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Abstract

To strike a delicate balance between model stability and
plasticity of continual learning, previous approaches have
adopted strategies to guide model updates on new data to
preserve old knowledge while implicitly absorbing new in-
formation through task objective function (e.g. classifica-
tion loss). However, our goal is to achieve this balance
more explicitly, proposing a bi-directional regularization
that guides the model in preserving existing knowledge and
actively absorbing new knowledge. To address this, we pro-
pose the Flashback Learning (FL) algorithm, a two-stage
training approach that seamlessly integrates with diverse
methods from different continual learning categories. FL
creates two knowledge bases; one with high plasticity to
control learning and one conservative to prevent forget-
ting, then it guides the model update using these two knowl-
edge bases. FL significantly improves baseline methods on
common image classification datasets such as CIFAR-10,
CIFAR-100, and Tiny ImageNet in various settings.

1. Introduction
Our brain possesses remarkable abilities to acquire new

knowledge without forgetting or interfering with the old

one. To endow Deep Neural Networks (DNNs) with sim-

ilar capabilities in computer vision tasks, they must be able

to learn new categories, objects, or classes continuously.

However, in incremental settings where new categories are

introduced one by one, the traditional assumption of having

access to the entire dataset upfront is no longer valid, lead-

ing to Catastrophic Forgetting (CF) [32] and degradation

in DNN performance. Introducing new data causes DNNs

to adapt to the new knowledge, often replacing previously

learned representations.

Various Continual Learning (CL) methodologies have

emerged to address the CF challenge. These methods en-

compass a diverse range of techniques, such as regulariza-

tion strategies ([8], [29], [35]) to control the model’s evolu-

tion, adapting the architecture ([21], [34]) to accommodate

new categories, and leveraging memory replay techniques.

Memory replay involves using a fraction of previous data

([2], [30]) or generative models to recreate past data ([36],

[38], [28]). These methodologies showcase ongoing efforts

to equip DNNs with continual learning capabilities.

CL methods aim to effectively transfer old knowledge

into a new model while updating it with new task data.

Striking a balance between stability (the ability to preserve

previously learned information) and plasticity (the capac-

ity to learn further information) poses a central challenge in

CL methods [11]. The typical approach in CL involves re-

taining limited information from previous tasks, such as old

samples, a copy of the old model, or its parameters. During

the model update on new data, this information is utilized in

a regularization term to preserve old task knowledge, while

the classification loss is responsible for absorbing new task

knowledge. Although the old knowledge preservation is de-

liberately constrained in training, there is a lack of guidance

on how to acquire and integrate new task knowledge into the

model effectively. This raises the question of how to attain

a more balanced approach that explicitly guides both the

preservation of old knowledge and the absorption of new

knowledge during the learning process.

What if we could utilize same-level information to con-

trol capacity for new tasks? Intriguingly, despite of pro-

tective mechanism within neocortical circuits [39] in our

brain, the hippocampus, known for its role in memory con-

solidation [20], actively updates memories by integrating

novel information with existing memory traces [15]. This

dynamic process enables enhanced insights and improved

adaptation to the current task context [4]. Drawing inspi-

ration from this mechanism, we aim to explore a similar

approach to achieve a balanced integration of stability and

plasticity when learning new tasks for continual learning.

In this paper, we introduce the Flashback Learning al-

gorithm, a two-step training approach compatible with di-

verse CL methods. In the initial step, the model is updated

on new data using the original CL strategy to preserve old

task knowledge. Subsequently, we extract crucial informa-

tion from this updated model to control model plasticity. In

the second step, termed “Flashback”, we return to the old

model and update the model again, now equipped with the
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knowledge to guide the preservation of old task knowledge

and the acquisition of new task knowledge. We empirically

validate the effectiveness of FL algorithm on CIFAR-10,

CIFAR-100, and Tiny ImageNet datasets in two CL settings

(Task- and Class-Incremental). Our approach outperforms

the baselines in both settings across all three datasets. Our

contributions are listed below:

• We propose the FL algorithm, which seamlessly inte-

grates with CL methods and leverages their strategy to

update the model on new data and extract new knowl-

edge. Unlike traditional CL methods, FL guides the

model bidirectionally, combining old and new knowl-

edge in its second stage. This balanced approach sig-

nificantly enhances CL model performance.

• FL is compatible with various CL methods, in-

cluding replay-based, distillation, and parameter-

regularization techniques. Combined with FL, these

methods show substantial accuracy improvement in

both Task-Incremental (TI) and Class-Incremental (CI)

settings.

• Extensive experiments validate the effectiveness of FL,

showcasing its advantage over baselines within the

same training epochs. These empirical findings show

FL’s potential to advance CL models’ performance and

open new possibilities.

2. Notations
In continual learning, a model is trained sequentially on

tasks T ={t}Tt=1. Within each task, t, inputs x, and their cor-

responding ground truth labels y are drawn from data distri-

bution Dt = (Xt,Yt). Here, Xt and Yt represent the sets of

inputs and outputs specific to task t. Task t data originates

from a distinct set of classes Ct in the considered settings,

with no overlap between classes across different tasks. In TI

scenario, task identifier t is available during evaluation, al-

lowing the model to concentrate decision boundaries within

individual tasks. The CL model needs decision-making on

all seen classes during inference in the more demanding CI

setting [42]. While training on task t, the model is denoted

as ft(.;θ), and at the conclusion of the task, the updated

model is represented as ft(.;θ
∗); where θ and θ∗ are re-

spectively model parameters during and after training. The

model is decomposed into two parts: ft(.;θ) = g ◦ h(.;θ),
where feature extractor h : Xt → R

d maps input image x
to a low-dimensional feature vector h. The linear classifier

g : R
d → R

c maps the latent feature h to classification

logits z, where c denotes the total number of classes.

3. Flashback Learning
Flashback Learning emphasizes the simultaneous con-

trol of knowledge absorption and retention. Initially, the FL

algorithm updates the old model fs(.;θs) with new data to

obtain the primary model fp(.;θp). In this initial phase,

FL has access to some knowledge from the previous task;

this knowledge is determined based on the CL method, to

which FL is added. Having observed new data for some

epochs, fp(.;θp) acquired some knowledge of the new task.

By the end of the first step, FL extracts new knowledge us-

ing fp(.;θp); then it returns to the old model and updates

it within the final step; while benefiting from dual guidance

by previous and new knowledge jointly.

FL algorithm is compatible with various CL methods,

including replay-based, distillation-based, and parameter-

regularization methods. It updates the model from the pre-

vious task to the new one in two steps. In the first stage,

it takes a copy of the old model (see fs(.;θs) in Figure 1)

and follows the original CL strategy to update the model

for limited epochs to obtain a primary model (see fp(.;θp)
in Figure 1). CL methods offer access to different lev-

els of old information to control knowledge retention. We

refer to this information as the Stable Knowledge Base

(SKB). For instance, replay methods provide access to a

subset of old samples and responses by which model up-

dates can be regularized in the new task. After the initial

step, we extract similar information using primary model

fp(.;θp) = gp ◦ hp(.;θp) and store it in a separate knowl-

edge base called the Plastic Knowledge Base (PKB).

In the final stage, our algorithm returns to fs(.;θs) (see

Final Step Figure 1) and continues updating the model with

new data by a bidirectional regularization. This means that,

in addition to the classification loss, we utilize the SKB to

control model stability and the PKB to guide model plastic-

ity. This comprehensive approach ensures a more balanced

and effective training process that actively considers knowl-

edge retention and absorption. As a result, the FL algorithm

significantly enhances the performance of the CL model in

achieving a better trade-off between preserving old knowl-

edge and acquiring new knowledge.

Section 3.1 provides an explanation of SKB within the

FL framework and defines SKB for different categories of

CL methods. In Section 3.2, we present the PKB and show

how it is constructed to align with SKB. We detail how the

FL algorithm effectively utilizes these two knowledge bases

to regulate the model updates in its training objective in Sec-

tion 3.3.

3.1. Stable Knowledge Base

SKB serves as a supportive agent, helping the model re-

member and preserve old knowledge after each update. Pro-

viding information from previous tasks, SKB controls for-

getting and retains valuable knowledge from past experi-

ences. Here, we define SKB, denoted as S in FL setting.

The specific content of existing knowledge varies depend-

ing on the strategy employed by the CL method to preserve
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Figure 1. Flashback Learning Algorithm; Initial Step- starts from old model (i.e. fs(.;θs) = ft−1(.;θ
∗)), and updates the old model with

new data for limited epochs while constrained by SKB to obtain primary model fp(.;θp). Final Step-flashback to fs(.;θs) and update

again while constrained by SKB and PKB simultaneously, results in final new model ft(.;θ
∗)

knowledge. By categorizing CL methods into three groups,

we can define SKB and identify the accessible information

S within each category.

3.1.1 Distillation

In distillation methods, knowledge is transferred from the

old to the new model to preserve previously learned infor-

mation; and the loss function for updating the model on the

current task contains a distillation term. This loss compo-

nent requires access to the old model, as it involves distill-

ing the knowledge from the old model into the new one. In

practical terms, this means that a copy of the old model is

used to constrain the representations of the new model at

different stages, such as after the classifier [25], in inter-

mediate stages [12], or after the feature extractor [18], to

prevent their deviation from the old ones. In this category,

SKB comprises a copy of the entire old model fs(.;θs) or

the old feature extractor hs(.), which serves as the stable

knowledge S;

S �
{
fs(.;θs), hs(.)

}
. (1)

3.1.2 Memory Replay

In replay-based methods, the available knowledge S in SKB

includes a small subset of old samples x and their corre-

sponding ground-truth labels y. These samples are stored

in a memory buffer Mt−1 and interleaved with the current

data for joint training. In some replay methods, additional

information is also kept alongside the labels. For example,

in DER/DER++ [5], the old model’s logits zs = fs(x;θs)
are stored alongside the images and labels. Similarly, in

[19], lower-dimensional feature embeddings hs = hs(x)
are retained with the labels in the memory buffer. Therefore,

in replay-based methods, S is retrieved from the following

SKB set;

S �
{
x, hs = hs(x), zs = fs(x;θs), y |

(x,y) ∼ Mt−1

}
.

(2)

in which (x,y) is sampled from memory buffer Mt−1.

Based on replay strategy, hs or zs is the old model response

to x, kept in SKB.

3.1.3 Parameter Regularization

Critical parameters from the previous model regularize the

updating process for the new task in this category. There-

fore, parameter regularization methods have access to a

copy of the old model’s weights and a measure of their im-

portance. This importance measure is computed using the

Fisher matrix, as employed by the EWC method [23]. The

online EWC approach [35] updates the overall Fisher ma-

trix F̄t recursively, incorporating the Fisher matrix Ft from

each task as follows;

F̄t = γF̄t−1 + Ft | t = 1...T , F̄1 = F1, (3)
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Algorithm 1: Flashback Learning Algorithm

Input: Old model ft−1(.;θ
∗), New data

(x,y) ∈ (Xt,Yt) , Available SKB Eq. (1)-(4)

Output: New model ft(.;θ
∗), Updated SKB

fs(.;θs) = ft−1(.;θ
∗)

ft(.;θ) = ft−1(.;θ
∗)

for epoch = 1, · · · , E1 do
for batch = 1, · · · , B do

Generate model response ft(x;θ)
// Classification loss

Lc(θ) = Lc(ft(x;θ),y)
// Use SKB Eq. 1-4, calculate Ls(θ)

Ls(θ, S) // Eq. 10-11

Let L1(θ) = Lc(θ) + αsLs(θ)
Update θ// Descending gradient L1(θ)

end
end
fp(.;θp) = ft(.;θ) // primary model

P ∈ PKB // Extract PKB Eq. 5-7

ft(.;θ) = fs(.;θs) // Flashback

for epoch = 1, · · · , E2 do
for batch = 1, · · · , B do

Generate model response ft(x;θ)
// Classification loss

Lc(θ) = Lc(ft(x;θ),y)
// Stability loss, Eq. 10-11

Use SKB to calculate Ls(θ)
// Plasticity loss, Eq. 14-15

Use PKB to calculate Lp(θ)
Let L2(θ) = Lc(θ) + αsLs(θ) + αpLp(θ)
Update θ // Descending gradient L2(θ)

end
end
Update SKB for the next task

where F1 is the Fisher matrix calculated for the first task

and γ < 1 is the hyperparameter to adjust the contribution

of the previous Fisher approximation F̄t−1. This recursive

update process prevents the computational complexity from

growing linearly with the number of tasks. The SKB in

parameter-regularization methods includes empirical Fisher

matrix F̄t and the old parameters.

S �
{
θs = θ∗, Fs = F̄t

}
. (4)

Let θ∗ be the old model parameters and F̄t is the average

Fisher matrix calculated by (3).

3.2. Plastic Knowledge Base

In the FL algorithm, we utilize stable knowledge S from

SKB and apply the same updating strategy as the original

CL method to update the old model on the new task dur-

ing the initial training (see Initial Step in Figure 1). The

first step’s output is primary model fp(, ;θp), which allows

extracting same-level information to SKB (e.g. in replay

method we have x, sampled from the memory buffer, and

its corresponding old response; so we equally generate the

primary model response to x.) We refer to this extracted

information as plastic knowledge P , which is kept in the

Plastic Knowledge Base (PKB) to adjust the model’s plas-

ticity in FL final training. PKB acts as an informed agent;

having observed new data, it guides FL to integrate the new

knowledge into the model effectively. For distillation meth-

ods, same as SKB (1), PKB contains a copy of the entire

primary model fp(.;θp) or the feature extractor hp(.);

P �
{
fp(.;θp), hp(.)

}
. (5)

Considering stable knowledge S in replay-based

SKB (2), we generate primary model response for buffer

samples as plastic knowledge P ;

P �
{
hp = hp(x), zp = fp(x;θp) | x ∼ Mt−1

}
; (6)

here, x is sampled from the memory buffer Mt−1, based on

replay strategy hp or zp are primary model responses, kept

in PKB. If the CL strategy involves parameter regularization

by stable knowledge (4), we compute an additional Fisher

matrix, Fp, to assess the importance of parameters in the

primary model fp(, ;θp). A copy of the primary model’s

weights and the corresponding Fisher matrix is then added

to the PKB as;

P �
{
θp,Fp

}
, (7)

to ensure consistency between the two knowledge bases. In

Eq. (7), θp is a copy of primary model weights, and Fp is

its Fisher matrix.

3.3. Flashback Learning Steps

3.3.1 Initial Step

In this step, we start by creating a copy of the old model

as fs(, ;θs). We then update the model using the same ob-

jective function as the original CL method, but only for a

limited number of epochs E1. The loss function of the orig-

inal CL method is split into two components;

L1(θ) = αsLs(θ) + Lc(θ), (8)

Ls(θ) is the stability loss, taking stable knowledge S from

SKB to regularize the training process, and αs is its hy-

perparameter. The second component of the loss function

Lc(θ) is the summation of the remaining terms, including
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the classification loss. The second component optimizes

the model’s performance on the new task. The stability

loss Ls(θ) is formulated particularly for each CL method.

For replay-based methods like DER [5], Ls(θ) is computed

as the mean squared error (MSE) loss between the new

model’s response and the old logits from replay SKB (2);

Ls(θ) = E(x,zs)∼SKB

[∥∥ft(x;θ)− zs
∥∥2
2

]
. (9)

Here, stability loss directs the model to retain consistency

with the stable knowledge in SKB; x is sampled from the

memory buffer, and zs is its corresponding old logit kept in

SKB.

Stability loss is designed for distillation-based methods

to constrain the new model’s representation at a particu-

lar stage. In LUCIR [18], the stability loss controls the fi-

nal feature embeddings of the model. LUCIR stability loss

is formulated by cosine embedding loss, which employs a

copy of old feature extractor hs(.) kept in SKB (1). In prac-

tice, Ls(θ) encourages the new and old embeddings to re-

main adjacent throughout the update process;

Ls(θ) =
(
1− 〈h̄(x)− h̄s(x)〉

)
. (10)

Let h̄ = h/‖h‖2 represent the �2-normalized vector of fea-

ture embeddings and 〈·, ·〉 is the inner product between two

vectors. h̄(x) represents the normalized feature embedding

from current model and h̄s(x) is the normalized feature em-

bedding generated by old model.

Stability loss for parameter regularization takes old pa-

rameters from SKB (4) to control new parameters’ updates

directly. The regularization term is weighted by the empiri-

cal Fisher matrix Fs stored as stable knowledge (4);

Ls(θ) =
∥∥θ − θs

∥∥2
Fs
, (11)

to force crucial parameters remain close to their old values.

In Eq. (11), ‖v‖2F = v�Fv.

In FL’s first stage, primary model fp(.;θp) is obtained

by descending gradient on L1(θ) for the limited number of

epochs E1, stability loss Ls(θ) in L1(θ) is formulated dif-

ferently based on available stable knowledge and CL strat-

egy in knowledge retention. We derive consistent informa-

tion with SKB after obtaining fp(.;θp) and store it in the

PKB to serve the requirement of the final step in the FL

algorithm.

3.3.2 Final Step

In this stage, we reinitialize the model to fs(.;θs) and pro-

ceed with the model update on new data for an adequate

number of epochs E2 by the modified objective function

L2(θ) = Lc(θ) + αsLs(θ) + αpLp(θ). (12)

The first two terms of Lc(θ) and Ls(θ) are formulated anal-

ogous to the first step of the FL algorithm (see Eq. (8)-

(11)). The additional term Lp(θ) is introduced to control

the model’s plasticity, and αp is its hyperparameter. As dis-

cussed in Section 3.2, PKB is built from the extracted in-

formation of primary model fp(.;θp), following a similar

format as SKB. Consequently, Lp(θ) is defined the same as

stability loss but incorporating plastic knowledge P from

PKB.

Considering MSE stability loss Ls(θ) for replay meth-

ods in Eq. (9), plasticity loss is defined as;

Lp(θ) = Ex∼Mt−1 zp∼PKB

[∥∥ft(x;θ)− zp
∥∥2
2

]
; (13)

x is sampled from the memory buffer Mt−1, and zp is its

corresponding logit generated by the primary model and

kept in Eq. (6).

Distillation-based methods with stability loss (10), for-

mulate Lp(θ) as cosine embedding loss;

Lp(θ) =
(
1− 〈h̄(x)− h̄p(x)〉

)
, (14)

in which h̄(x) and h̄p(x) are respectively normalized fea-

ture embedding from new and primary models.

Plasticity loss Lp(θ) for parameter regularization meth-

ods follows

Lp(θ) =
∥∥θ − θp

∥∥2
Fp

. (15)

to go with the stability loss Ls(θ) in Eq. (11); θp shows the

primary model’s parameters and Fp is its Fisher matrix.

In the final FL step, we again start from the old model

fs(.;θs) and update it on new data for the adequate num-

ber of epochs (denoted as E2). Stability and plasticity loss

components regulate the model updates in this step. The

first term aims to preserve the stable knowledge obtained

from the previous tasks, while the plasticity one counter-

acts the first one, ensuring that the model remains close to

the plastic knowledge to encourage knowledge acquisition

from the new task(see Algorithm 1). By incorporating these

two regularizers, we achieve a better balance of stability and

plasticity in the model’s sequential learning process. We ex-

pect that this modification in the loss function will result in

improved accuracy for the CL model, reflecting FL’s ability

to handle incremental learning scenarios more effectively.

3.4. Limitation

In FL, initially, we update the model for a limited num-

ber of epochs (E1). In our experiments, we determine E1

such that the total number of training epochs of FL matches

that of baseline techniques (i.e., E1 + E2 is equal to the

number of training epochs for the baseline CL techniques).

This consideration ensures the FL algorithm maintains a

comparable training duration to the baseline CL methods.
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Determining the appropriate value for E1 remains a chal-

lenge in our method, as it depends on the specific CL set-

ting and dataset characteristics. Additionally, in Eq. (12),

the contributions of stability and plasticity losses are scaled

by hyperparameters αs and αp, respectively. Tuning these

hyperparameters is another challenge that influences the FL

algorithm’s performance. Despite these challenges, the po-

tential applicability of FL encourages us to address these

limitations in future research.

4. Related Works

4.1. Memory Replay

Replay-based methods [31], [10], [6] utilize a small

memory buffer of samples and their corresponding labels

from previous tasks. These stored examples are combined

with new data during training on a new task. Other than

images and labels, some methods store lower-dimensional

features [7], [19], or logits generated by the old model in the

memory buffer for knowledge retention. Different strate-

gies have been proposed to make use of the memory buffer

to preserve old information; DER/DER++ [5] and X-DER

[3] augment the cross-entropy loss with a logit distillation

component during the replay process. GEM [27] and A-

GEM [9] impose constraints on new task optimization by

memory samples. Some methods employ generative mod-

els to generate old samples [26], [40], or representations

[38] for replay. Unlike traditional replay methods that only

rely on the memory buffer’s old information to preserve sta-

ble knowledge, the FL algorithm generates and accumulates

counterpart information to adjust plasticity concurrently.

4.2. Parameter Regularization

Parameter regularization methods aim to understand how

modifications to model weights affect task losses; subse-

quently, they employ strategies to restrict updates for crit-

ical old parameters and preserve old knowledge. One no-

table approach in this field is EWC [23], which introduces

the Fisher Information Matrix to evaluate the importance

of weights. Other methods, such as SI [41] and MAS [1],

utilize estimated path integrals and gradient magnitudes to

regulate weight changes. RWalk [8] combines the Fisher in-

formation matrix and online path integral for approximating

parameter importance. Online EWC [35] presents a solu-

tion for efficient computation and use of the average Fisher

matrix. In this paper, an additional Fisher matrix is com-

puted after the initial training to emphasize the importance

of crucial new parameters. Then in the final training, the

interplay between the two stability and plasticity regular-

ization terms improves model performance as it enables the

preservation of relevant knowledge while allowing for the

necessary capacity for the new task.

4.3. Distillation

Knowledge distillation methods, known for transferring

knowledge from a larger teacher model to a smaller stu-

dent one, have been adapted to preserve old knowledge in

CL methods. Knowledge distillation methods focus on reg-

ulating intermediate outputs while the model gets updated

on the new task. For instance, [25] proposed regulariza-

tion on logits between the new model and the old check-

point. Similarly, [37] and [33] perform knowledge distil-

lation on final feature maps before the classification layer.

PODNet [12] extended knowledge distillation to intermedi-

ate feature maps, and AFC [22] incorporated gradient in-

formation to weigh the feature distillation loss to preserve

essential features for old tasks. Recent advancements in dis-

tillation approaches have focused on achieving a better bal-

ance between stability and plasticity by incorporating tech-

niques such as projecting new features onto the old ones

within a contrastive learning framework [13, 14] or utiliz-

ing a learnable linear transformation [16]. When integrating

FL into distillation methods, we observe improved accuracy

in both CI and TI settings without the need for additional

contrastive learning or learning a transformation.

5. Experiments
To assess the effectiveness of our proposed approach,

we conducted experiments on image classification datasets

commonly used in CL literature;

• Split CIFAR-10 [41],[30]: CIFAR-10 dataset [24] is

split to 5 sequential tasks; each includes 2 classes with

5000 and 1000 32 × 32 colored images, respectively

for training and testing.

• Split CIFAR-100 [10],[41]: CIFAR-100 dataset [24]

is split to 10 sequential tasks; each includes 10 classes.

Each class comprises 500 and 100, train and test 32×
32 colored images.

• Split Tiny ImageNet [5]: Tiny ImageNet dataset con-

tains 100000 train and 10000 test downsized 64 × 64
colored images across 200 classes and is split into 10

tasks of 20 classes.

5.1. Implementation Details

We adopted the ResNet18 [17] architecture as the base

model for our experiments as commonly used in [3], [5] on

the image classification datasets. The models were trained

from scratch without any pre-training. Following the ap-

proach of previous studies [3], [5], [30], we employed a

multi-epoch setup, allowing for multiple passes on the train-

ing data for each task. Specifically, for the Split CIFAR-

10 and CIFAR-100 datasets, we trained the models for 60

epochs per task, while for the Split Tiny ImageNet dataset,
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Table 1. FL algorithm in Class-Incremental (CI) setting, combined with different CL methods. Average Accuracy (↑) for standard CL

benchmarks is reported. For replay methods (iCaRL and X-DER), the buffer size is respectively set to 500, 2000, and 5120, for Split

CIFAR-10, Split CIFAR-100, and Split Tiny ImageNet. (*) denotes results from [3] and [5] using the same implementation.

Split CIFAR-10 Split CIFAR-100 Split Tiny ImageNet
5 tasks 10 tasks 10 tasks

New classes per task 2 10 20

iCaRL [30] 56.56 49.82* 27.32

iCaRL+FL (ours) 64.77 53.16 31.18

LwF.MC [30] 43.14 16.22* 24.18

LwF-MC+FL (ours) 45.88 21.13 25.58

X-DER [3] 56.85 59.14* 40.72

X-DER+FL (ours) 64.31 58.02 41.60

Table 2. FL algorithm in Task-Incremental (TI) setting, combined with different CL methods. Average Accuracy (↑) for standard CL

benchmarks is reported. For replay methods (iCaRL and X-DER), the buffer size is respectively set to 500, 2000, and 5120, for Split

CIFAR-10, Split CIFAR-100, and Split Tiny ImageNet. (*) denotes results from [5] and [5] using the same implementation.

Split CIFAR-10 Split CIFAR-100 Split Tiny ImageNet
5 tasks 10 tasks 10 tasks

New classes per task 2 10 20

iCaRL [30] 88.7 84.16 68.28

iCaRL+FL (ours) 91.03 86.43 69.8

LwF.MC [30] 93.28 61.40 65.45

LwF.MC+FL (ours) 96.79 64.59 67.21

oEWC [35] 68.29* 59.34 19.20*

EWCo+FL (ours) 70.85 62.35 21.01

X-DER [3] 92.89 88.89 75.16

X-DER+FL (ours) 94.85 89.49 76.53

we trained for 80 epochs. We use Stochastic Gradient De-

scent (SGD) with a predefined schedule for decreasing the

learning rate at specific epochs, the same epochs and weight

decay rate for the original CL and CL+FL methods.

It is important to note that comparing different baselines

with intricate yet meaningful differences in experimental

settings can be challenging. We employed available im-

plementations of all baselines within a unified experimental

environment to address this issue, using the provided code-

base 1. This approach ensures consistent evaluations across

the methods. We followed the guidelines and recommenda-

tions reported in [3] for hyperparameter selection in the CL

methods. Subsequently, we adjusted the hyperparameters

related to PKB information for each CL method.

5.2. Metrics and Baselines

To evaluate the performance of Flashback Learning, we

examine the Average Accuracy metric before and after in-

tegrating Flashback into the CL methods. We report the

results in CI and TI settings. After training the model on

all T tasks, we denote the accuracy of the model on the test

1https://github.com/aimagelab/mammoth.

dataset of task i as Ai and define the Average Accuracy as

Ā =
1

T

T∑
i=1

Ai. (16)

Average Accuracy is a concise and immediate measure that

enables straightforward comparisons among different base-

lines. In addition, we use specific CL metrics such as

Forgetting [8] to measure the extent of forgetting previous

tasks. We analyze Backward Transfer (BWT) [27] to assess

the impact of learning task t on previous tasks, where posi-

tive BWT signifies performance improvement on preceding

task k. Moreover, we examine Forward Transfer (FWT)

[27] to quantify the influence of learning task t on the per-

formance of future tasks. We use the following CL methods

and add our FL algorithm:

• Incremental Classifier and Representation Learn-
ing (iCaRL) [30] uses a memory buffer populated by

a herding strategy and distillation to preserve knowl-

edge. ICaRL combines samples stored in the memory

with new ones for joint training and distills knowledge

from the old model by focusing on logits.

• Learning without Forgetting (LwF) [25] is a distilla-

tion approach that employs the old model as a teacher
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during the current task. In particular, we add FL to the

LwF.MC, an adaptation of LwF designed in [30].

• Online Elastic Weight Consolidation (o-EWC) [35]

calculates the Fisher matrix online to assess the im-

portance of parameters in previous tasks and constrain

critical ones to preserve old knowledge when updating

the model on the new task.

• Extended Dark Experience Replay (X-DER) [3]

keeps old samples, corresponding labels, and old

model logits in the memory buffer for upcoming tasks.

This method considers memory updates and prepara-

tion for future classes in its objective function.

5.3. Results

For our experimental analysis, we chose at least one

method from the CL category to integrate the FL algo-

rithm. While these selected methods may not necessarily

represent state-of-the-art accuracy, they allow us to exam-

ine the impact of FL on model performance across different

CL approaches. We respectively selected iCaRL, LwF, and

oEWC as representatives of replay, distillation, and parame-

ter regularization categories. Additionally, we included the

X-DER method in our selection as the current state-of-the-

art method in the replay category.

We present the average accuracy of CL methods before

and after integrating the FL algorithm for both the CI and

TI settings (see Table 1 and Table 2, respectively). Notably,

CL methods that combine memory replay and distillation to

prioritize stability exhibit a more significant improvement

with the addition of FL. Our initial observation of this per-

formance boost was in the case of iCaRL, and then we in-

vestigated X-DER from the memory replay and distillation

category. Experimental results for X-DER on all bench-

marks with FL learning show a significant improvement in

average accuracy except for Split-CIFAR100 in the CI set-

ting (Table 1). We acknowledge that the original source

(X-DER) [3] reports an accuracy of 59.15% and we report

the same in Table 1, but we independently reproduced an

average accuracy of 57.57% using their code base.

We analyzed the FWT metric for LwF.MC, X-DER, and

oEWC on Split CIFAR-10 and Split CIFAR-100 in TI set-

ting. Table 4 shows that FWT consistently improves across

all rows with FL integrated, inferring that learning a new

task positively impacts the model’s capacity for handling

upcoming tasks. In our observations (see Table 3), we no-

ticed that for CL methods like X-DER and iCARL, which

utilize distillation to retain old knowledge from memory

samples, the FL algorithm’s plasticity guidance can coun-

teract knowledge preservation, resulting in smaller BWT

and larger Forgetting. Thus, careful selection of hyperpa-

rameters controlling stability and plasticity in the final step

is crucial for FL’s success. On the other hand, for methods

Table 3. Backward Transfer (↑) and Forgetting (↓). Results

for Split CIFAR-10 in Task-Incremental setting before and after

Flashback Learning.

Method Backward Transfer (↑) Forgetting (↓)

LwF.MC -2.31 2.31

LwF.MC+FL (ours) -2.2 2.2

X-DER -1.25 1.4

X-DER+FL (ours) -2.28 2.3

oEWC -19.93 21.9

oEWC+FL (ours) -13.01 13.47

iCaRL 0.16 0.11

iCaRL+FL (ours) -2.03 2.03

Table 4. Forward Transfer (↑) Results in Task-Incremental setting

before and after Flashback Learning.

Method Split CIFAR-10 Split CIFAR-100

LwF.MC 0.85 -0.43

LwF.MC+FL (ours) 2.3 1.83

X-DER -2.1 1.63

X-DER+FL (ours) 1.68 2.93

oEWC 2.96 -0.16

oEWC+FL (ours) 3.27 1.23

like oEWC and LwF.MC, incorporating FL not only im-

proves Backward Transfer and reduces Forgetting but also

enhances their performance in acquiring knowledge more

efficiently (see Table 4).
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6. Conclusion

FL algorithm introduces an innovative approach in CL

setting to control model plasticity and stability explicitly

by two regularization terms next to the task objective func-

tion. This stands in contrast to the common practice in lit-

erature, where knowledge retention is constrained by stable

knowledge from one side, and knowledge absorption is left

to the task objective function (e.g. classification loss) with-

out active control over plasticity. Our experimental analy-

sis demonstrates that this bidirectional regularization in FL

leads to improved performance and a more balanced trade-

off between preserving old knowledge and learning new

knowledge. As the FL algorithm exhibits potential applica-

bility to various CL categories, our future work will focus

on further exploring and refining this mechanism.
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