasks without the need to

know any task boundaries and identities. This is achieved

by dynamically updating the pool of labeled data samples
(A-GEM) or model gradients (OGD) each time a new batch

becomes available. In addition, unlike A-GEM and OGD,

which store a growing number of samples or gradients as

the number of tasks increases, leading to prohibitive mem-

ory requirements in practical scenarios, the proposed TA-A-

GEM and TA-OGD methods have constant and finite mem-

ory requirements by keeping a finite number of samples

or gradients throughout the training process. To achieve

this, TA-A-GEM and TA-OGD leverage the structure of the

training data, which are now grouped into clusters of sam-

ples or gradients. Specifically, for each new batch, we first

uniformly draw samples or gradients from the current batch

and use them to initialize a predefined number of clusters

using the samples or gradients as the cluster centers. After

initialization, new samples or gradients are assigned to the

cluster center with minimum �2 distance. To keep a con-

stant memory, when the maximum cluster size is reached

we remove less informative cluster members and update the

cluster center with the average of the cluster members.

In short, this paper makes the following contributions:

• We propose a generic clustering-based method for suc-

cessfully extending projection-based continual learn-

ing algorithms to a task-agnostic context. We focus on

two state-of-the-art projection-based algorithms i.e.,

A-GEM and OGD showing that the proposed strat-

egy enjoys the merits of memory and projection-based

methods [14, 23, 12] without requiring knowledge of

the task identity or task changes.

• By leveraging the structure of the data from previously

seen tasks, we can retain the information needed to ad-

dress catastrophic forgetting, such as training data (A-

GEM) or model gradients (OGD), while keeping the

memory-size finite via a simple and efficient cluster-

ing procedure. We thus depart from the standard ap-

proach of OGD and A-GEM, which demand a growing

amount of memory as new tasks sequentially arrive,

which is impractical in real-world scenarios.

• We provide extensive experimental results for different

continual learning settings on various datasets show-

ing the promising performance of the proposed task-

agnostic algorithms (TA-A-GEM and TA-OGD) com-

pared to state-of-the-art methods.

2. Related Work

This section starts with an explanation of the three types

of incremental learning. It then reviews the stability-

plasticity dilemma, which continual learning methods have

to face. Moreover, we present the main ideas of mem-

ory and projection-based continual learning approaches to

which class the proposed TA-A-GEM and TA-OGD method

belong and the main advances in task continual learning. Fi-

nally, we review the recent works leveraging representation

learning for deriving efficient continual learning algorithms.

2.1. Domain-incremental learning

In continual learning, different tasks can arrive in se-

quence. The learner must therefore learn new tasks in-

crementally. This is referred to as incremental learning.

Three types of incremental learning can be specified: task-
incremental learning, domain-incremental learning and
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Figure 1: After the task-incremental method is finished with the training on task Tk, the memory (containing either labeled

data samples in the case of A-GEM or model gradients in the case of OGD) is updated. This method is made domain-

incremental by using an online clustering-based approach for updating the memory while keeping its size fixed.

class-incremental learning [35]. In task-incremental learn-

ing, the task identity is known to the learner during the train-

ing and testing phase. In domain-incremental learning, the

task identity is not known to the learner at both training and

testing time. In class-incremental learning, the learner must

learn to identify a growing number of classes. Since we fo-

cus on a scenario where the number of classes is static and

the task identity is not known during training and testing,

we focus on the domain-incremental setting. Alleviating

catastrophic forgetting in such a scenario is an important

unsolved challenge [35].

2.2. The Stability-Plasticity Dilemma

The balancing act between being able to gain new knowl-

edge while assuring old knowledge is not lost is referred to

as the stability-plasticity dilemma [26]. Continual learn-

ing approaches can be categorized in three major trends

based on how the stability-plasticity dilemma is handled

[9, 27]. The first trend is to use the concept of regular-
ization of synaptic plasticity, where the plasticity of im-

portant weights is constrained in order to retain old skills,

like the Memory Aware Synapses used in a continual set-

ting in [3]. Elastic Weight Consolidation (EWC) is a sem-

inal work of this class. When a new task arrives, EWC

learns the optimal weights for this task, while penalizing

changes of the weights towards values that are far from the

optimal ones for the previous task [21]. Several other vari-

ants of EWC have appeared in the literature and we refer

the readers to [9] for a detailed review. The second trend

is expansion [31, 2, 25, 13], where a neural network is ex-

panded by allocating new neural resources in order to gain

new skills, while leaving old neurons unchanged in order

to retain old skills. Finally, according to the third trend,

which is repetition, old information is repeatedly fed to the

network, along with new information. This can be imple-

mented by applying a complementary learning system for

integrating old and new skills and applying experience re-

play, or by simply mixing old and new data in the training

step. In the literature, various approaches of the so-called

replay-based methods which rely on the principle of rep-

etition have come to the scene. These methods make use

of memory resources and vary in the strategy they follow

[30, 23, 32, 8, 29, 34, 22, 38].

This paper uses the terms “replay-based” and “memory-

based” interchangeably because they represent similar con-

cepts. Still, we tend to favor “replay-based” when a method

stores samples from the dataset and “memory-based” when

it stores different information. The proposed TA-A-GEM

builds on A-GEM [7], which stores samples from the train-

ing set, and can thus be considered “replay based”. The

proposed TA-OGD builds on OGD [14], and thus, in princi-

ple, falls into the category of memory-based methods since

it stores gradients. At the same time, the proposed TA-

A-GEM and TA-OGD use a projected gradient step and,

hence, are also a projection-based approach. Note that this

projection step implicitly regularizes the weights; therefore,

A-GEM and OGD bear similarities with the regularization-

based methods. Next, we elaborate on the specific class of

memory-based and projection-based continual learning al-

gorithms.

2.3. Memory-based and Projection-based Contin-
ual Learning Methods

Over the last few years, several memory-based and

projection-based methods have been proposed in the liter-

ature, [23, 14]. These make use of memory for storing in-

formation from the past, which helps to update the model

towards non-forgetting directions. The goal is to address
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catastrophic forgetting by means of imposing certain con-

straints on the weight-updating process. Many different ap-

proaches have appeared in the literature over the last few

years. In [23], the authors propose to update weights in

directions that do not increase the loss function values on

samples of previously seen tasks. The resulting algorithm,

dubbed Gradient Episodic Memory (GEM), thus stores a

predefined number of gradients of the loss function cor-

responding to old tasks, [7, 23]. These are then used for

updating the model by solving a constrained optimization

problem. Orthogonal Gradient Descent (OGD) [14] stores

a growing number of gradients of the model corresponding

to old tasks’ samples. In the weight update step, it projects

its loss gradient to a direction that is orthogonal to all stored

gradients. Specifically, gradients of the loss are projected

on the orthogonal basis spanned by the stored gradients. In

doing so, directions that increase forgetting of past tasks

are excluded when the model learns a new task. This as-

sumes however that the stored gradients remain relevant,

even when the weights of the model move during the train-

ing process, thus arriving at a different point in the config-

uration space in which older tasks can have different gra-

dients. Averaged Gradient Episodic Memory (A-GEM) [7]

solves this problem by storing labeled data samples instead

of gradients. It projects the loss gradient orthogonal to a

reference gradient that is calculated at every training step

from a subset of the stored labeled data. Though showing

promising performance in addressing catastrophic forget-

ting, memory-based and projection-based methods suffer

from two fundamental weaknesses: a) they require the mo-

ment of task change to be available in order to know when

the memory should be updated, and b) memory cost should

either scale with the number of tasks, e.g., in OGD [14],

which is infeasible in real-world scenarios, or the stored

data per task will decrease as in the case of GEM [23],

which also hinders the ability of the algorithm to address

forgetting when it encounters a large number of tasks.

2.4. Task Agnostic Continual Learning

Task boundaries and identities are rarely available in

practical continual learning applications. In light of this,

various task-agnostic continual learning methods have been

proposed in the literature. In [16], the authors propose

an auxiliary mechanism to detect tasks while counteract-

ing forgetting. The resulting method operates in a task-

agnostic environment showing promising empirical perfor-

mance. Several other approaches have been proposed in the

same spirit [5, 18]. Another line of work hinges on on-

line learning ideas completely neglecting task identity or

the need to know the moment of task change. In [39], the

authors propose Bayesian Gradient Descent (BGD), an on-

line variational Bayes approach in which model parameters

with low variance are considered more important for previ-

ous tasks and, thus, are less updated. The opposite holds

for parameters with high variance (hence high uncertainty).

A similar idea for task-free continual learning appeared in

[4]. Namely, the authors modified the so-called Memory

Aware Synapses (MAS) algorithm in [1], in order to oper-

ate in a task-agnostic online learning setup. For, they use

an importance weight regularizer which penalizes changes

to model parameters which negatively affect model perfor-

mance on prior tasks. Finally, in [20] the authors propose an

online task-agnostic memory-based method. The main idea

is to edit the stored-in-memory gradients used for address-

ing forgetting by solving an optimization problem in an on-

line fashion. Recently, the idea of using self-supervised rep-

resentations for task-agnostic continual learning was pro-

posed in [28], showing promising empirical performance.

Though the emergence of clustering in episodic memory

has been recently acknowledged in the child development

literature [19], to the best of our knowledge, the proposed

TA-A-GEM and TA-OGD are the first algorithms that use

online clustering for dynamically updating the memory of

continual learning methods. While we focus on A-GEM

and OGD, the adopted strategy could be applied to other

memory-based and task-dependent continual learning ap-

proaches for allowing them to operate in task-agnostic en-

vironments.

2.5. Representation Learning

Representation learning aims to find insightful data rep-

resentations by exploiting their structure [24]. Recently,

learned representations have been at the heart of several

continual learning algorithms. In [6], the authors employed

low-rank orthogonal subspace representations of the model

parameters formulating continual learning as an optimiza-

tion over the Stiefel manifold problem. The reported re-

sults showed promising performance and the ability of the

approach to counteract forgetting. In [15], holistic repre-

sentations learned via a mutual information maximization

criterion were employed in the continual learning setting.

The method can learn feature representations of the current

task that are useful for the future tasks, hence leading to

models that are more robust to forgetting. In [12], a variant

of the projection-based OGD method was proposed. The

main idea is to perform principal component analysis on

the set of stored gradients of the model and keep only the

most informative principal components. However, the work

in [12], still assumes that task changes are provided to the

algorithms and batch processing is utilized. Hence it is far

from our proposed online clustering-based task-agnostic al-

gorithms.

3. Proposed Approach
We assume that the n tasks {Ti}ni=1 arrive sequentially

and that during task Tk the data from tasks Ti for i < k are
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not presented to the learner. Each task consists of pairs of

data points (x, y) ∈ Tk, where x ∈ R
d is the input and y

is a label. Here we assume that each task is a classification

task and that all classification tasks share the same classes

j = 1, . . . , c, where c is the number of classes. Therefore,

we can represent y ∈ R
c as a one-hot class encoding vector,

i.e., yj = 1 when j is the class label and yj = 0 otherwise.

We denote the network model as f(x;w) ∈ R
c, where w ∈

R
p denotes the p-dimensional weights (parameters) of the

network and fj(x;w) is the j-th logit corresponding to the

j-th class. The model is trained to predict the class label for

input x.

The proposed Task Agnostic Averaged Gradient

Episodic Memory (TA-A-GEM) and Task Agnostic Or-

thogonal Gradient Descent (TA-OGD) methods rely on

the forgetting counteracting mechanisms of Averaged

Gradient Episodic Memory (A-GEM) [7] and Orthogonal

Gradient Descent (OGD) [14], respectively. Next, we

briefly describe the main ideas behind A-GEM and OGD

and refer the reader to the Appendix or [7] and [14] for

further details.

Both A-GEM and OGD assume the identity kt of the

task Tkt
at time step t is known. The empirical loss, during

time step t, with a batch size |Tkt |, is given by,

Lt(w) =
1

|Tk|
∑

(x,y)∈Tk

L(x,y)(w), (1)

where the per sample loss L(x,y)(w) is assumed to be the

cross-entropy, which is defined as

L(x,y)(w) = −
c∑

j=1

yj log

(
exp fj(x;w)∑c

m=1 exp fm(x;w)

)
. (2)

Both A-GEM and OGD use a pool of samples to counter-

act the catastrophic forgetting. The difference is that OGD

stores network gradient, while A-GEM stores training data.

3.1. Clustering-based Task Agnostic A-GEM (TA-
A-GEM) and OGD (TA-OGD)

Figure 1 shows our strategy to convert a task-aware task-

incremental projection algorithm to a task-agnostic domain-

incremental algorithm. Task-incremental projection algo-

rithms like A-GEM and OGD keep a pool of samples from

either the training data or model gradients, respectively.

This pool of samples is used to mitigate catastrophic forget-

ting of previous tasks through projection. When the algo-

rithm is finished with training on one task, it stores samples

from this task before it starts training on the new task. In

this way, it ensures that the samples in the pool are relevant

for previous tasks when addressing forgetting. However,

this comes at the cost of requiring to know the moment a
task changes. In our approach, we make this process task-

agnostic by updating the pool of samples during the process

of training, i.e. the pool of samples is updated every time the
model is trained on a batch. This removes the need to know

the moment the task changes but introduces the problem

that the size of the pool now grows more rapidly. However,

our goal is to keep the memory requirements constant in the
number of tasks. Hence, a strategy is necessary to decide

which samples should be added to the pool and which ones

should be removed during the updating process. Our strat-

egy aims to select stored samples in a way that addresses

forgetting all previous tasks in the most efficient way while

being constrained by constant and finite pool size. Because

we aim for a true task-agnostic setting, all tasks are made

to have the same label space, so the task identity can not be

inferred from the labels.

Next, we detail the proposed online clustering-based ap-

proach that consists of the following four steps:

1) Initialization: We first set the number of clusters Q
and consider the first Q samples becoming available as the

centers μi, q = 1, 2, . . . , Q of these clusters.

2) Cluster assignment: A new sample zp (corresponding

to a training sample in the case of A-GEM or gradient logit

in the case OGD) is assigned to the cluster q∗ that minimizes

the �2 norm i.e.,

q∗ = argminq∈{1,2,...,Q}‖zp − μq‖22 (3)

3) Memory update: The size of each cluster is prede-

fined, and once the maximum size has been reached, for

new samples to that assigned to that cluster an equal num-

ber of older samples residing in the cluster should be re-

moved. Note that the process of accepting/rejecting new

samples and deciding which “old” samples to delete could

be implemented using information-theoretic criteria or re-

jection sampling-based ideas. Here, in an effort to simplify

the approach and make it computationally efficient, we fol-

low a first-in-first-out (FIFO) approach. This dictates that

samples that arrived first in the cluster are the first to be

removed. Note that the strategy followed ensures that sam-

ples corresponding to a task with information distinct from

other tasks will not be deleted from the pool. This will oc-

cur since these samples will “live” within clusters that will

not be updated and thus remain unaffected by the memory

updating process.1

3) Update of cluster means: Once samples are assigned

to the clusters and the memory has been updated, the cluster

means are re-computed i.e.,

μq =
1

P

P∑
p=1

zqp, ∀i = 1, 2, . . . , N, (4)

where P denotes the size of the clusters and zqp the pth el-

ement of cluster q. For the case of the task-agnostic ver-

sion of A-GEM, i.e., TA-A-GEM, we have zp ≡ xp ∈ M̃t

1Empirical findings reported in the Appendix corroborate our hypothe-

sis.
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(where t here denotes the batch index) whereas for the task-

agnostic OGD algorithm (TA-OGD) zp ≡ ∇fj(xp, w
∗
i ).

Our clustering-based strategy is depicted at Fig. 2, while a

pseudo-code of the algorithm is given in the Appendix.

A single or a different pool for each class? A possible

complication that can occur is that more similarity exists

between samples of the same class that are of a different

task than between different classes of the same task. If this

happens, class information will be well represented in the

pool, but task information can be easily lost. Since class

labels of the samples are available, a way to get around that

issue and disentangle the class from task information is to

use a different pool for each class. In that case, samples are

first assigned to a pool based on their class label. Then,

the procedure described above is independently followed

for each pool. It is worth noting that this is critically impor-

tant for the task-agnostic version of A-GEM (TA-A-GEM)

since the pool contains training samples of different classes.

Samples corresponding to the same class but different tasks,

e.g., a digit and its rotated version might be close in the in-

put space. As a result, if a single pool is used, those two

samples will be assigned to the same cluster, and hence task

information will be lost. This phenomenon is more likely

not to be observed in the case of TA-OGD since cluster-

ing takes place in the space of model gradients, which are

sufficiently separated for different tasks even for samples

corresponding to same classes.

The role of hyperparameters: The choice of hyperpa-

rameters, such as the number of clusters Q and their size, is

important. A large number of clusters Q, allows more task

and class diversity to be stored in different clusters in mem-

ory. The size of the clusters should be large enough so it

can capture the essence of a specific task. However, the size

of Q and the cluster size should be kept as small as possible

to reduce the memory footprint. A trade-off can be made

where Q is large, and the cluster size is small versus using

a small Q with a large cluster size. In addition, we follow

an adaptive strategy for the learning rate of the projected

gradient step. Note that this is a form of task detection that

our method does not necessarily need. Our focus is to cre-

ate a truly task-agnostic method without any task detection.

Specifically, the learning rate ηt at iteration t decreases as

follows:

ηt = aηt−1, (5)

where a < 0, when the loss function is smoothly increas-

ing for a given number of iterations. This allows the algo-

rithm to update the weights of the model following a non-

increasing path for the loss function. Moreover, when a sud-

den increase is observed, then the learning rate is reset to its

initial value (therefore increases), i.e., ηt = ηini. The rea-

soning behind this rule is that spikes of the loss most likely

imply task-change and therefore, a higher learning rate can

help to move fast along decreasing directions of the loss cor-

responding to the new task. Empirical results on the effect

of the sampling rate, the number, and the size of clusters

on the performance of the proposed method, and more de-

tails on the adaptive updating process of learning rate, are

provided in Section 4 and Appendix.

4. Experiments
We divide the experiments into two main classes: a) the

disjoint tasks experiment and b) the continuous change ex-
periments. The task-aware methods are notified of the task

change, while the task-agnostic methods do not get this in-

formation. In the continuous change experiments, discrete

tasks still exist, but task boundaries are no longer clearly

defined. Details on the experimental setting can be found in

the Appendix. Since there is no clear point that a task-aware

method can be notified, only task-agnostic methods are in-

cluded in this experiment. For both methods, all tasks are

made to have the same label space, since it should not be

possible to infer the task identity from the labels. In cases

where the label spaces are disjoint, the labels are cast to the

same label space. Since no task identity is provided dur-

ing training, the method is tested in a domain-incremental

setting [35]. Following empirical observations, we use the

learning rate scheduler described in Section 3.3 for the case

of OGD and the proposed task-agnostic version of it i.e.,

TA-OGD. The network used for training is a multi-layer

perceptron (MLP) with two hidden layers of 200 nodes.

To compare the performance of the tested methods, we use

three metrics: a) The validation accuracy, b) The average
validation accuracy over all tasks trained on thus far and c)

The amount of forgetting. For an exact mathematical defini-

tion of these quantities , we refer to the Appendix. To create

separate tasks from existing datasets, three task generation

mechanisms are implemented: a) task permutation, b) task

rotation and c) class splitting. For the details of this task

generation, we refer to the Appendix.

4.1. Disjoint tasks experiment

Table 1 shows the results of the first class of experi-

ments. It shows the average accuracy over all tasks trained

thus far, thereby capturing both the ability to remember old

tasks and the ability to learn new tasks. The average ac-

curacy was then averaged over 20 epochs, then over five

runs. Plots of these results can be found in the Appendix.

Our proposed TA-OGD and TA-A-GEM algorithms signif-

icantly outperform the state-of-the-art task-agnostic BGD

algorithm, [39], on the MNIST [11], Fashion MNIST [37]

and NOT MNIST datasets. Moreover, their performance is

comparable to BGD on CIFAR10 and SVHN. Focusing on

MNIST, Fashion MNIST and NOT MNIST, we observe that

at the permutation experiments, no remarkable differences

can be seen among the methods. This can be explained by

the fact that the baseline SGD method shows little signs of
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Figure 2: The clustering mechanism to add training set samples / model gradient samples to the memory by matching it to

the closest cluster (pink cluster), as used by TA-A-GEM / TA-OGD.

forgetting in the first place. For the rotation experiments,

A-GEM is a clear winner, it is however not task-agnostic.

On MNIST and NOT MNIST, TA-OGD and TA-A-GEM

are moderately effective at mitigating forgetting. On Fash-

ion MNIST however, TA-A-GEM is clearly the best method

among all the tested task-agnostic methods. We attained the

most remarkable results on the class split experiments. On

MNIST, both TA-OGD and TA-A-GEM clearly outperform

the other task-agnostic methods. On Fashion MNIST, TA-

A-GEM’s performance is even on par with A-GEM, while

on NOT MNIST, TA-OGD takes the crown by performing

on par with A-GEM, which is a task-aware method.

4.2. Continuous task change experiment

The results of the continuous change experiments are ex-

tremely similar to the results in the disjoint tasks experi-
ments. They can be found in the Appendix. These exper-

iments show that the proposed TA-OGD and TA-A-GEM

fare just as well in the challenging setting where task bound-

aries are blurred.

4.3. Effectiveness of the clustering-based procedure

In order to demonstrate the benefits obtained by the pro-

posed clustering-based approach, we compared the perfor-

mance of TA-A-GEM with and without clustering. To de-

activate clustering we skipped the cluster assignment step

and new samples were randomly to allocated clusters. Sim-

ilarly to our approach, an equal number of old samples of

update clusters is removed to keep the memory size con-

stant. For this experiment, a MLP was trained on Fashion

MNIST, with the task split segmentation. All settings are

the same as in the disjoint tasks experiments.

Figure 3 and 4 show the content of each cluster during

training time. Each horizontal line corresponds to a clus-

ter. Each task is associated with a unique color, which

represents the oldest task information that is present in the

s,

c.

M

h-

d

e

n

m

A-

e

g

Figure 3: Clustering helps us address forgetting: samples

from old tasks remain in the pool even after the of training

on Task 4 ends.

cluster. The horizontal line changes color the moment that

the last information of the oldest task disappears from the

cluster. Then, the second oldest task information becomes

the new oldest task information. The moment that a new

task starts -not available to the algorithms- is indicated by

a black vertical line. As it can be observed in Figs 3 and

4, clustering helps in keeping a greater variety of task in-

formation in the gradient pool, with samples from Task 0

or Task 1 still being present in clusters even after the end

of training on samples from Task 4. On the other hand, the

use of random cluster assignment results in information of

old task being almost immediately lost after a task change,

thus illustrating the merits of our proposed clustering-based

approach.

5. Conclusions and future directions

In an effort to counteract catastrophic forgetting in a

task-agnostic setting, we proposed a clustering-based strat-

egy to make task-aware projection methods task-agnostic

3390



MNIST Fashion MNIST NOT MNIST CIFAR10 SVHN

perm rot class perm rot class perm rot class perm rot class perm rot class

SGD 0.842 0.657 0.804 0.735 0.468 0.807 0.850 0.598 0.864 0.373 0.346 0.724 0.599 0.392 0.759

SGD lr adapt 0.842 0.663 0.811 0.736 0.469 0.820 0.851 0.598 0.888 0.376 0.347 0.727 0.596 0.390 0.762

BGD 0.883 0.682 0.790 0.765 0.507 0.802 0.856 0.633 0.875 0.385 0.357 0.718 0.591 0.417 0.763

TA-OGD 0.871 0.705 0.857 0.749 0.516 0.893 0.845 0.625 0.937 0.328 0.343 0.731 0.547 0.393 0.773
TA-A-GEM 0.876 0.688 0.878 0.746 0.604 0.931 0.853 0.602 0.884 0.365 0.343 0.726 0.605 0.399 0.772

OGD 0.865 0.690 0.822 0.757 0.512 0.839 0.846 0.627 0.925 0.360 0.348 0.731 0.587 0.400 0.768

A-GEM 0.884 0.806 0.952 0.761 0.706 0.934 0.854 0.740 0.947 0.360 0.356 0.741 0.552 0.451 0.827

Table 1: Average validation accuracy, averaged over all tasks trained thus far, then averaged over all epochs, then averaged

over five runs, for the disjoint tasks experiments when using a MLP. Per column, the best result for the task-agnostic
methods are written in bold. In case a task-agnostic method’s result is less optimal and not significantly different from the

best result, with a confidence of 99%, it is also written in bold. The results for the task-aware methods OGD and A-GEM

are given for context. Since these algorithms benefit from knowing task identities and changes, we just use them here as

baselines for indicating the best performance we can achieve.

Figure 4: When using random cluster assignment, the infor-

mation of old tasks is almost immediately lost, once a new

tasks starts.

with constant memory requirements. By leveraging the

structure in the sampled data (in the case of TA-A-GEM)

and model gradients (in the case of TA-OGD), we can ef-

fectively counteract catastrophic forgetting without provid-

ing knowledge of a task change and the need of a grow-

ing amount of memory. Extensive experimental results pro-

vided in section 4.3 and the Appendix show the benefits of

our clustering-based method. As a future direction, we as-

pire to explore more sophisticated, yet computationally ef-

ficient, methods for the clustering and memory update step.

Our goal is also to illustrate the merits of our method on

larger networks such as a ResNet [17], or more complicated

datasets such as ImageNet [10]. It is worth noting that our

proposed method is generic hence we also intend to inquire

its application as an off-the-shelf tool to other projection-

based methods.
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