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Abstract

In continual learning, there is a serious problem ”catas-
trophic forgetting”, in which previously acquired knowledge
is forgotten when a new task is learned. Various methods
have been proposed to solve this problem. Among them, Re-
play methods, which store a portion of the past training data
and regenerate it for later tasks, have shown excellent per-
formance. In this paper, we propose a new online continuous
learning method that adds a representative vector for each
class and a margin for similarity computation to the conven-
tional method, Supervised Contrastive Replay (SCR). Our
method aims to mitigate the catastrophic forgetting caused
by class imbalance by using learnable vectors of each class
and adding a margin to the calculation of similarity. Ex-
periments on multiple image classification datasets confirm
that our method outperformed conventional methods.

1. Introduction
Smart devices and image-related applications are con-

stantly generating vast amounts of image data. As data in-
creases, AI models need to continually update performance
or be able to treat many tasks. This kind of such a learning
method is called continual learning[6]. This enables the
learning of an intelligence like mammals. Among them,
the more practical continual learning using streaming data
called online continual learning[8, 16]. In this paper, we
handle class incremental learning for online continual learn-
ing, which is a setup of gradually increasing the number of
classifiable.
There is a serious problem of forgetting old knowledge

when AImodel tries to learn a new task, called ”catastrophic
forgetting”[20, 9]. To mitigate catastrophic forgetting, there
are various methods to store the previous task information.
Replay methods [24, 4, 2, 1, 27, 22, 18, 23] store a small
portion of past samples and replay the samples along with
present task samples. Regularization-basedmethods[14, 25]
update CNN’s parameters based on how important it is to

previous tasks. Parameter isolation methods[19, 26] expand
the networks or decompose the network into subnetworks
for each task. Among the recently proposed approaches, re-
play methods has been shown to be one of the most effective
methods for mitigating catastrophic forgetting[17]. In addi-
tion, to mitigate catastrophic forgetting, contrastive learning
is also consider effective[3]. Contrastive methods [11, 5]
learn representations using the inductive bias that the pre-
diction should be invariant to certain input transformations
instead of relying on taskspecific supervisions.
However, there are two problems with Replay methods

in online continual learning. The first problem is the small
variety of old class samples stored in the buffer. Replay
methods replay a small number of old class samples many
times in later tasks. As a result, the model overfits the old
class sample too much. The second one is that the learning
of a new class is not fully convergent. In online continual
learning setup, a model can only learn a new class sample
once. In addition, there are more samples to be learned
during a task than samples of old classes stored in the buffer.
Therefore, there is a problem that samples of new classes do
not converge as well as samples of past classes.
In order to address these class imbalance issues between

old and new class samples for online continual learning,
we proposed an improved method of contrastive learning,
Learnable-vector Margin Contrastive Replay (LMCR). In
summary, the proposed LMCR has two main contributions.

• We add a learnable vector for each class to the con-
trastive learning, which compares samples to each
other. This alleviates the problem of a small variety
of samples of old classes.

• We used margin [7, 32, 15] to solve the problem of
insufficient convergence of the new class.

In our experiments, we used CIFAR10/100[12] and
MiniImageNet[30] to validate our proposed method. As a
result, the proposed method significantly outperformed sev-
eral baselines at various buffer sizes. The proposed method
is particularly effective for small buffer sizes, and improves
the accuracy by up to 5.4% compared with SCR.
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This paper is organized as follows. We describe related
works in section 2. Our proposed method is explained in
section 3. Section 4 is for experimental results. Finally,
conclusions and future works are described in section 5.

2. Related works

2.1. Continual learning scenario

There are many continual learning setups in which a
neural network model needs to sequentially learn a series
of tasks. In this paper, we categorize them into three
setups, task-incremental(Task-IL), class-incremental(Class-
IL) and domain-incremental learning(Domain-IL), depend-
ing on whether the task-ID is given at the test time[28].
Task-IL are always informed about which task needs to be
performed, also called multi-head setup. This is the easiest
continual learning scenario. Domain-IL cannot use task-ID
at the test time. Models however only need to solve the task
at hand; they are not required to infer which task it is. In
contrast to task IL, in class IL, the model is not given a task-
ID andmust be able to both solve each task we have seen and
guess which task it is. The class-IL is more challenging than
task-IL and domain-IL, but also more realistic. Therefore,
in this paper, we focused Class-IL on the task-free setup,
despite the simple methods.

2.2. Replay methods in continual learning

Continual learning methods are mainly classified into
three mechanisms for mitigating catastrophic forgetting, re-
pay methods, regularization-based methods or parameter
isolation methods. Replay methods store a portion of pre-
vious tasks samples and update to replay past samples.
Regularization-base methods restrict the parameters of the
model so that it does not move away from the parameters
of past tasks. Parameter isolation methods reduce forgetting
by assigning model parameters to each task or by extend-
ing the model. Among them, replay methods has shown
great performance in continual learning, despite the simple
methods. In replay methods, Experience Replay (ER) is a
simple framework with buffering past samples and a tuned
learning rate scheduling to prevent forgetting past knowl-
edge. Many methods have been proposed based on ER in
terms of how to store samples and how to use them. In this
work, we focused on SCR in replay methods. SCR is sim-
ple and effective online continual learning algorithms using
supervised contrastive learning and Nearest Mean Classifier
(NCM)[21] classifiers. However, there is class imbalance
problem between past classes and new classes caused by
capacity-limited buffers. This prevents contrastive learning
from performing adequately. We alleviate this problem by
using learnable vectors and margin.

3. Preliminaries
3.1. Online Class Incremental Learning

Online continual learning is a more practical and realis-
tic learning setting for stream data. Among them, Online
Class-incremental Learning increases the number of clas-
sifiable classes in image classification. Formally, in this
paper, we define𝐷 = {𝐷𝑡 }

𝑇
𝑡=1 as the data stream of an un-

known distribution. 𝐷𝑡 is the data set at task index 𝑡. The
classes in 𝐷𝑡 are denoted by 𝐶𝑡 , the samples in 𝐷𝑡 by 𝑋𝑡 ,
and the labels corresponding to the samples by 𝑌𝑡 . At time
𝑡, (𝑥𝑖𝑡 , 𝑦𝑖𝑡 ) ∈ 𝐷𝑡 is trained only once for each sample as a
mini-batch.

3.2. Supervised Contrastive Learning

Contrastive learning is a learning method that uses the
property that similar images output similar latent vectors
and dissimilar images output dissimilar latent vectors. This
learning method allows CNNs to perform a wide variety of
representations and improves performance on downstream
tasks over supervised learning. Contrastive learning is also
considered effective for continual learning, allowing for the
acquisition of more transferable representations.
Given a training batch of 𝑁 training samples 𝐵 =

{(𝑥𝑘 , 𝑦𝑘)}
𝑁
𝑘=1, contrastive learning first generates 2𝑁 pairs,

{(𝑥𝑙 , 𝑦̃𝑙)}
2𝑁𝑙=1, where 𝑥2𝑘 and 𝑥2𝑘 are two random augmen-

tation. The 2𝑁 samples, multiviewed batch[11], are mapped
to a unit hypersphere as follows.

{𝑧𝑖}𝑖∈𝐼 = {𝑃𝑟𝑜 𝑗 (𝐸𝑛𝑐(𝑥𝑖))}𝑖∈𝐼 (1)

where 𝐸𝑛𝑐(·) is an encoder whichmaps x to a representation
vector, 𝑟 = 𝑃𝑟𝑜 𝑗 (𝑟) ∈ R𝐷𝐸 and 𝑃𝑟𝑜 𝑗 (·) is a projection
head which maps r to a normalized vector, 𝑧 = 𝑃𝑟𝑜 𝑗 (𝑟) ∈
R𝐷𝑃 . Supervised contrastive learning calculates the loss
with labels as follows.

L𝑠𝑢𝑝 =
2𝑁∑
𝑖=1

−1
|𝑃(𝑖) |

∑
𝑝∈𝑃 (𝑖)

𝑙𝑜𝑔
𝑒𝑥𝑝(𝑧𝑖 · 𝑧𝑝/𝜏)∑

𝑗∈𝐴(𝑖) 𝑒𝑥𝑝(𝑧𝑖 · 𝑧𝑎/𝜏)
(2)

where 𝑖 is a anchor, 𝐼 is a set of indices of a multiviewed
batch and 𝐴(𝑖) is the set of indexes of non-anchor samples.
𝜏 is temperature hyperparameter and 𝑃(·) is the index set
of positive examples, i.e., augmented images with the same
label as the anchor. Using this embedding vector, the model
minimizes LMC loss computed with the learnable prototype
vector and margin for each class.

4. Proposed Method
4.1. Motivation

Among the conventional continual learning algorithms,
replay methods have shown great performance[24, 4, 2, 1,
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Figure 1: The overview of LMCR framework. Mini-batch consists of samples from the current task and the memory buffer.
This original mini-batch and augmented view are passed through the encoder and projection head to obtain a normalized
features. LMCR computes LMC loss using learnable-vectors with each class label and margin to converge the feature
distributions of new class.

27, 22, 18, 23]. Replay methods store a portion of the past
training samples in a memory buffer of fixed capacity and
replay them in a later task. However, because the buffer
capacity is fixed, the varieties of samples for each past task
decreases as the task progresses. Furthermore, samples in
the buffer are trained many times in later tasks, resulting
in smaller variance in the embedding space. In contrast,
although there are many kinds of samples for the task being
trained, the variance of the features in the embedding space
is not fully reduced because it can only be trained once
through online learning.
To solve these problems, we proposed Loss with the fol-

lowing two elements.

1) We introduce a learnable vector of each class in contrast
learning. This vector acts like a prototype for each class
and alleviates the problem of having a small variety of
past class samples.

2) We add a margin to the new class of sample embed-
ding vectors in contrast learning to bring them closer
together.

This alleviates the problem of insufficient convergence due
to the large variety of samples in the new class.

4.2. Learnable-vector Margin Contrastive Loss

In this paper, we propose Learnable-vector Margin Con-
trastive Loss (LMC Loss). We show the overview of our
proposed method in Figure 1. During training, a small
batch 𝐵𝑡 is randomly retrieved from the data stream 𝐷𝑡

and another batch 𝐵M from memory buffer M. An input
batch consists of an original batch 𝐵 = 𝐵𝑡 ∪ 𝐵M and an

augmented batch 𝐵̃ which is the augmentation of an origi-
nal batch. This input batch is passed through the encoder
and projection head, and the features are output normalized
vectors 𝑧. By Using these embedded vectors and learnable
vectors 𝑊 = {𝑤1, 𝑤2, ..., 𝑤𝑐} with each class label, the loss
function L𝐿𝑀𝐶 is computed as follows

L𝐿𝑀𝐶 =
∑
𝑖∈𝐼

−1
|𝑃(𝑖) ∪ 𝑤𝑦𝑖 |

∑
𝑝∈𝑃 (𝑖)∪𝑤𝑦𝑖

log
𝑒 (cos(𝜃𝑝+𝑚)/𝜏 )∑

𝑝∈𝑃 (𝑖) 𝑒
(cos(𝜃𝑝+𝑚)/𝜏 ) +

∑
𝑗∈𝑁 (𝑖) 𝑒

(cos 𝜃 𝑗/𝜏 )

(3)

𝑚 =

{
𝛿 𝑖 ∈ 𝐶𝑡

0 𝑖 ∉ 𝐶𝑡
(4)

where 𝑁 (𝑖) denotes the set of indices of negative samples
with different labels from the anchor. 𝑚 is the margin which
is a hyperparameter. 𝑐𝑜𝑛𝜃𝑥 is the cosine similarity between
the anchor and the embedding vector of the sample 𝑥. 𝑤𝑦𝑖

is a learnable vector that has the same label as the anchor
and the same number of dimensions as the output embed-
ding vector. As the task progresses and each new class is
seen, the weight 𝑤 with the label of that class participates in
training. After the vector participates in training, it always
participates in training continuously thereafter. This allows
the learnable vectors of each class to accumulate knowledge
and are expected to perform like as a prototype for each
class.
When the anchor is included in the class𝐶𝑡 being trained,

the addition of a margin is expected to reduce the within-
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Table 1: Comparison results on Split CIFAR10, Split CIFAR100 and Split MiniImageNet. All scores are Average Accuracy
by the end of training as a evaluation metric and averaged of 10 runs. 𝑀 is a buffer size. The best scores are in boldface and
the second best scores are underlined.

Method CIFAR10 CIFAR100 MiniImageNet

M=100 M=200 M=500 M=1000 M=500 M=1000 M=2000 M=5000 M=500 M=1000 M=2000 M=5000

offline 81.7±0.5 50.1±0.3 51.6±0.4
finetuning 17.5±1.1 4.7±0.5 4.5±0.5
EWC[25] 17.5±1.3 4.7±0.6 4.6±0.7
LwF[14] 22.3±0.8 12.9±0.5 11.2±0.9

ER[24] 20.8±1.2 21.6±1.8 28.3±3.5 36.1±4.3 9.3±1.2 12.2±1.1 15.5±1.4 20.6±1.8 8.4±0.9 10.9±0.7 14.4±0.9 17.7±2.3
ASER[27] 19.3±0.9 21.4±1.6 26.1±3.0 31.9±3.3 11.7±1.3 14.7±1.0 18.8±0.7 23.9±1.3 10.8±0.9 12.6±1.1 14.0±1.3 18.8±1.3
A-GEM[4] 18.6±0.9 17.8±1.5 18.1±1.1 18.1±1.2 5.4±0.6 5.4±0.6 5.6±0.6 5.7±0.6 5.1±0.3 4.9±0.4 4.7±0.7 5.0±0.7
MIR[1] 20.4±0.6 22.3±2.0 29.2±2.4 37.1±3.7 9.3±0.8 11.5±1.0 15.7±1.0 22.0±1.8 8.3±0.5 10.3±0.7 14.9±0.8 18.3±2.3
GSS[2] 18.7±1.1 20.1±0.8 24.8±1.3 31.5±4.0 8.6±0.8 9.8±0.7 13.3±0.8 16.0±1.5 8.1±0.9 9.9±0.6 13.1±1.7 15.1±1.9
GDumb[22] 22.9±1.4 27.1±1.6 32.4±1.4 37.5±1.3 7.0±0.5 9.9±0.4 13.3±0.6 19.3±0.5 5.3±0.5 7.3±0.8 11.8±0.6 20.5±0.7
iCaRL[23] 26.8±2.8 30.8±2.4 38.2±3.1 49.6±2.8 13.3±0.9 16.4±0.7 18.6±0.6 19.1±0.6 10.4±0.8 12.6±0.6 14.2±0.7 15.7±0.9
SCR[18] 35.1±2.9 45.4±1.7 57.4±1.0 64.5±1.2 19.3±0.6 26.4±0.5 32.7±0.6 38.6±0.5 17.8±1.2 24.3±0.7 31.0±1.1 35.8±0.8

LMCR(ours) 40.5±2.1 49.0±1.9 59.5±1.0 65.2±0.7 20.7±0.7 27.2±0.5 33.8±0.5 39.8±0.6 19.0±0.5 25.3±.0.7 30.7±1.0 36.6±0.6

(a) Split CIFAR100 (b) Split MiniImageNet

Figure 2: Average accuracy on observed tasks in Split CIFAR100 and Split MiniImageNet when the buffer size is 5000

class variance in the training task when calculating the co-
sine similarity to the positive example.

4.3. The inference of LMCR

LMCR uses NCM classifier[21, 18] for inference. When
we predict the label of a sample x, NCM classifier compares
the embedding vector of the sample x with all prototypes
and assigns the class label of the prototype with the nearest
L2 distance. NCM classifier is represented as follows.

𝜇𝐶 =
1
𝑛𝑐

∑
𝑖

𝐸𝑛𝑐(𝑥𝑖) · {𝑦𝑖 = 𝑐} (5)

𝑦∗ = argmin
𝑐∈𝐶𝑡

| |𝐸𝑛𝑐(𝑥) − 𝜇𝑐 | | (6)

where 𝑛𝑐 is the number of samples in the memory buffer for
class 𝑐 and {𝑦𝑖 = 𝑐} is the indicator for 𝑦𝑖 = 𝑐. The pro-
totype 𝜇𝑐 is the centroid of the emmbedding of the samples

of each class in the buffer. The prototype is recomputed at
each inference step using the samples in the buffer at that
time.

5. Experiments

5.1. Experiment Setup

5.1.1 Datasets and Scenario

We conducted experiments on three datasets, Split
CIFAR10/100[12], Split MiniImageNet[30]. Split CI-
FAR10 divides CIFAR10 into 5 tasks, each task consists of
disjoint 2 classes. Split CIFAR10 and Split MiniImageNet
split CIFAR100 and MiniImageNet into 10 tasks, each task
consists of disjoint 10 classes. In addition, we conducted
experiments on Class-IL, assuming a practical scenario.
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Table 2: Ablation study of two components in our method: learnable vectors and margin. The best scores are in boldface and
the second best scores are underlined.

Method CIFAR10 CIFAR100 MiniImagenet

M=100 M=200 M=500 M=1000 M=500 M=1000 M=2000 M=5000 M=500 M=1000 M=2000 M=5000

LMC Loss 40.5±2.1 49.0±1.9 59.5±1.0 65.2±0.7 20.7±0.7 27.2±0.5 33.8±0.5 39.8±0.6 19.0±0.5 25.3±0.7 30.7±1.0 36.6±0.6
w/o Margin 38.1±2.5 46.6±1.6 58.6±1.3 65.4±0.8 20.3±0.8 26.3±0.6 33.0±0.5 39.2±0.6 17.6±0.8 24.8±0.6 31.1±0.6 36.1±0.5
w/o Lernable Vector 39.9±1.9 48.5±3.0 59.3±2.4 66.0±1.1 20.4±0.6 26.9±0.8 33.1±0.5 38.3±0.6 17.6±0.7 24.4±0.5 30.2±0.8 34.2±1.0
w/o Margin and Learnable Vector(Supcon) 35.1±2.9 45.4±1.7 57.4±1.0 64.5±1.2 19.3±0.6 26.4±0.5 32.7±0.6 38.6±0.5 17.8±1.2 24.3±0.7 31.0±1.1 35.8±0.8

Figure 3: Effectiveness of margin on CIFAR100 (𝑀 =
1000).

5.1.2 Baseline

To validate the effectiveness of our method, we used several
continual learning baseline: ER[24], EWC[27], LwF[14],
ASER[27], AGEM[4], MIR[1], GSS[2], GDumb[22],
iCaRL[23], SCR[18]. We also experimented with offline
and fine-tuning. Offline is not a continual learning setting,
but trains model in multiple epochs on the whole dataset
with iid sampled mini-batches. Fine-tuning trains models in
a continual learning setting without measures against catas-
trophic forgetting.

5.1.3 Evaluation Metric

In this experiments, we used Average Accuracy 𝐴𝑖 as the
evaluation metric[13]. 𝐴𝑖 can be represented as follows.

𝐴𝑖, 𝑗 =
1
𝑖

𝑖∑
𝑗=1
𝑎𝑖, 𝑗 (7)

In this paper, we use the average accuracy 𝐴𝑇 of all tasks at
the end of all tasks to compare with beseline.

5.1.4 Experimental Details

In our experiments on all datasets, we used ResNet18[10] as
the backbone, SGD as the optimizer. In the ReplayMethods,

10 samples are randomly retrieved from the data stream
and 100 samples are randomly retrieved from the buffer to
form mini-batches. For SCR and the proposed method, the
feature vector of 128 dimensions was output by MLP using
the activation function ReLU as the projection head, and
NCM was used for classification. For offline, we adopted
50 epoches as training. We use reservoir sampling[31] for
memory update and random sampling for memory retrieval
and use a memory batch size 100.

5.2. Comparison results

We first compare our method with various online contin-
ual learning methods on Split CIFAR10, Split CIFAR100
and Split MiniImageNet in Table 1 and Figure 2. We eval-
uated with various values for the margin in the proposed
method and we adopted 𝑚 = 0.2, which was the highest
accuracy.
First, we compare the accuracy at the end of training for

multiple datasets at various buffer sizes. SCR is the high-
est performance on various buffer sizes. This is because
contrastive learning and NCM classifiers are effective in
biasing model weights from class imbalance between past
and current classes. we can see that our proposed method
outperforms baselines at almost of all buffer sizes. In par-
ticular, for the smallest buffer sizes (M=100,500,500) on all
datasets, we find that the proposed method outperforms the
baseline by 5.4%, 1.4%, 1.2%. The smaller the buffer size,
the larger the difference in the number of samples between
the past and current classes. This produces a large difference
in the size of the clusters of features for past and current class
samples in embedding space. We consider that our proposed
method to be effective in situations where the the buffer size
is small because two components of the proposed method
(margin and learnable vector) mitigate this difference. On
the other hand, if a large number of samples can be stored,
the problem of a small variety of samples in past classes is
mitigated, so SCR is effective.

5.3. Ablation Study

This section shows the effectiveness of each element of
the proposed method. We show the results of the Ablation
study in Table 2. Table 2 shows that both margins and
learnable vectors are effective for almost buffer sizes. In
addition, these two factors are often the most effective when
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(a) ER (b) iCaRL (c) SCR (d) LMCR(ours)

Figure 4: Visualization results of features by t-SNE. Colored dots represent buffered images and gray dots represent training
images. All features are the output from an encoder by the end of training and normalized.

they combined. We considered that these two factors made
the past and current class features similarly distributed in
embedding space.
We show the effect of margin on LMC Loss in Figure

3. The graph shows that the value of the margin has a
significant impact on performance.We see that the value of
the margin should not be too large or too small. From this
result, it is probably important to determine the value of the
margin that allows for a uniform size of clusters for each
class on the embedding space. Currently, margins need
to be experimented with many times to search for optimal
values. In the future, margin values should be dynamically
determined based on variety of samples or other factors.
We show the visualization results of features from all

training samples by t-SNE[29] in Figure 4. Color dots repre-
sent buffered images and gray dots represent training images
in CIFAR10 dataset. Figure 4 shows that SCR and LMCR,
which use contrastive learning, are closer to each other in
the same class of features than ER and Icarl. Furthermore,
in comparison with SCR, LMCR shows that the clusters of
each class are equal in size and the distance between the
clusters is uniform. This shows that LMCR mitigates the
existing problem, the difference in cluster size from class
imbalance.

6. Conclusions
In this paper, we propose a new method of online contin-

ual learning, LMCR. This is a method that uses a learnable
vector with labels for each class and a margin in contrastive
learning to reduce class imbalance problems between past
and new classes. In experiments, we confirmed that our pro-
posedmethod outperforms various online continual learning
methods for various buffer sizes on three datasets.
In the future, we hope to dynamically change the margin

to the optimal value based on the relationship between the
data.
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