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Abstract

Neural radiance fields (NeRFs) have emerged as an ef-
fective method for novel-view synthesis and 3D scene recon-
struction. However, conventional training methods require
access to all training views during scene optimization. This
assumption may be prohibitive in continual learning scenar-
ios, where new data is acquired in a sequential manner and
a continuous update of the NeRF is desired, as in automo-
tive or remote sensing applications. When naively trained
in such a continual setting, traditional scene representation
frameworks suffer from catastrophic forgetting, where previ-
ously learned knowledge is corrupted after training on new
data. Prior works in alleviating forgetting with NeRFs suf-
fer from low reconstruction quality and high latency, making
them impractical for real-world application. We propose a
continual learning framework for training NeRFs that lever-
ages replay-based methods combined with a hybrid explicit–
implicit scene representation. Our method outperforms pre-
vious methods in reconstruction quality when trained in a
continual setting, while having the additional benefit of be-
ing an order of magnitude faster.

1. Introduction
High-quality reconstruction and image-based rendering

of 3D scenes is a long-standing research problem spanning

the fields of computer vision [23, 36], computer graphics

[7, 18], and robotics [3, 15, 41]. Recently, the introduc-

tion of Neural Radiance Fields (NeRFs) [39] has led to sub-

stantial improvements in this area through the use of dif-

ferentiable 3D scene representations supervised with posed

2D images. However, NeRFs require access to all avail-

able views of the 3D scene during training, a condition that

is prohibitive for automotive and remote sensing applica-

tions, among others, where data is sequentially acquired and

an updated 3D scene representation should be immediately

available. In such conditions, the scene representation must

be trained in a continual setting, where the model is given

access to a limited number of views at each stage of train-

ing, while still tasked with reconstructing the entire scene.
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Figure 1. Continual learning of NeRFs. Conventionally, NeRFs

are trained with access to all training views. However, for con-

tinual learning scenarios we must train on batches of input views

without access to previously seen data (top). When trained in these

settings, conventional methods suffer from catastrophic forgetting,

leading to poor reconstructions (center). In contrast, our method

reconstructs the entire scene with high quality (bottom).

When trained in a continual setting, NeRFs suffer

from catastrophic forgetting [17], where previously learned

knowledge is forgotten when trained on new incoming data.

Recent work [53, 13] has shown promise in tackling catas-

trophic forgetting through replay-based methods. Such ap-

proaches aim to alleviate forgetting by storing information

from previous tasks either explicitly or in a compressed rep-

resentation, then revisiting this information during training

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Problem overview. (a) Continual learning setting for

training NeRFs. Instead of training the scene representation over

all input views at once, the model is given 2D views of the scene in

sequential batches. During a particular stage in training, the model

is only given access to the most recently captured views. (b) Train-

ing NeRF is the continual setting leads to catastrophic forgetting.

Previously learned 3D scene content is corrupted after training on

newly captured views.

of subsequent tasks. Existing methods [68, 48] have seen

success through the application of replay-based techniques

in conjunction with NeRF for addressing the task of simulta-

neous mapping and localization (SLAM) [3], however such

methods either suffer from memory scalability or latency is-

sues.

In this work, we tackle the task of continually learn-

ing NeRFs by leveraging the benefits of replay-based tech-

niques. Specifically, we acknowledge that a trained NeRF

itself is a compressed representation of all previously ob-

served 2D views. By freezing a copy of the scene repre-

sentation after the training of each task, we essentially have

access to pseudo ground truth RGB values for all previously

seen data by querying this oracle. We also modify the un-

derlying neural scene representation architecture motivated

by one key insight: catastrophic forgetting is a fundamental

problem faced by neural networks. Therefore, the fully im-

plicit (MLP) representation used by NeRF is fundamentally

ill-suited for the task of continual learning. We minimize

the reliance of our underlying scene model on the decoder

neural network by using a hybrid implicit–explicit represen-

tation. By replacing the frequency encoding in NeRF with a

multi-resolution hash encoding [40], we greatly reduce the

size of the decoder multilayer perceptron (MLP), minimiz-

ing the effects of catastrophic forgetting.

As an additional benefit, our method is also an order of

magnitude faster than previous replay-based methods [13].

This enables fast continual scene fitting, as our method can

learn additional 3D scene content from new input views in

as little as 5 seconds (see Section 5.4 for details).

2. Related Work

Neural radiance fields. Scene representation net-

works [51] and neural rendering [57, 58] have emerged as

a family of techniques enabling effective 3D scene recon-

struction. Given a set of images and corresponding ground

truth camera poses, neural radiance fields (NeRFs) [39], for

example, optimizes a underlying scene representation by

casting rays, sampling the scene volume and aggregating

sampled color and density values to synthesize an image.

The success of NeRFs has spawned a line of works on

improving the quality and efficiency of the method [5, 4,

11, 20, 24, 6, 32, 33, 38, 40, 45, 55, 56, 60, 61, 64, 65, 67],

while extending the method to a range of applications

[62, 12, 34, 43, 19, 22, 42, 53, 68]. NeRFs leverage a

neural implicit representation (NIR) [50] in the form of

a simple, yet effective multi-layer pereceptron (MLP) to

represent the 3D scene. Many follow-up works improve

on the underlying NIR, enabling features such as real-time

rendering [45, 66, 8] and faster training [40, 33, 65, 10]. A

key limitation for the training of NeRFs is the assumption

that all input images of the target scene are available during

training. In scenarios such as autonomous vehicle or drone

footage captures, this assumption no longer holds as data

is sequentially acquired and an updated 3D representation

should be immediately available. NeRFs trained on se-

quential data suffer from catastrophic forgetting [46]. Our

method overcomes this limitation, providing a high quality

reconstruction of the entire scene, while imparting minimal

computational and memory overhead.

Continual learning. Continual learning is a long-standing

problem in the field of machine learning, where partial train-

ing data is available at each stage of training. As mentioned

above, NeRFs trained in a continual learning setting suffers

from catastrophic forgetting [46]. Existing work in this field

fall into three main categories [29]: parameter regularization

[31, 59, 1, 25], parameter isolation [2, 63, 37, 16] and data

replay [26, 44, 47, 49, 35, 9]. Parameter isolation methods

aim at combating catastrophic forgetting by attempting to

learn a sub-network for each task, while parameter regular-

ization methods identify parameters important for preserv-

ing old knowledge and penalizing changes to them. Finally,

data replay methods preserve previous knowledge by storing
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Figure 3. Memory replay through NeRF distillation. Scene representation is sequentially trained on sequentially acquired views. After

each stage of training, a frozen copy of the scene parameters is stored. While optimizing for the next set of incoming images, the frozen

network is queried to obtain pseudo ground truth values. The current network (Φi,Θi) is trained on a mixed objective that minimizes

photometric loss with respect to ground truth images from the current task, and pseudo ground truth values for previous tasks (Equation 4).

a subset of previous training data. Subsequent tasks are then

optimized over old and new incoming data. Our proposed

method leverages a self-distillation method similar to pre-

vious data replay approaches, storing pseudo ground truth

values for all previous training with minimal memory usage.

SLAM & continual learning of NeRFs. Works in the

field of simultaneous mapping and localization (SLAM) [3]

aim at reconstructing a 3D scene from a continuous stream

of images, similar to the continual learning setting. Recent

works [53, 68, 48] combine NIRs and traditional SLAM-

based methods with promising results. These methods fall

under the data replay category, as they approach the task

of continual learning by explicitly storing key-frames from

previous image streams. Storing data explicitly can be ex-

pensive, and designing an appropriate importance heuristic

for selecting key-frames is non-trivial. In contrast, our ap-

proach stores previous data as an implicitly defined genera-

tor, greatly reducing memory overhead.

3. Continual Learning of NeRFs

Before we explain the details of our proposed method,

it is important to first formally establish the task of con-

tinual learning of NeRFs. We consider the scenario where

t sets of image data come in sequentially, represented by

{I1, . . . , It}. Each image data set is represented by Ii =
(Ii,Ri), where Ii represents the per-pixel RGB values of the

image data and Ri represent the camera rays corresponding

to each image pixel. Note that Ri can either be explicitly

stored as values in R
6 (ray origin and direction) or implic-

itly through camera extrinsic and intrinsic matrices.

The objective of our optimization remains the same, we

wish to minimize reconstruction loss across all provided

ground truth views in {I1, . . . , It}. However, the training

procedure differs from conventional NeRF training. Train-

ing is performed sequentially as illustrated in Figure 2a. At

a given stage of training, our model is only given access

to a subset of all of the RGB images (visualized in Figure

2b), but access to ray information from all previous tasks.

Formally, at time step i, the model is able to access Ii and

{R1, . . . ,Ri}. Note that this formulation is slightly differ-

ent from prior works such as MEIL-NeRF [13] where access

to ray information is also constrained. However, we believe

this constraint is unwarranted since ray information can be

stored implicitly for every input view with only 6 scalar val-

ues1, assuming all input views share the same camera intrin-

sics. Similar to prior work [13], our method is based on self

distillation [21], therefore we also assume that we have ac-

cess to a frozen copy of our trained representation from the

previous task.

4. Method
In this section, we first provide a brief recap behind the

formulation of NeRFs [39], then introduce our solution to

catastrophic forgetting in the context of training NeRFs in

a continual setting. There are two main contributors to our

1Camera extrinsic matrices can be implicitly stored in the form

(tx, ty , tz , rx, ry , rz), where tx, ty , tz represents the position of the cam-

era optical center and rx, ry , rz the orientation of the camera.
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solution: namely, the use of a hybrid feature representation

(Section 4.2) and task specific network distillation (Section

4.3).

4.1. NeRF preliminaries

Neural radiance fields (NeRFs) [39] represent a 3D scene

through an implicit function from a point in 3D space

x = (x, y, z) along with a corresponding viewing direction

d = (θ, φ) to a density value σ and RGB color c = (r, g, b).
Conventionally, NeRFs are represented with an MLP char-

acterized by its parameters Θ, giving the mapping

FΘ : (x,d) �→ (σ, c). (1)

Novel views of the 3D scene are generated through volume

rendering [28] of the 5D radiance field. Given an image

pixel with the corresponding ray r = (ro, rd), by sampling

points xi along this ray and evaluating the radiance field val-

ues (σi, ci) at these points, the color associated with this ray

can be recovered. With N sampled points, the RGB color of

a ray r is obtained by

Ĉ(r; Θ) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (2)

where δi represents the distance between the ith and (i+1)th

sampled point and Ti represents the accumulated transmit-

tance from ro to the current sample point, given by Ti =

exp
(
−∑i−1

j=1 σjδj

)
.

4.2. Multi-resolution hash encoding

Prior work [40] has found success in replacing the fully

implicit FΘ with a hybrid representation, leading to faster

convergence rates along with better memory and computa-

tional efficiency. Hybrid representations map 3D coordi-

nates to an explicitly defined feature space before passing

these features into a significantly smaller implicit MLP de-

coder to obtain density and RGB values. We leverage these

explicit feature mappings to alleviate the effects of catas-

trophic forgetting.

Multi-resolution feature grids. Following Instant-

NGP [40], we map 3D coordinates to explicit features

arranged into L levels, each level containing a maximum of

T features, with each feature having a dimensionality of F .

Each level stores features corresponding to vertices of a 3D

grid with fixed resolution. Consider a single feature level

l: the queried 3D coordinate x is first scaled to match the

native resolution of l, and the neighboring 23 vertices from

the fixed resolution 3D grid are identified. Each vertex of

interest is mapped to an entry in the lth level feature array

and the final feature value corresponding to x is obtained

through tri-linear interpolation. This feature value is then

passed into an implicit function represented by an MLP,

mapping from feature space to density and RGB values.

Forgetting in explicit features. Consider the case where

T matches the total number of vertices at each grid resolu-

tion, such that a 1:1 mapping exists between grid vertices

and feature embeddings. In the continual setting, features

are only updated when the corresponding voxel is visible in

the training views of the current task, whereas other features

remain constant, unaffected by catastrophic forgetting. This

is in stark contrast to the global updates observed in fully im-

plicit representations such as in NeRF [39]. In NeRF, each

network parameter influences radiance and density values at

every point in 3D space, and training on new data points

overwrites information learned in the entire scene, even for

regions not visible in the current training views.

Hashed feature tables. In an effort to lower memory

usage at higher grid resolutions, Instant-NGP proposes a

hashed encoding scheme. At finer levels, a hash function

h : Zd �→ ZT is used to index into the feature array, effec-

tively acting as a hash table. Following prior work [40], we

use a spatial hash function of the form

h(x) =

(
d⊕

i=1

xiπi

)
mod T, (3)

where
⊕

represents the bit-wise XOR operator and πi are

unique, large primes.

In contrast to dense feature grids, hashed feature tables

suffer from catastrophic forgetting in the feature space due

to hash collisions. Consider a single task Ii. A vertex v1
visible in Ii may share the same hash table entry as another

vertex v2 that is not visible in Ii. During training, the train-

ing objective will only optimize the shared hash table entry

for the current task Ii, learning the correct feature value for

v1, while forgetting any information learnt for v2. The ef-

fects of forgetting are dependent on the frequency of hash

collisions between grid vertices, which increases as the hash

table size T decreases.

4.3. Memory replay through NeRF distillation

Catastrophic forgetting results from a misalignment

between the current and cumulative training objectives.

Replay-based approaches [26, 44, 47, 49, 35, 9] combat

network forgetting by storing information from previous

tasks either explicitly or implicitly through a generative

model. Consider a NeRF with explicit feature embeddings

trained on a set of tasks {I1, . . . , Ii}, with feature and MLP

parameters characterized by (Φi,Θi). We can then treat

(Φi,Θi) as a generator for 2D image data found in tasks

{I1, . . . , Ii}. Let R̂i be the union of all ground truth rays in

the first i tasks. The ground truth RGB value corresponding

to a ray r ∈ R̂i can then be approximated by Ĉ(r; Φi,Θi)
following Eq. 2.

We approach continual learning in a self-distillation man-

ner [21]. When training on the subsequent task Ii+1, we no
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Table 1. Quantitative results: unconstrained setting. PSNR of different continual learning methods. Every method is trained on each task

until convergence, which differs by method. Approximate training time for all 10 tasks is listed next to each method. For each scene, we

mark the best performing methods with gold , silver and bronze medals. Results marked with * are trained in a non-continual setting,

where ground truth data from all tasks are available during scene optimization. These results serve as an upper bound for scenes trained in

a continual setting. Our method consistently out-performs all baselines while taking significantly less time to converge.

ScanNet Tanks & Temples TUM RGB-D
Method 0101 0146 0160 Truck Caterpillar Family Desk 0 Desk 1

NeRF-Incre (2 hours) 13.70 13.20 17.31 16.88 15.36 22.96 13.05 14.03

iNGP-Incre (10 min) 16.51 16.64 19.98 13.49 14.55 21.15 12.70 14.65

iNGP + EWC (10 min) 16.11 17.32 20.16 12.50 13.61 19.28 12.50 10.85

MEIL-NeRF (2 hours) 24.32 26.82 28.93 22.74 20.89 26.57 20.79 19.80

Ours (10 min) 25.72 27.87 30.28 22.71 22.51 29.33 20.65 20.34

NeRF* (2 hours) 26.15 28.48 30.88 24.80 23.14 29.33 22.35 20.88

iNGP* (10 min) 26.00 28.43 31.16 24.22 24.02 31.14 20.95 20.73

longer have access to ground truth image data from previous

tasks. However, as explored in prior work [13], by saving

network parameters (Φi,Θi) we effectively have access to

pseudo ground truth values for all rays in R̂i. We can then

modify our training objective to minimize photometric loss

for all rays in tasks {I1, . . . , Ii+1}, rather than just Ii+1.

The modified training objective is then given by

L(Φ,Θ)i+1 =
∑

r∈Ii+1

||Ĉ(r; Φ,Θ)−C(r)||2

+
∑

r/∈Ii+1

||Ĉ(r; Φ,Θ)− Ĉ(r; Φi,Θi))||2.

(4)

During each task, we still sample rays uniformly over all

previous and current tasks. However, for previous tasks

where ground truth RGB values are no longer available, we

instead query the frozen network to obtain a pseudo ground

truth value. Figure 3 shows a visualization of the replay-

based distillation method.

5. Experiments
To highlight the effectiveness of our method in overcom-

ing catastrophic forgetting, we compare our method against

existing continual learning methods [25, 13]. We describe

baseline methods in Section 5.1, datasets used in Section

5.2 and experimental settings in Section 5.3.

5.1. Baselines

NeRF and iNGP. We train NeRFs under the continual set-

ting using frequency and multi-resolution hash encodings,

referring to these baselines as NeRF-Incre and iNGP-Incre
respectively. For our hash encoding experiments, we used a

feature grid of L = 16 levels, a hash table size of T = 217,

a feature dimension of F = 2 and grid resolutions ranging

from 16 to 512. We also scale the original NeRF representa-

tion [39] to have 8 fully connected layers with 512 channels

each, matching the total number of trainable parameters as

the hash encoding models.

Elastic Weight Consolidation. Elastic Weight Consolida-

tion (EWC) [25] is a form of feature regularization method

for alleviating catastrophic forgetting. Let ΦA be the set of

hashed feature embeddings learned on task IA. Consider a

subsequent task IB . EWC modifies the training objective to

the following:

L(Φ) = LB(Φ) +
λ

2
F (Φ− ΦA)

2. (5)

LB represents the training objective on task IB and F is

an estimation of the diagonal of the Fischer information

matrix given by the squared gradients of parameters ΦA

with respect to the training objective LA. Intuitively, ΦA

is recorded as a set of reference parameters. Deviation from

these reference parameters are penalized, weighted on their

importance relative to the training objective. We implement

EWC on top of an iNGP backbone as a baseline method

by fixing the trained network parameters after each training

task as the reference parameters.

MEIL-NeRF. Recently, MEIL-NeRF [13] also proposed

the use of memory replay through network distillation for

alleviating catastrophic forgetting effects in NeRFs. How-

ever, MEIL-NeRF uses the original fully implicit NeRF rep-

resentation as a backbone, which limits reconstruction qual-

ity and convergence speed. We include continual learn-

ing results following the general implementation of MEIL-

NeRF. While MEIL-NeRF uses an additional ray genera-

tor network for sampling previous rays from previous tasks,

this additional step leads to significant degradation in recon-

struction results while providing minimal memory savings;
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Figure 4. Qualitative results: unconstrained setting. We show reconstructed views from a previously supervised (forgotten) task across

different methods. Our method consistently outperforms all other baselines in visual quality. NeRF trained in a continual setting suffers from

catastrophic forgetting, as illustrated by poor early-task reconstruction results. Parameter regularization through EWC aids in alleviating

forgetting effects, however, reconstruction results still suffer from severe visual artefacts. MEIL-NeRF adopts a similar replay approach as

our method, using a frozen copy of the scene representation as guidance when training future tasks. However, the fully implicit representation

in MEIL-NeRF forgets high-frequency detail from earlier tasks. In contrast, our method is able to retain high-frequency details for earlier

tasks through the use of explicit features.

we therefore omit this step and sample ground truth rays in-

stead. MEIL-NeRF also explores using Charbonnier penalty

function, we consider changes to the penalty function a tan-

gential area of exploration, and choose to train both our

method and MEIL-NeRF using the loss function detailed in

Equation 4.

5.2. Datasets

We compare methods on the task of continual scene fit-

ting using the Tanks & Temples [27], ScanNet [14] and

TUM RGB-D datasets [52]. Data for each scene is rep-

resented by a trajectory of ground truth camera poses and

corresponding RGB images, with each trajectory containing

100–300 images depending on scene. We emulate the set-

ting of continual learning by partitioning each trajectory into

10 temporally sequential tasks.

5.3. Experimental settings

We evaluate our method in two separate settings: an

unconstrained setting where each method is trained on ev-

ery task until convergence, and a constrained setting where

each task is trained on a fixed time budget. The uncon-

strained setting aims at testing the upper-bound performance

of each method, while the constrained setting mimics a real-

time continual scene reconstruction setting. Each model is

trained on a single RTX 6000 GPU, with a ray batch size

of 1024. For the unconstrained settings, we trained methods

using a hash encoding for 1 minute per task and methods

built on fully implicit NeRFs for 10 minutes per task.

5.4. Results

Unconstrained setting. We show quantitative results of

each method for the unconstrained setting in Table 1. Meth-

ods are evaluated using peak signal-to-noise ratio (PSNR),
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ScanNet Tanks & Temples TUM RGB-D
Method 0101 0146 0160 Truck Caterpillar Family TUM 1 TUM 2

Ours (1 s) 19.61 22.18 23.84 19.19 17.24 23.24 15.05 16.65

Ours (5 s) 24.10 26.13 28.37 21.93 20.59 26.29 19.35 19.02

Ours (30 s) 25.54 27.84 30.45 23.97 22.62 29.21 21.09 20.42

MEIL–NeRF (30 s) 18.85 21.41 22.72 18.11 16.93 21.78 16.05 15.96

MEIL–NeRF (1 min) 20.65 22.76 24.39 19.38 18.41 23.19 17.44 16.19

MEIL-NeRF (10 min) 24.32 26.82 28.93 22.74 20.89 26.57 20.79 19.80

Table 2. Quantitative results: time constrained. We show reconstruction PSNR for our method and MEIL-NeRF trained on a fixed time

limit per task. Our method converges to better results at a much faster rate. Our method trained for only 5s per task outperforms MEIL-

NeRF trained for 1 min per task and is competitive with MEIL-NeRF trained for 10 min per task. Given its rapid convergence, our method

uniquely enables real-time continual scene reconstruction.
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Figure 5. Qualitative results: time constrained. We show reconstructed views from an earlier supervised (forgotten) task for our method

and MEIL-NeRF trained for fixed times per task. Our method consistently outperforms MEIL-NeRF given equal time budget. With only 5s

per task, our method already reconstructs the scene with reasonable fidelity, illustrating that our method is well-suited for real-time continual

scene fitting.

averaged over all images in the test trajectory. We also pro-

vide quantitative results of the fully implicit NeRF and hash-

encoding representations trained in a non-continual setting.

These results serve as an upper bound for their contin-

ual learning counterparts. Quantitatively, our method con-

sistently outperforms all baselines in reconstruction qual-

ity. While performance of MEIL-NeRF comes close to our

method for certain scenes, our method takes significantly

less time to train due to the convergence properties of the

hash encoding representation. Results from our method also

come very close to the theoretical upper bound set by the

results obtained from non-continual training, further illus-

trating the effectiveness of our method.

Figure 4 shows qualitative results from the unconstrained

setting. Naively training NeRF under the continual set-

ting leads to catastrophic forgetting, as earlier views con-

tain heavy artefacts. Parameter regularization through EWC

helps alleviate forgetting for certain scenes, however, recon-

struction quality is still limited. MEIL-NeRF produces visu-

ally pleasing results, but reconstruction of earlier views lack

high-frequency details. In contrast, our method is able to

retain these high frequency details, as the underlying multi-

resolution hash encoding stores high-frequency features ex-

plicitly, allowing high frequency details to be retained dur-

ing training.

Time-constrained setting. We evaluate our method

against MEIL-NeRF in the time-constrained setting. We

trained both methods on each task for a fixed period of

time and show reconstruction PSNR averaged over all views

along the test trajectory in Table 2. Our method trained on

30 seconds per task out performs MEIL-NeRF, even when

trained for 10 minutes per task. More importantly, our

method trained for just 5 seconds produces results compa-

rable to MEIL-NeRF at convergence. Qualitative results in

Figure 5 show that our method provides reasonable scene

reconstruction quality at much shorter training times, illus-

trating that our method is uniquely suited for the task of real-
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Task 10Task 2 Task 3 Task 6

Figure 6. Reconstruction quality of early-supervised tasks. Re-

construction PSNR of task 2 over the course of training. Our

method successfully alleviates degradation effects from catas-

trophic forgetting, and consistently outperforms all other baselines.

time continual scene fitting.

5.5. Ablation study

Degradation of early tasks. We evaluate reconstruction

PSNR of the second task (of ten total) over the course of

training using different methods in Figure 6. Conventional

methods naively trained in the continual setting (NeRF-
Incre & iNGP-Incre) experience severe degredation due to

catasatrophic forgetting. MEIL-NeRF succesfully alleviates

forgetting effects through self-distillation, however, forget-

ting effects are still observed after training for many tasks.

In contrast, our method is able to maintain high PSNR for

previous tasks even after training for many tasks.

5.6. Applications: autonomous vehicle data

Our method is well-suited for scenarios such as au-

tonomous vehicle captures and drone footage, where data

is sequentially acquired and an updated 3D scene represen-

tation should be immediately available. To illustrate this,

we train our method on data obtained from the Waymo open

dataset [54]. A single trajectory in the Waymo dataset con-

sists of a video stream from 5 calibrated cameras mounted

at the top of the vehicle. Similar to the experimental settings

described in Section 5, we split each trajectory into 10 tem-

porally sequential tasks. We show qualitative results using

our method and iNGP-Incre in Figure 7, training each task

for 30 seconds for a total of 5 minutes. Our method recov-

ers meaningful geometry and reconstructs earlier views with

much higher quality.

6. Discussion
Limitations and future work. Our method relies on

ground truth camera poses to perform scene fitting. Al-

though prior works have explored simultaneous optimiza-

tion of camera poses and scene parameters for NeRFs, they
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Figure 7. Qualitative results on Waymo open dataset. Our

method recovers earlier training views at higher quality than train-

ing NeRFs naively in a continual learning setting.

either rely on good initializations [32] or specific constraints

on the distribution of camera poses [30]. Simultaneous esti-

mation of camera poses in the setting of continual learning

for NeRFs has also yet to be explored. It may be fruitful

to explore this direction further in relation to methods for

SLAM [3].

We chose to use multi-resolution hash encodings [40] to

leverage its fast convergence properties and explicitly de-

fined features to combat forgetting. Alternate representa-

tions, such as triplanes [8] and TensoRF [10] can also be

explored as potential substitutes, potentially further increas-

ing robustness to catastrophic forgetting through more struc-

tured encodings.

Our method uses a frozen version of the scene represen-

tation network trained on previous tasks as a pseudo ground

truth oracle. Querying the network for pseudo ground truth

values requires volume rendering through the scene, adding

computational overhead to the training process. A poten-

tial direction of exploration is to find other forms of com-

pression, such as 2D coordinate networks [50], to act as the

pseudo ground truth oracle. Additionally, if any single ora-

cle network is not of sufficient quality, this will continue to

affect downstream training on subsequent tasks.

Conclusion. In this work, we aim to extend the practi-

cal viability of NeRFs, specifically in the continual setting,

where training data is sequentially captured and a 3D rep-

resentation needs to be immediately available. By com-

bining multi-resolution hash encodings and replay methods

through network distillation, our approach alleviates the ef-

fects of catastrophic forgetting observed in the continual

learning of NeRFs. While previous approaches struggle

with quality and speed, our method is able to produce visu-

ally compelling reconstruction of earlier tasks while being

an order of magnitude faster than existing methods.

3341



References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory

aware synapses: Learning what (not) to forget. ArXiv,

abs/1711.09601, 2017.

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.

Expert gate: Lifelong learning with a network of experts.

2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7120–7129, 2016.

[3] Tim Bailey and Hugh F. Durrant-Whyte. Simultaneous local-

ization and mapping (slam): part ii. IEEE Robotics & Au-
tomation Magazine, 13:108–117, 2006.

[4] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.

Mip-nerf: A multiscale representation for anti-aliasing neural

radiance fields. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 5835–5844, 2021.

[5] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. 2022 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 5460–5469, 2021.

[6] Alexander W. Bergman, Petr Kellnhofer, and Gordon Wet-

zstein. Fast training of neural lumigraph representations us-

ing meta learning. In NeurIPS, 2021.

[7] Fabio Bruno, Stefano Bruno, G. De Sensi, Maria Laura

Luchi, Stefania Mancuso, and Maurizio Muzzupappa. From

3d reconstruction to virtual reality: A complete methodol-

ogy for digital archaeological exhibition. Journal of Cultural
Heritage, 11:42–49, 2010.

[8] Eric Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano,

Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J.

Guibas, Jonathan Tremblay, S. Khamis, Tero Karras, and

Gordon Wetzstein. Efficient geometry-aware 3d generative

adversarial networks. 2022 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16102–

16112, 2021.

[9] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with a-

gem. ArXiv, abs/1812.00420, 2018.

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, 2022.

[11] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,

Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast gener-

alizable radiance field reconstruction from multi-view stereo.

2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 14104–14113, 2021.

[12] Jianchuan Chen, Ying Zhang, Di Kang, Xuefei Zhe, Linchao

Bao, and Huchuan Lu. Animatable neural radiance fields

from monocular rgb video. ArXiv, abs/2106.13629, 2021.

[13] Jaeyoung Chung, Kang-Ho Lee, Sungyong Baik, and Ky-

oung Mu Lee. Meil-nerf: Memory-efficient incremental

learning of neural radiance fields. ArXiv, abs/2212.08328,

2022.

[14] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas A. Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. 2017

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2432–2443, 2017.

[15] Hugh F. Durrant-Whyte and Tim Bailey. Simultaneous local-

ization and mapping: part i. IEEE Robotics & Automation
Magazine, 13:99–110, 2006.

[16] Chrisantha Fernando, Dylan S. Banarse, Charles Blundell,

Yori Zwols, David R Ha, Andrei A. Rusu, Alexander Pritzel,

and Daan Wierstra. Pathnet: Evolution channels gradient de-

scent in super neural networks. ArXiv, abs/1701.08734, 2017.

[17] Robert M. French. Catastrophic forgetting in connectionist

networks. Trends in Cognitive Sciences, 3:128–135, 1999.

[18] Guy Gafni, Justus Thies, Michael Zollhofer, and Matthias

Nießner. Dynamic neural radiance fields for monocular 4d

facial avatar reconstruction. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

8645–8654, 2020.

[19] Zekun Hao, Arun Mallya, Serge J. Belongie, and Ming-

Yu Liu. Gancraft: Unsupervised 3d neural rendering of

minecraft worlds. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 14052–14062, 2021.

[20] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,

Jonathan T. Barron, and Paul E. Debevec. Baking neural ra-

diance fields for real-time view synthesis. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages

5855–5864, 2021.

[21] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.

Distilling the knowledge in a neural network. ArXiv,

abs/1503.02531, 2015.

[22] Jeffrey Ichnowski, Yahav Avigal, Justin Kerr, and Ken Gold-

berg. Dex-nerf: Using a neural radiance field to grasp trans-

parent objects. In Conference on Robot Learning, 2021.

[23] Joel Janai, Fatma Güney, Aseem Behl, and Andreas

Geiger. Computer vision for autonomous vehicles: Problems,

datasets and state-of-the-art. ArXiv, abs/1704.05519, 2017.

[24] Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan P. Spicer,

Kari Pulli, and Gordon Wetzstein. Neural lumigraph render-

ing. 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4285–4295, 2021.

[25] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz,

Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Ku-

maran, and Raia Hadsell. Overcoming catastrophic forgetting

in neural networks. Proceedings of the National Academy of
Sciences, 114:3521 – 3526, 2016.

[26] Georg S. W. Klein and David William Murray. Parallel track-

ing and mapping for small ar workspaces. 2007 6th IEEE and
ACM International Symposium on Mixed and Augmented Re-
ality, pages 225–234, 2007.

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples. ACM Transactions on Graph-
ics (TOG), 36:1 – 13, 2017.

[28] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of

shape by space carving. International Journal of Computer
Vision, 38:199–218, 1999.

[29] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah

Parisot, Xu Jia, Alevs. Leonardis, Gregory G. Slabaugh, and

3342



Tinne Tuytelaars. A continual learning survey: Defying for-

getting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44:3366–3385, 2019.

[30] Axel Levy, Mark J. Matthews, Matan Sela, Gordon Wet-

zstein, and Dmitry Lagun. Melon: Nerf with unposed images

using equivalence class estimation. ArXiv, abs/2303.08096,

2023.

[31] Zhizhong Li and Derek Hoiem. Learning without forgetting.

IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 40:2935–2947, 2016.

[32] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-

mon Lucey. Barf: Bundle-adjusting neural radiance fields.

2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 5721–5731, 2021.

[33] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua,

and Christian Theobalt. Neural sparse voxel fields. ArXiv,

abs/2007.11571, 2020.

[34] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,

Michael Zollhoefer, Yaser Sheikh, and Jason M. Saragih.

Mixture of volumetric primitives for efficient neural render-

ing. ACM Transactions on Graphics (TOG), 40:1 – 13, 2021.

[35] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In NIPS, 2017.

[36] Xinzhu Ma, Zhihui Wang, Haojie Li, Wanli Ouyang, and

Pengbo Zhang. Accurate monocular 3d object detection via

color-embedded 3d reconstruction for autonomous driving.

2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6850–6859, 2019.

[37] Arun Mallya and Svetlana Lazebnik. Packnet: Adding

multiple tasks to a single network by iterative pruning.

2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2017.

[38] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Saj-

jadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel

Duckworth. Nerf in the wild: Neural radiance fields for un-

constrained photo collections. 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages

7206–7215, 2020.

[39] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf.

Communications of the ACM, 65:99 – 106, 2021.

[40] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a mul-

tiresolution hash encoding. ACM Transactions on Graphics
(TOG), 41:1 – 15, 2022.

[41] Raul Mur-Artal, José M. M. Montiel, and Juan D. Tardós.

Orb-slam: A versatile and accurate monocular slam system.

IEEE Transactions on Robotics, 31:1147–1163, 2015.

[42] Michael Oechsle, Songyou Peng, and Andreas Geiger.

Unisurf: Unifying neural implicit surfaces and radiance fields

for multi-view reconstruction. 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5569–5579,

2021.

[43] Sida Peng, Junting Dong, Qianqian Wang, Shang-Wei Zhang,

Qing Shuai, Xiaowei Zhou, and Hujun Bao. Animatable

neural radiance fields for modeling dynamic human bodies.

2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 14294–14303, 2021.

[44] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, G. Sperl,

and Christoph H. Lampert. icarl: Incremental classifier and

representation learning. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5533–5542,

2016.

[45] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 14315–14325,

2021.

[46] Anthony V. Robins. Catastrophic forgetting, rehearsal and

pseudorehearsal. Connect. Sci., 7:123–146, 1995.

[47] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P.

Lillicrap, and Greg Wayne. Experience replay for continual

learning. In Neural Information Processing Systems, 2018.

[48] Antoni Rosinol, John J. Leonard, and Luca Carlone. Nerf-

slam: Real-time dense monocular slam with neural radiance

fields. ArXiv, abs/2210.13641, 2022.

[49] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In NIPS,

2017.

[50] Vincent Sitzmann, Julien N. P. Martel, Alexander W.

Bergman, David B. Lindell, and Gordon Wetzstein. Im-

plicit neural representations with periodic activation func-

tions. ArXiv, abs/2006.09661, 2020.

[51] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein.

Scene representation networks: Continuous 3d-structure-

aware neural scene representations. Advances in Neural In-
formation Processing Systems, 32, 2019.

[52] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram

Burgard, and Daniel Cremers. A benchmark for the evalu-

ation of rgb-d slam systems. 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 573–

580, 2012.

[53] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davi-

son. imap: Implicit mapping and positioning in real-time.

2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6209–6218, 2021.

[54] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,

Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott M. Et-

tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,

Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.

Scalability in perception for autonomous driving: Waymo

open dataset. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2443–2451,

2019.

[55] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi

Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren

Ng. Learned initializations for optimizing coordinate-based

neural representations. 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2845–

2854, 2020.

[56] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. ArXiv, abs/2006.10739, 2020.

3343



[57] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann,

Stephen Lombardi, Kalyan Sunkavalli, Ricardo Martin-

Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,

et al. State of the art on neural rendering. In Computer
Graphics Forum, volume 39, pages 701–727. Wiley Online

Library, 2020.

[58] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-

vasan, Edgar Tretschk, Wang Yifan, Christoph Lassner, Vin-

cent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi,

et al. Advances in neural rendering. In Computer Graph-
ics Forum, volume 41, pages 703–735. Wiley Online Library,

2022.

[59] A. Triki, Rahaf Aljundi, Matthew B. Blaschko, and Tinne

Tuytelaars. Encoder based lifelong learning. 2017 IEEE In-
ternational Conference on Computer Vision (ICCV), pages

1329–1337, 2017.

[60] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler,

Jonathan T. Barron, and Pratul P. Srinivasan. Ref-nerf: Struc-

tured view-dependent appearance for neural radiance fields.

2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5481–5490, 2021.

[61] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P.

Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo

Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser.

Ibrnet: Learning multi-view image-based rendering. 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4688–4697, 2021.

[62] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,

Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-

kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in

visual computing and beyond. Computer Graphics Forum,

41, 2021.

[63] Ju Xu and Zhanxing Zhu. Reinforced continual learning.

ArXiv, abs/1805.12369, 2018.

[64] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-

manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Build-

ing animatable 3d neural models from many casual videos.

2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2853–2863, 2021.

[65] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong

Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:

Radiance fields without neural networks. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5491–5500, 2021.

[66] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and

Angjoo Kanazawa. Plenoctrees for real-time rendering of

neural radiance fields. 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 5732–5741, 2021.

[67] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelnerf: Neural radiance fields from one or few images.

2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4576–4585, 2020.

[68] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-

jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-

feys. Nice-slam: Neural implicit scalable encoding for slam.

2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 12776–12786, 2021.

3344


