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Abstract

In this paper, we investigate online few-shot segmenta-
tion, which learns to make mask prediction for novel classes
while observing samples sequentially. The main challenge
in such an online scenario is the sample diversity in the
sequence, resulting in models learned from previous sam-
ples that do not generalize well to future samples. To this
end, we propose a memory-augmented variational adapta-
tion network, which learns to adapt the model to each new
sample that arrives sequentially. Specifically, we first in-
troduce a contextual prototypical memory, which retains
category knowledge from previous contextual information
to facilitate the model adaptation to future samples. The
adaptation to each new sample is then formulated as a
variational Bayesian inference problem, which strives to
generate sample-specific model parameters by conditioning
the sample and the prototypical memory. Furthermore, we
propose a feature customization module to learn sample-
specific feature representation for better model adaptation
to each sample in the sequence. With extensive experiments,
we show that the proposed method effectively adapts to
each sample from the online sample sequence, thus achiev-
ing state-of-the-art performance on both natural image and
medical image datasets.

1. Introduction
Recent advances in few-shot semantic segmentation

(FSS) [25, 5, 36, 31, 33, 19, 28, 21, 38, 17] has achieved

great progress for the semantic segmentation task in data-

scarcity scenarios. Generally, classical FSS (Figure 1 (a))

learns to segment objects from previously unseen classes,

by providing models with a small set of annotated exam-

ples simultaneously, i.e., the support set. Yet, acquiring

and storing multiple annotated samples simultaneously in

the dynamic world is an unrealistic requirement, especially

when the number of novel classes and annotated samples

increases over time. Incremental FSS [2] attempts to tackle

class-incremental few-shot segmentation task, i.e., the num-

ber of novel classes increase over time. Compared with
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Figure 1. Comparison between (a) classical few-shot segmen-
tation and (b) online few-shot segmentation under 1-way 3-
shot setting. (a) Given three annotated support images simultane-

ously, classical few-shot segmentation learns to predict mask for

the query image. However, samples and annotation from novel

classes usually emerge sequentially in our dynamic world, acquir-

ing multiple annotated samples simultaneously is unrealistic. (b)

online few-shot segmentation learns to make mask prediction for

samples arriving sequentially, while corresponding mask annota-

tion arrives afterwards.

class-incremental learning, sample-incremental learning is

perhaps even more common in the real world, i.e., samples

of novel classes usually emerge in an online manner. For

instance, physicians collect new tumor images from a pa-

tient during the treatment process [18, 20], while simulta-

neously tumor segmentation mask for the new image usu-

ally becomes available after the last treatment step. An ideal

FSS model is required to learn from online sample streams

and adapt to the segmentation of new samples dynamically.

In this work, we investigate the online few-shot segmen-

tation task [1], which aims to make pixel-wise prediction for

novel classes with samples arriving sequentially. We clarify

the task with an example in Figure 1 (b), where the model

is asked to segment the goat in the sequence. Specifically,

the model can only access one sample and make prediction

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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for it at a time step, while the corresponding ground truth is

revealed to the model at the next time step. In such a way,

the model evaluation and updating proceed alternately, and

the model learns to segment samples from novel classes in

an online manner. Ideally, the performance of online few-

shot segmentation models should increase with the num-

ber of samples increases and exhibit smaller performance

fluctuations. However, the main challenge in such an on-

line scenario [8, 1] is the sample diversity in the sequence.

Samples in one sequence comes from the same class but ex-

hibit large appearance and scale variations. This results in

models learned from previous samples that do not general-

ize well to future samples. In such case, achieving effective

model adaptation to each sample in the sequence is essential

for the online few-shot segmentation task.

To improve model adaptation capacity, we propose a

memory-augmented variational adaptation network (Ma-

VAN) for the online few-shot segmentation task. MaVAN

is composed of three key components, i.e., contextual pro-

totype memory, variational adaptation, and a feature cus-

tomization module. First, we propose in Section 3.3 a

contextual prototypical memory module to exploit task-

specific contextual information . The memory retains cat-

egory knowledge from previous samples and serves as dy-

namic support set for the segmentation of future samples.

New class prototypes are approximated using groups of

same-class exemplar embedding in the current sequence

and stored contextual information in the external memory.

Second, we propose in section 3.4 variational adaptation us-

ing a latent variable model in which we treat the classifier

as a latent variable. We incorporate the category knowl-

edge from the contextual prototypical memory and sample-

specific context from the current sample to generate a prob-

abilistic sample-specific classifier. We formulate the opti-

mization of our variational adaptation as a variational in-

ference problem by deriving a new evidence lower bound

(ELBO) under the online setting. In doing so, the proba-

bilistic classifier obtained are more informative and there-

fore better represent categories of objects compared to the

deterministic vector. Third, we propose in Section 3.5 fea-

ture customization module to learn sample-specific feature

representations better adapted to each sample. By doing so,

the model is endowed with the ability to provide sample-

specific segmentation for each sample in the sequence and

copes with sample diversity well. Once trained on seen

classes, our model could adapt to each sample from novel

classes in the sequence with just a feed-forward computa-

tion at test time.

To sum up, our main contributions are as follows:

• We propose a memory-augmented variational adapta-

tion network (MaVAN) to improve model adaption capacity

for online few-shot segmentation. The contextual prototype

memory is proposed to work as dynamic support set and

retain task-specific context information for future samples.

• We formulate the model adaptation for each sample as

a variational inference problem to generates sample-specific

classifiers by deriving a new ELBO under the online setting.

• We propose a feature customization module to learn

sample-specific feature representation for better model

adaptation in the feature space.

• The proposed MaVAN achieves state-of-the-art perfor-

mance for the online few-shot segmentation task on both

natural image and medical image datasets.

2. Related work
Few-shot segmentation Given few support images with

pixel-wise annotation, few-shot segmentation (FSS) aims

to make mask prediction for the query image from novel

classes. Existing FSS methods can be roughly divided into

prototype-based methods [25, 5, 39, 36, 31, 33, 19, 28]

and graph-based methods [30, 35, 21, 38]. Prototype-based

methods usually generate prototypes from the support set

with mask average pooling [25, 31, 36, 28] or K-means

clustering [19], then these prototypes are used to interact

with query feature to fuse cross-image context informa-

tion. Graph-based methods adopt dense matching between

masked support images and query image to excavate intrin-

sic similarity of different instances from the same class. For

instance, HSNet [21] leverages 4D convolutions to achieve

dense comparison reasoning over multi-level feature corre-

lation between the support and query features. Recently,

some work tend to extent classical FSS to more realistic set-

tings, e.g., generalized FSS (GFSS) [27], incremental FSS

(iFSS) [2], and online FSS [1] (OFSS). GFSS models learn

to segment both old and new classes, while iFSS learns to

segment both old and new classes with few samples without

access to past training data. OFSS is first proposed in [1] to

segment novel classes within online data streams with dis-

tractors. In this paper, we focus on the OFSS setting without

distractors, i.e., intersection filed between few-shot segmen-

tation and online learning .

Online learning Learning from a sequence of data in-

stances dynamically, online learning aims to maximize the

correctness for the sequence of predictions [11]. Various

approaches, such as linear models [3], non-linear models

with kernels [12, 15], and deep neural networks [40], have

been proposed to tackle the online learning task. Recently,

some online meta-learning methods [8, 1, 22] are proposed

to tackle the online few-shot learning task, which aims to

recognize novel classes from a sequence of data. The main

challenge in this task is how to achieve faster and more ef-

ficient model adaptation to the new data by leveraging pre-

viously seen data. Finn et al. [8] propose to achieve fast

model adaption to new data with a data buffer storing all

task data. Babu et al. [1] design a layer-distributed memory

network to learn fast adaption. Inspired by the above meth-
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ods, we focus on the online few-shot segmentation task and

propose an adaptation network.

Model adaptation Model adaptation plays an impor-

tant role in some computer vision tasks, e.g., active learn-

ing [23, 34], continual learning [37, 4, 6], domain adap-

tation [16, 32]. [37] achieves model adaptation to novel

classes in continual segmentation by proposing a represen-

tation compensation module, which decouples the represen-

tation learning of both old and new knowledge. [1] adopts

prototype-based knowledge distillation to enforce model

adaptation to novel classes without forgetting old classes.

[37] proposes a test-time adaptation approach which adapts

off-the-shelf source pretrained models to continually chang-

ing target data. For the online few-shot segmentation task,

we claim that model adaptation is also crucial because of

large sample diversity in the sequential data.

3. Methodology
3.1. Problem Statement

Classical few-shot semantic segmentation: Classical

few-shot semantic segmentation follows the meta-learning

paradigm, where a task (or episode) is composed of a sup-

port set S and a query set Q. Here, we consider the 1-

way k-shot setting. Conditioned on the support set with

k annotated support samples, the few-shot learner f(·) is

expected to make pixel-wise prediction for the query sam-

ple xq: ŷq = f(xq; (xs
1, y

s
1), . . . , (x

s
k, y

s
k)), where x is input

image, y is corresponding binary mask. However, this setup

is built on the assumption that annotated support examples

are revealed to the model simultaneously, which is usually

unrealistic in our dynamic world, especially in medical.

Online few-shot semantic segmentation. Online few-

shot semantic segmentation aims to make pixel-wise pre-

diction on a stream of samples from novel classes. A

task consists of T samples from the same novel class.

In this setup, samples are revealed to the model se-

quentially, while corresponding masks are given after-

wards. The few-shot learner in online few-shot segmenta-

tion aims to tackle the sequential decision problem: ŷt =
f(xt; (x1, null), (x2, y1), . . . , (xt, yt−1)), where null indi-

cates no mask for the first sample, and the model makes a

random prediction for x1. Normally, we set t > 1 for illus-

tration in the following text. By feeding sequential samples

and subsequent labels to the model, we evaluate the model

online while updating model parameters dynamically.

3.2. Model

We propose a memory-augmented variational adaptation

network (MaVAN) for online few-shot segmentation. The

proposed MaVAN achieves online few-shot segmentation

via three key components: 1) A Contextual prototypi-
cal memory that retains category knowledge from previ-

ous samples to facilitate model adaptation to future sam-

ples. 2) Variational test-time adaptation which formu-

lates the model adaptation to new samples as a variational

Bayesian inference problem. 3) Feature customization
module that learns sample-specific feature representation

for better model adaptation to each sample in the feature

space. The pipeline of our model is shown in Figure 2.

3.3. Contextual prototypical memory

Online few-shot segmentation involves segmenting sam-

ples from the same classes sequentially. Therefore, effec-

tively leveraging acquired category knowledge from previ-

ous samples to boost the segmentation of future samples

is crucial. Here, we construct a contextual prototypical

memory to achieve this goal. Considering memory effi-

ciency, we choose to represent sample prototypes p rather

than original samples in the memory. Specifically, a sam-

ple x ∈ R
3×H×W with ground-truth y ∈ R

H×W can be

represented by a sample prototype p ∈ R
N×C , which is

composed of N prototypes with C channels, respectively.

Specifically, given a deep neural network Φ : X → Z ,

which maps from input space to feature space, the sample

prototype p corresponds to the clustering centers of fore-

ground features:

p = A(Φ(x)� y) = A(z � y), (1)

where A is a clustering function (e.g., K-means), and z
∈ R

C×H×W is the sample feature of H and W height and

the width, respectively. We adopt element-wise multiplica-

tion between z and y to generate foreground features. At

the time step t, the ground-truth yt−1 of sample xt−1 is re-

vealed to the model so that we can store the sample proto-

type pt−1 of sample xt−1 into the memory. Similarly, we

can store prototypes of all previous samples in the mem-

ory Mt = {pi}t−1
i=1 sequentially. The contextual prototyp-

ical memory, which stores prototypes of previous samples

sequentially, works as dynamic support set for the segmen-

tation of future samples. Given the contextual prototypi-

cal memory aggregating category knowledge (e.g., differ-

ent appearance of objects) from previous samples, we con-

tinue with a variational test-time adaptation in section 3.4 to

achieve model adaption to future samples.

3.4. Variational test-time adaptation

Sample diversity in the sequence, e.g., large object ap-

pearances, is the main challenge for online few-shot seg-

mentation, resulting in models learned from previous sam-

ples do not generalize well to future samples. Given ap-

pearance can change significantly over time in an online

setting, we adopt a variation Bayesian model of classifier

weights and integrate over all possible appearances, instead

of making a point estimation for a classifier that learns to
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Figure 2. a) Overview of the proposed memory-augmented variational adaptation network (MaVAN). At t-th time step, the sample

xt and the previous sample’s label yt−1 are revealed to the model, which first stores sample prototype pt−1 into the contextual prototypical

memory Mt (section 3.3). Then, the model generates distributions of classifiers via transformer to achieve variational adaption (section 3.4)

to the current sample . Lastly, sample feature zt is feed into the feature customization module (FCM, section 3.5) to generate sample-

specific feature ẑt, which further multiplies sample classifiers {w1
t , w

2
t , ..., w

L
t } from prior distribution p(wt|xt,Mt) to get predicted

masks ŷt. b) Details of distribution generation with transformer. Learnable tokens interact with sample and memory embedding in

transformer to generate distribution parameterized by wμ and wσ .

recognize only what it has seen the latest. Our online few-

shot segmentation model is composed of a frozen back-

bone, a decoder network, and a classifier w. At time step

t, rather than generating all model parameters, which is

computation-expensive, we generate sample-specific clas-

sifier weights wt for the sample xt, maximizing the condi-

tional predictive log-likelihood log p(yt|xt,Mt). By incor-

porating the sample-specific classifier wt into the predictive

distribution, we have

log p(yt|xt,Mt)

= log

∫
p(yt|xt, wt)p(wt|Mt)dwt,

(2)

where p(wt|Mt) denotes the conditional prior distribution

over wt. By depending on the contextual prototypical mem-

ory Mt, we infer the classifier wt aggregating category

knowledge from previous samples.

Although the contextual prototypical memory provides

some category information, the model still knows little

about the current sample, especially when previous and cur-

rent samples exhibit large appearance variations. In other

words, while the prior distribution p(wt|Mt) preserves in-

formation from past samples, it might not be optimized for

the current sample xt we wish to analyze. To this end, we

incorporate specific information about the current sample

xt, we further include xt to the prior in Eq. (2), that is

log p(yt|xt,Mt)

= log

∫
p(yt|xt, wt)p(wt|xt,Mt)p(xt)dwt.

(3)

Conditioned on the current sample xt and the external mem-

ory Mt, the prior distribution p(wt|xt,Mt) aggregates

category knowledge from external memory and sample-

specific knowledge from the current sample. To guaran-

tee that the prior distribution p(wt|xt,Mt) could gener-

ate sample-specific classifier parameters, we design a vari-

ational posterior distribution q(wt|xt, yt,Mt). By incor-

porating q(wt|xt, yt,Mt) into Eq. (3), we derive a lower

bound of the conditional predictive log-likelihood:

log p(yt|xt,Mt)

= log

∫
p(yt|xt, wt)p(wt|xt,Mt)p(xt)dwt

≥ Eq(wt|xt,yt,Mt)[log p(yt|xt, wt)]

− DKL[q(wt|xt, yt,Mt)||p(wt|xt,Mt)].

(4)

This formulation establishes a variational lower bound

for the predictive distribution, which we can optimize. That

way, we guarantee the inferred classifiers to be discrimina-

tive and adaptive to the segmentation of the current sample.

Besides, the KL divergence term in Eq. (4) further works as

a regularizer, pushing the prior distribution to adapt better

to the current sample. In practice, we generate the prior and

the posterior distribution via a vanilla transformer [29]

[wμt , wσt ] = Transformer(clsμt ,clsσt , [xt, xt−1, · · · , x1],

[pt−1, pt−2, · · · , p0])
(5)

to allow the flexibility of variable input sizes of condi-

tions, where [clsμt ,clsσt ] are the mean and variance of

classifier token embedding, respectively. The derivation of

Eq. (4) is provided in the supplementary material. In addi-
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tion to a sample-specific classifier, we also need a better fea-

ture representation (section 3.5) to achieve sample-specific

segmentation.

3.5. Feature customization module

With variation adaptation, we generate sample-specific

classifier for each sample, yet semantic segmentation re-

quires much contextual information in the feature space to

make a precise pixel-wise prediction. In such case, we

propose a feature customization module, which strives to

learn better representations with the contextual prototypical

memory and the current sample. At time step t, we have a

sample xt, initial feature representation zt, and the contex-

tual prototypical memory Mt. Specifically, we incorporate

the object context from the contextual prototypical memory

by introducing a category prototype pct :

pct =
1

t− 1

t−1∑
i=1

mipi, (6)

where

mi = 1− −yi log ŷi
t−1∑
j=1

−yk log ŷj

. (7)

mi is the weight for the prototype pi, derived from the pre-

diction masks ŷt−1 at time step t− 1, and the ground-truth

masks yt−1 of the sample xt−1 revealed to the model at time

t. A larger mi implies higher confidence for model about

the current segmentation. In turn, this implies that pi has

more relevant category knowledge in memory. The cate-

gory prototypes pct are updated per time step and expected

to obtain robust and generalizable class representation with

time goes on.

Segmentation in the online setting requires contextual in-

formation from both previous and current samples. TO the

end, we obtain the updated feature representation ẑt of sam-

ple xt via a decoder network:

ẑt = Ψ([zt, p
c
t , y

∗
t ]), (8)

where Ψ is the decoder network implemented with mul-

tiple convolutional layers, pct is the expanding variant of pct
with same spatial dimension as zt. y∗t is the pseudo mask

of sample xt modelled by pixel-wise cosine similarity be-

tween class prototype pct and initial feature representation

zt, and [·] indicates the concatenation operation in the chan-

nel dimension. The initial feature representation zt and

prior mask y∗t provide sample-specific context from current

sample xt, while the category prototype p̃ct contains cate-

gory knowledge from previous samples. In such a way, we

learn sample-specific feature representation for better adap-

tation to the segmentation of each sample.

With sample-specific representation ẑt, we can directly

make mask prediction for sample xt with classifiers sam-

pled from the prior distribution: ŷt =
1
L

∑L
l=1 ẑtw

l
t, where

wl
t ∼ p(wt|zt,Mt). L is number of Monte Carlo samples.

3.6. Meta-training and meta-test

In the meta-training stage, we sample sequences from

base classes for model training. The loss function is com-

puted after all the segmentation tasks in the sequence are

completed. By incorporating feature representation zt and

ẑt into the evidence lower bound in Eq. (4), the final objec-

tive function is formulated as:

L =
1

T

T∑
t=1

[ 1
L

L∑
l=1

[− log p(yt|ẑt, wl
t)]

+ DKL(q(wt|zt, yt,Mt))||p(wt|zt,Mt))
]
,

(9)

where T is the length of sequences. To enable back propa-

gation, we adopt the reparameterization trick [14] for sam-

pling the classifier wt. In practice, the first log-likelihood

term is implemented as a cross entropy loss between predic-

tions and ground-truth. The conditional probabilistic dis-

tributions are set to be diagonal Gaussian. We implement

them using multi-layer perceptrons (MLP) with the amor-

tization technique and the reparameterization trick [14],

which take the conditionals as input and output the parame-

ters of the Gaussian.

In the meta-test stage, we sample sequences from novel

classes for evaluation. Specifically, at a time step t, the

model receives the current sample xt and ground-truth

yt−1 of previous sample as input from a test task. Then

we directly sample classifiers from the prior distribution

p(wt|xt,Mt) to make mask prediction ŷt for the current

sample xt. Note that there is no backpropagation to update

the model parameters, and only the contextual prototypical

memory and the prior distribution will be updated.

4. Experiments
4.1. Experimental Setup

Datasets We adopt two natural image datasets, i.e., PAS-

CAL 1 and COCO 2, and one medical dataset ABD-MRI-20
3, to evaluate the performance of proposed method. PAS-

CAL is created from PASCAL VOC 2012 [7] and additional

SBD annotations [9]. It contains 20 classes, split into 15

training and 5 testing classes. COCO is a more challeng-

ing dataset, which is composed of 60 training classes and

20 testing classes. ABD-MRI-20 [13] is an MRI dataset,

which contains 20 3D T2-SPIR MRI scans and each with

1http://host.robots.ox.ac.uk/pascal/VOC/
2https://cocodataset.org/#download
3https://chaos.grand-challenge.org/Data/

3328



Settings 1-shot 2-shot 3-shot 4-shot 5-shot mean

Deterministic classifier 54.25 ±1.75 55.93 ±1.65 58.23 ±2.38 56.96 ±2.30 59.41 ±1.17 56.95 ±0.23

Variational classifier 54.84 ±1.37 56.77 ±1.73 58.96 ±2.87 57.41 ±2.37 60.03 ±0.78 57.60 ±0.18

Table 1. Variational vs. deterministic classifier in (%) on PASCAL with ResNet50 averaged three runs. Variational classifier is more

critical than the deterministic classifier.

Settings 1-shot 2-shot 3-shot 4-shot 5-shot mean

Prototype-augmented 56.17 ±1.32 59.42 ±2.74 57.06 ±2.86 58.62 ±0.68 59.05 ±1.47 58.06 ±0.38

Memory-augmented 59.41 ±2.50 60.21 ±1.67 62.83 ±2.31 61.42 ±0.73 62.90 ±1.29 61.35 ±0.14

Table 2. Benefit of memory-augmented segmentation in (%) on PASCAL with ResNet50 averaged three runs. Memory-augmented

segmentation achieves better performance than with prototype-augmented segmentation.

four organs, i.e., liver, spleen, and left and right kidney. We

adopt 5 scans with the spleen for evaluation and the remain-

ing 15 scans with other organs for training. T image-mask

pairs are randomly sampled from a specific class to con-

struct a data sequence. More details about datasets setup

are provided in supplemental material.

Evaluation Metrics We adopt mIoU (mean Intersection

over union) as a metric for evaluation on two natural image

datasets and dice score on the medical dataset. Given an

input sequence with length T , the model makes a random

guess on the first image and outputs predicted masks for

the remaining images in sequence. We compute the t-shot

mIoU (or dice score), i.e., the performance after seeing t
image-mask pairs in the sequence. We set the length of the

input sequence T as 6 for both training and evaluation, and

report 1-shot to 5-shot results . To characterize the learning

ability of O-FSS models over sequences, we also present the

averaged mIoU from 1-shot to 5-shot results. All numbers

are reported with 1000 sequences for natural image datasets

and 100 sequences for a medical dataset.

4.2. Baseline Models

We compare the model adaptation ability of the proposed

model with three baseline models, i.e., online prototypi-

cal network (OPN) [22], LSTM [24], incremental few-shot

segmentation model PIFS [2]. More details about the exten-

sion of above methods to the OFSS setting and comparisons

with classical few-shot segmentation models care illustrated

in the supplementary materials.

OPN Ren et al. [22] extend the Prototypical Net-

work [26] to the online setting, where prototypes are up-

dated sequentially using weighted averaging. To achieve

model adaptation in the OFSS task, we adopt OPN to aggre-

gate prototypes in the prototype memory into the category

prototype.

LSTM [10] We include temporal modelling methods for

comparison as well. Santoro et al. [24] utilize LSTM for

the online few-shot learning task. Similarly, we adopt a

single-layer LSTM to interact with the prototype memory

��� ���

Figure 3. Benefits of (a) contextual prototypical memory
(CPM) and (b) test-time adaptation in (%) on PASCAL with
ResNet50 averaged three runs. Our model with prototype mem-

ory and test-time adaptation achieves consistently better perfor-

mance across 1-shot to 5-shot than its correspondence variants.

and update the category prototype iteratively.

PIFS Cermelli et al. [2] propose a prototype-based

model adaptation network (PIFS) for incremental few-shot

segmentation. We extend PIFS to the online few-shot seg-

mentation task by introducing prototype-based distillation

loss on both old and new sample prototypes.

4.3. Results

Benefit of prototype memory To show the importance

of the prototype memory, we implement a model variant

without prototype memory. We directly replace the proto-

type memory in Eq. 4 with the sample prototype from last

time step; that is, we utilize pt−1 to generate prior distri-

bution p(wt|xt, pt−1) and perform the segmentation task of

the sample xt. The experimental results are reported in Fig-

ure 3 (a). Without the prototype memory, our model has

difficulty in aggregating category information from previ-

ous samples and adapting to new samples. Thus the perfor-

mance of our model without prototype memory in all shots

is worse than that in the memory-based model.

Importance of test-time adaptation We investigate the

benefit of the test-time adaptation on the PASCAL dataset in

Figure 3 (b). In this paper, the memory adaptation in Eq. 2

is without test-time adaptation, which is only conditioning

on the prototype memory, while the sample adaptation in
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Dataset Method 1-shot 2-shot 3-shot 4-shot 5-shot mean

PASCAL

OPN [22] 52.63 ± 3.74 55.87 ± 5.62 57.97 ± 2.61 56.47 ± 3.45 59.30 ± 1.89 56.45 ±0.20

LSTM [24] 55.40 ± 2.79 57.37 ± 4.57 58.97 ± 3.36 57.37 ± 2.92 59.63 ± 0.74 57.74 ± 0.25

PIFS [2] 57.09 ±2.03 61.60 ±3.37 58.83 ±2.16 60.25 ±1.43 60.66 ±1.52 59.69 ±0.41

MaVAN 59.41 ±2.50 60.21 ±1.67 62.82 ±2.31 61.42 ±0.73 62.90 ±1.29 61.35 ±0.23

COCO

OPN [22] 39.59 ±1.87 44.37 ±2.26 42.60 ±1.40 42.53 ±2.62 45.22 ±0.36 42.86 ±1.27

LSTM [24] 35.52 ±1.89 41.19 ±4.30 41.45 ±7.32 44.10 ±0.19 44.65 ±1.36 41.38 ±1.45

PIFS [2] 40.15 ±1.13 45.83 ±2.72 42.45 ±2.53 45.12 ±2.36 46.73 ±1.53 44.06 ±1.38

MaVAN 43.08 ±1.61 47.57 ±2.28 45.96 ±1.18 46.71 ±5.83 49.17 ±3.24 46.50 ±1.16

ABD-MRI

OPN [22] 35.40 ±1.27 39.72 ±0.33 30.95 ±0.42 34.73 ±0.11 36.86 ±0.27 35.53 ±0.76

LSTM [24] 34.66 ±1.40 37.80 ±0.14 29.08 ±0.20 32.23 ±1.35 35.82 ±0.78 33.92 ±0.65

PIFS [2] 38.19 ±0.63 42.32 ±0.33 31.78 ±0.20 36.49 ±0.51 38.07 ±0.85 37.37 ±0.69

MaVAN 39.57 ±0.58 44.94 ±0.46 34.48 ±0.12 38.90 ±0.67 41.26 ±1.88 39.83 ±0.83

Table 3. Comparison with baseline models on three datasets. PASCAL and COCO adopt mIoU as metric, while ABD-MRI-20 uses
dice score, mean value and variance are reported with three runs. Our model is a consistent top-performer on both natural image and

medical image datasets, outperforming baseline models by a large margin.
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Figure 4. Segmentation performance over long sequences. We

compare with classical FSS baselines (trained under 1-shot and

5-shot settings) and online FSS baselines in the first and second

row, respectively. For sequences with length 21 and 51, the pro-

posed MaVAN consistently outperforms classical and online FSS

methods on both PASCAL and COCO.

Eq. 3 is with test-time adaptation, which conditions on both

the current sample and the prototype memory. From Fig-

ure 3 (b), we see that incorporating the variational classifier

with test-time adaptation performs consistently better than

that without test-time adaptation. This is because, with the

test-time adaptation mechanism, our model can learn the ca-

pability to adapt to the segmentation of the current sample

using sample-specific knowledge from current samples and

category information from previous samples.

Variational vs. deterministic classifier We compare

against the deterministic classifier as our baseline model in

which few-shot segmentation training methods obtain the

classifier. As shown in Table 1, the proposed variational

classifier consistently outperforms the deterministic clas-

sifier, demonstrating the benefit brought by probabilistic

modeling. The variational classifier provides more informa-

tive representations of classes, which are able to encompass

large intra-class variations and, therefore, improve perfor-

mance with time step increases.

Benefit of memory-augmented segmentation We

demonstrate the benefits of memory-augmented segmenta-

tion on the PASCAL dataset. We implement a prototype-

augmented variant of our model by replacing the category

prototype in Eq. 6 with the sample prototype from the last

time step. As shown in Table 2, our model with memory-

augmented segmentation performs consistently better than

that with prototype-augmented segmentation. The compari-

son clarifies that introducing category knowledge from pro-

totype memory to representation learning is beneficial for

better adaptation to the segmentation task of new samples.

Segmentation of long sequences We investigate model

performance on long sequences by increasing time steps to

21 and 51, respectively. In Figure 4 (a) and (b), we com-

pare with classical few-shot segmentation models (more de-

tails can be found in supplemental material) trained under

1-shot and 5-shot settings. Interestingly, a simple exten-

sion of classical few-shot segmentation does not cope well

with sequential data loading, and tends to converge to over-

smoothed, averaged masks of lesser accuracy. In Figure 4
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Figure 5. Visualization of online few-shot segmentation performance on PASCAL (top), COCO (middle), and ABD-MRI-20 (bot-
tom). Ground-truths are masked in green, while predictions are masked in red. Generally, our model could make better and better mask

prediction as time steps increase, even though sometimes experiences fluctuation.

(c) and (d), we increase the time step to 50 and compare

it with four online few-shot segmentation baseline mod-

els. Our model achieves superior performance than the four

baseline variants with time step increases. Our model con-

sistently outperforms classical few-shot segmentation mod-

els. This is because of the variational test-time adaptation

mechanism, which dynamically adapts the model to new

samples in the sequence.

Comparison with baseline models As shown in Ta-

ble 3, the proposed method sets consistent state-of-the-art

performance on all online few-shot segmentation bench-

marks. On the PASCAL dataset, our model surpasses the

second-best method, i.e., PIFS, by a margin of 1.66% in

terms of mean mIoU. In addition, our model is also a con-

sistent top-performer on the COCO dataset, outperforming

other baseline methods by 2.44%∼3.64% in terms of mean

mIoU. This is reasonable since we generate model parame-

ters with sample-specific knowledge from the current sam-

ple and category knowledge from previous samples, leading

to more adapted models. Further, in the online medical seg-

mentation task the proposed model still achieves best per-

formance. We conclude that our model robustly improves

online few-shot segmentation performance in both natural

and medical scenarios. More detailed comparision results

can be found in the supplementary materials.

Qualitative Results. In Figure 5, we report qualitative

results from our model on both natural image and medical

image datasets. At the first time step, our model gives a ran-

dom guess on the target mask, as no auxiliary information

about target is provided. With time step increases and mask

annotation of previous is released, our model improves the

segmentation performance of target object iteratively, even

though exhibits some fluctuation. We can conclude that the

proposed MaVAN achieves effective model adaptation to

new samples, thus making more and more accurate mask

prediction. More experimental results can be found in the

supplemental material.

5. Conclusion

In this paper, we investigate online few-shot segmenta-

tion, which aims to make pixel-wise prediction for sam-

ples from novel classes sequentially. To cope with large

sample diversity in the sequence, we propose a memory-

augmented variational adaptation network MaVAN, which

adapts model to each new sample. We first propose a con-

textual prototypical memory to retain category knowledge

from previous samples, then formulate the model adaptation

to the sample as a variational Bayesian inference problem.

Conditioned on the current sample and an external memory,

our method is able to generate sample-specific classifiers

for the sample at each time step. Furthermore, we propose

feature customization module to learn sample-specific rep-

resentation for each sample. By doing so, our method is

updated sequentially and achieves fast adaptation to each

sample segmentation task with the number of samples in-

creases over time. Extensive experiments on both natural

image and medical datasets show
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